Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2020 doi:10.20944/preprints202005.0360.v1 STORAGE,INDEXING,QUERY PROCESSING, AND BENCHMARKING IN CENTRALIZED AND DISTRIBUTED RDF ENGINES:ASURVEY Waqas Ali Department of Computer Science and Engineering, School of Electronic, Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, Shanghai, China
[email protected] Muhammad Saleem Agile Knowledge and Semantic Web (AKWS), University of Leipzig, Leipzig, Germany
[email protected] Bin Yao Department of Computer Science and Engineering, School of Electronic, Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, Shanghai, China
[email protected] Axel-Cyrille Ngonga Ngomo University of Paderborn, Paderborn, Germany
[email protected] ABSTRACT The recent advancements of the Semantic Web and Linked Data have changed the working of the traditional web. There is a huge adoption of the Resource Description Framework (RDF) format for saving of web-based data. This massive adoption has paved the way for the development of various centralized and distributed RDF processing engines. These engines employ different mechanisms to implement key components of the query processing engines such as data storage, indexing, language support, and query execution. All these components govern how queries are executed and can have a substantial effect on the query runtime. For example, the storage of RDF data in various ways significantly affects the data storage space required and the query runtime performance. The type of indexing approach used in RDF engines is key for fast data lookup. The type of the underlying querying language (e.g., SPARQL or SQL) used for query execution is a key optimization component of the RDF storage solutions.