The Indonesian Sedimentologists Forum (FOSI) the Sedimentology Commission - the Indonesian Association of Geologists (IAGI)

Total Page:16

File Type:pdf, Size:1020Kb

The Indonesian Sedimentologists Forum (FOSI) the Sedimentology Commission - the Indonesian Association of Geologists (IAGI) Berita Sedimentologi BIOSTRATIGRAPHY OF SOUTHEAST ASIA – PART 1 Published by The Indonesian Sedimentologists Forum (FOSI) The Sedimentology Commission - The Indonesian Association of Geologists (IAGI) Number 29 – April 2014 Page 1 of 134 Berita Sedimentologi BIOSTRATIGRAPHY OF SOUTHEAST ASIA – PART 1 Editorial Board Advisory Board Herman Darman Prof. Yahdi Zaim Chief Editor Quaternary Geology Shell International Exploration and Production B.V. Institute of Technology, Bandung P.O. Box 162, 2501 AN, The Hague – The Netherlands Fax: +31-70 377 4978 Prof. R. P. Koesoemadinata E-mail: [email protected] Emeritus Professor Institute of Technology, Bandung Minarwan Deputy Chief Editor Wartono Rahardjo Bangkok, Thailand University of Gajah Mada, Yogyakarta, Indonesia E-mail: [email protected] Ukat Sukanta Fuad Ahmadin Nasution ENI Indonesia Total E&P Indonesie Jl. Yos Sudarso, Balikpapan 76123 Mohammad Syaiful E-mail: [email protected] Exploration Think Tank Indonesia Fatrial Bahesti F. Hasan Sidi PT. Pertamina E&P Woodside, Perth, Australia NAD-North Sumatra Assets Standard Chartered Building 23rd Floor Jl Prof Dr Satrio No 164, Jakarta 12950 - Indonesia Prof. Dr. Harry Doust E-mail: [email protected] Faculty of Earth and Life Sciences, Vrije Universiteit De Boelelaan 1085 Wayan Heru Young 1081 HV Amsterdam, The Netherlands E-mails: [email protected]; University Link coordinator [email protected] Legian Kaja, Kuta, Bali 80361, Indonesia E-mail: [email protected] Dr. J.T. (Han) van Gorsel Visitasi Femant 6516 Minola St., HOUSTON, TX 77007, USA www.vangorselslist.com Treasurer E-mail: [email protected] Pertamina Hulu Energi Kwarnas Building 6th Floor Jl. Medan Merdeka Timur No.6, Jakarta 10110 Dr. T.J.A. Reijers E-mail: [email protected] Geo-Training & Travel Gevelakkers 11, 9465TV Anderen, The Netherlands E-mail: [email protected] Rahmat Utomo Bangkok, Thailand E-mail: [email protected] Peter M. Barber PhD Principal Sequence Stratigrapher Farid Ferdian Isis Petroleum Consultants P/L 47 Colin Street, West Perth, Western Australia 6005 ConocoPhillips E-mail: [email protected] Jakarta, Indonesia E-mail: [email protected] Cover Photograph: Planktonic foraminifera, imaged with the method described by P. Lunt (this volume), preserving some of the transparency of tests that gets lost in coated SEM images. Clockwise from top: Globigerinoides ruber, Recent, East Java Sea (50m), Hantkenina alabamensis, Late Eocene, Nanggulan, Central Java and Globorotalia menardii cultrata, Recent, off Sabah (1600m). • Published 3 times a year by the Indonesian Sedimentologists Forum (Forum Sedimentologiwan Indonesia, FOSI), a commission of the Indonesian Association of Geologists (Ikatan Ahli Geologi Indonesia, IAGI). • Cover topics related to sedimentary geology, includes their depositional processes, deformation, minerals, basin fill, etc. Number 29 – April 2014 Page 2 of 134 2 Berita Sedimentologi BIOSTRATIGRAPHY OF SOUTHEAST ASIA – PART 1 Berita Sedimentologi A sedimentological Journal of the Indonesia Sedimentologists Forum (FOSI), a commission of the Indonesian Association of Geologist (IAGI) From the Editor Dear readers, widened to cover Southeast Asia. On behalf of FOSI editorial board, This year, 2014, FOSI will issue 4 J. T. (Han) van Gorsel has agreed we would like to thank Han for volumes of Berita Sedimentologi to take the lead on this project, so contributing his time and energy to accommodate papers related to he will be the guest editor for for these volumes. We also want biostratigraphy, including a these volumes. With Han’s to thank article contributors for bibliography volume as a experience, expertise and preparing the manuscript and reference. The topic is covered network, I believe this series of sharing their ideas. Han will give under our sedimentary geology publications will be a significant the introduction to each volumes. theme of the journal. contribution to the geosciences Geographically these volumes are community in Southeast Asia. Herman Darman Chief Editor INSIDE THIS ISSUE Recent agglutinated foraminiferal trends Book Review : The SE Asian Getway: and assemblages of the Sedili Besar River History and Tectonic of the Australian- Introduction to Volume – J.T. van Gorsel 5 and its adjacent offshore area, Asia Collision, editor: Robert Hall et al – 73 Southeastern Peninsular Malaysia – M. T.J.A. Reijers 56 Mohamed et al. Palynofacies analysis of the Eocene Bayah Introduction to Cenozoic biostratigraphy Book Review - Biodiversity, Formation in Bayah High, Banten Block, Biogeography and Nature Conservation of Indonesia- SE Asia – J.T. van Gorsel et 6 80 58 SW Java – B.Y. Chandra et al. in Wallacea and New Guinea (Volume 1), al. Edited by D. Telnov, Ph.D. – H. Darman Late Eocene- Pleistocene planktonic A review of the foraminiferal foraminiferal biostratigraphy of the biostratigraphy of the Melinau Limestone, 41 Kuripan-1 well, North Central Java, 95 Sarawak – P. Lunt Indonesia – D. Kadar et al. Making sense of mud: the use of benthic A Late Oligocene drowned pinnacle reef in foraminifera in mudstone sedimentology, deepwater Makassar Straits – J.T. van Sabah, North Borneo – J. Noad and R. 53 116 Gorsel and C.E. Helsing Preece The distribution of benthic foraminifera in Stacked digital imaging of foraminifera – P. Indonesian shallow waters – S.M. Natsir 66 Lunt 123 Call for paper BS #30 – Biostratigraphy of Southeast Asia-part 2 to be published in July 2014 Number 29 – April 2014 Page 3 of 134 Berita Sedimentologi BIOSTRATIGRAPHY OF SOUTHEAST ASIA – PART 1 About FOSI he forum was founded in FOSI has close international team. IAGI office in Jakarta will T 1995 as the Indonesian relations with the Society of help if necessary. Sedimentologists Forum Sedimentary Geology (SEPM) and (FOSI). This organization is a the International Association of commu-nication and discussion Sedimentologists (IAS). forum for geologists, especially for Fellowship is open to those those dealing with sedimentology holding a recognized degree in and sedimentary geology in geology or a cognate subject and Indonesia. non-graduates who have at least two years relevant experience. The forum was accepted as the sedimentological commission of FOSI has organized 2 the Indonesian Association of international conferences in 1999 The official website of FOSI is: Geologists (IAGI) in 1996. About and 2001, attended by more than 300 members were registered in 150 inter-national participants. 1999, including industrial and http://www.iagi.or.id/fosi/ academic fellows, as well as Most of FOSI administrative work students. will be handled by the editorial FOSI Membership Any person who has a background in geoscience and/or is engaged in the practising or teaching of geoscience or its related business may apply for general membership. As the organization has just been restarted, we use LinkedIn (www.linkedin.com) as the main data base platform. We realize that it is not the ideal solution, and we may look for other alternative in the near future. Having said that, for the current situation, LinkedIn is fit for purpose. International members and students are welcome to join the organization. FOSI Group Member as of APRIL 2014 Number 29 – April 2014 Page 4 of 134 Berita Sedimentologi BIOSTRATIGRAPHY OF SE ASIA – PART 1 INTRODUCTION TO VOLUME J.T. van Gorsel (Special Chief Editor) "A bad fossil is more valuable than a good working hypothesis’’ (R. Trumpy (1971)- Stratigraphy in mountain belts. Quart. J. Geol. Soc.,126, p. 293-318) The above saying by the well-known Swiss geologist Rudolf Trumpy, famous for his contributions to the unraveling of the plate tectonic history of the Alps, is another reminder of how important it is to have good fossil- based age control in interpretations of stratigraphy, paleogeography and tectonic histories. Although often seen as an 'old-fashioned' discipline, biostratigraphy/ paleontology is still indispensable for dating and correlations of sedimentary rocks and for its use in reconstructions of past depositional environments, like water depth, temperature, salinity, oxygen levels, paleoclimate setting, etc. This then allows recognition of paleoenvironmental trends like transgressions and regressions, depositional sequences and sequence boundaries, ultimately leading to a better understanding of basins evolution and economically relevant issues like distributions of hydrocarbon reservoir and source rocks. Indonesia (and surrounding SE Asia) is an area rich in opportunities for fossil faunal and floral studies. Much work has already been done in the last 150 years, as attested by the >3300 papers in the annotated bibliography compiled in conjunction with this volume, but much more work remains to be done. The following three volumes of Berita Sedimentologi will be dedicated to keeping this tradition alive. This issue, Number 29, focuses on Cenozoic microfossil biostratigraphy, important for the interpretation of the Tertiary sedimentary basins of Indonesia. The next issue BS30 will continue this theme, while number BS 31 will focus on Mesozoic- Paleozoic biostratigraphy and paleontology. Number 29 – April 2014 Page 5 of 134 Berita Sedimentologi BIOSTRATIGRAPHY OF SE ASIA – PART 1 Introduction to Cenozoic biostratigraphy of Indonesia- SE Asia J.T. (Han) van Gorsel1, Peter Lunt2 and Robert Morley3 1 Houston, Texas 2 Mitra Energy Ltd, Kuala Lumpur 3 Palynova Ltd, Littleport, Cambs UK ABSTRACT An overview is presented of the current 'tools' of biostratigraphy and biofacies interpretation,
Recommended publications
  • Developing High Spatiotemporal Resolution Datasets of Low-Trophic
    PlacePlace Final Technical Report logo logo CAF2017-RR02-CMY-Siswanto here here Developing High Spatiotemporal Resolution Datasets of Low-Trophic Level Aquatic Organism and Land- Use/Land-Cover in the Asia-Pacific Region: Toward an Integrated Framework for Assessing Vulnerability, Adaptation, and Mitigation of the Asia-Pacific Ecosystems to Global Climate Change The following collaborators worked on this project: 1. Anukul Buranapratheprat, Burapha University, Thailand, [email protected] 2. Iskhaq Iskandar, University of Sriwijaya, Indonesia, [email protected] 3. Latifur Rahman Sarker, Rashahi University, Bangladesh, [email protected] 4. Kazuhiko Matsumoto, Japan Agency for Marine-Earth Science and Technology, Japan, [email protected] 5. Yoshikazu Sasai, Japan Agency for Marine-Earth Science and Technology, Japan, [email protected] 6. Joji Ishizaka, Nagoya University, Japan, [email protected] 7. Sinjae Yoo, Korea Institute of Ocean Science and Technology, South Korea, [email protected] 8. Tong Phuoc Hoang Son, Nha Trang Institute of Oceanography, Vietnam, [email protected] 9. Jonson Lumban Gaol, IPB University, Indonesia, [email protected] Copyright © 2018 Asia-Pacific Network for Global Change Research APN seeks to maximise discoverability and use of its knowledge and information. All publications are made available through its online repository “APN E-Lib” (www.apn-gcr.org/resources/). Unless otherwise indicated, APN publications may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services. Appropriate acknowledgement of APN as the source and copyright holder must be given, while APN’s endorsement of users’ views, products or services must not be implied in any way.
    [Show full text]
  • Project Document
    United Nations Development Programme Governments of Cambodia, PR China, Indonesia, Lao PDR, Philippines, Thailand, Timor Leste and Vietnam And United Nations Development Programme With the Governments of Japan, RO Korea and Singapore participating on a cost-sharing basis PROJECT DOCUMENT Project Title: Scaling up the Implementation of the Sustainable Development Strategy for the Seas of East Asia (SDS-SEA) UNDAF Outcome(s): CAMBODIA – Outcome 1: Economic Growth and Sustainable Development: National and local authorities and private sector institutions are better able to ensure the sustainable use of natural resources (fisheries, forestry, mangrove, land, and protected areas), cleaner technologies and responsiveness to climate change PR CHINA - Outcome 1: Government and other stakeholders ensure environmental sustainability, address climate change, and promote a green, low carbon economy. INDONESIA - Outcome 5: Climate Change and Environment: Strengthened climate change mitigation and adaptation and environmental sustainability measures in targeted vulnerable provinces, sectors and communities LAO PDR – Outcome 7: The government ensures sustainable natural resources management through improved governance and community participation PHILIPPINES- Outcome 4: Resilience Towards Disasters and Climate Change: Adaptive capacities of vulnerable communities and ecosystems will have been strengthened to be resilient toward threats, shocks, disasters, and climate change THAILAND –Goal 4: National development processes enhanced towards climate resilience and environmental sustainability TIMOR LESTE – Outcome 2: Vulnerable groups experience a significant improvement in sustainable livelihoods, poverty reduction and disaster risk management within an overarching crisis prevention and recovery context. PRODOC: Scaling up Implementation of the Sustainable Development Strategy of the Seas of East Asia (SDS-SEA) 1 VIETNAM – Focus Area One: Inclusive, Equitable and Sustainable Growth UNDP Strategic Plan Environment and Sustainable Development Primary Outcome: Output 2.5.
    [Show full text]
  • 5. ARTISANAL FISHERIES There Is No Universal Definition of “Artisanal Fisheries” but Common Criteria (SEAFDEC 1999) Include 1
    ACIAR Project FIS/2001/079 5. ARTISANAL FISHERIES There is no universal definition of “artisanal fisheries” but common criteria (SEAFDEC 1999) include 1. Small scale and often decentralized operations, 2. A predominance of small vessels (often <10 GT), 3. A predominance of traditional fishing gears (but may include trawl, seine, gill-net, and longline vessels), 4. Fishing trips are generally short and inshore, and 5. The fisheries are often largely subsistence fisheries, but there may be some commercial component. The ports surveyed for the artisanal component of this report only meet these criteria to varying degrees, with some being home to many vessels >10 GT, and with centralized commercial operations. However, for the purposes of this study, “artisanal ports” includes not only the smallest scale of landing place at the fishing village level (i.e. what most readers would consider truly artisanal), but also these larger landing places where fishing vessels are primarily owned by fishing households, but not by fishing companies, and where the majority of vessels are smaller than 25 GT. A summary of key features of the artisanal landing places surveyed are shown in Table 5.0.1. More detailed descriptions are provided in the sections that follow. 5.1 Bungus – Padang, Pariaman, and Painan (West Sumatra) There are 5 provinces on the west coast of Sumatra – from north to south, the provinces of Nanggroe Aceh Darussalam (formerly Daerah Istimewa Aceh), North Sumatra (Sumatra Utara), West Sumatra (Sumatra Barat), Bengkulu, and Lampung. Numerous islands are located off this coast - Banyak Archipelago islands in the north, Nias Island, Tanahmasa and Tanahbala Islands, the Mentawai Islands (that include Siberut, Sipura and Pagai Islands), and Enggano Island in the south.
    [Show full text]
  • Middle Miocene Planktonic Foraminifera and Their Implications in the Geology of Sabah
    Geological Society of Malaysia Annual Geological Conference 2002 May 26 - 27, Kota Bharu, Kelantan, Malaysia Middle Miocene planktonic foraminifera and their implications in the geology of Sabah BASIR JASIN Program Geologi, Pusat Pengajian Sains Sekitaran & Sumber Alam Fakulti Sains & Teknologi, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor D.E., Malaysia Abstract: Planktonic foraminifera flourished during Middle Miocene. They were recorded from the Ayer, Kuamut, Garinono melanges, the Libong Tuffite, Tungku Formation, Tabanak Conglomerate, and Setap Shale Formation. Three assemblages of planktonic foraminifera were identified from the Libong Tuffite, the Garinono melange, and the Setap Shale Formation. The assemblages indicate an age ranging from the early Middle Miocene Globigerinoides sicanus-Globigerinatella insueta Zone (N 8) to the middle Middle Miocene Globorotaliafohsifohsi Zone (NI2). The occurrence of the planktonic foraminifera suggests that a transgressive event caused the influx of the nutrient-rich water mass into the area. This event was probably related to the rifting of the Sulu Sea and the development of the eastern Sabah deep marine environment where the melanges were deposited. The occurrence of tuff and tuffite indicates volcanic activity in the region. The age of the volcanic tuff is middle Middle Miocene as dated by planktonic foraminifera. INTRODUCTION The Libong Tuffite Formation comprises well-bedded tuffaceous conglomerate, sandstone and mudstone. It is Miocene planktonic foraminifera are very widespread very similar to the Tungku Formation except the latter has in Sabah. Their occurrences have been recorded by many carbonaceous sandstone with conglomerate and mudstone geologists especially from the Tanjung, Kapilit and (Haile & Wong, 1965). The Libong Tuffite Formation Kalabakan Formations (Collenette, 1965), the Labang, overlies the Ayer melange.
    [Show full text]
  • Lombok Island, Sumbawa Island, and Samalas Volcano
    ECOLE DOCTORALE DE GEOGRAPHIE DE PARIS (ED 4434) Laboratoire de Géographie Physique - UMR 8591 Doctoral Thesis in Geography Bachtiar Wahyu MUTAQIN IMPACTS GÉOMORPHIQUES DE L'ÉRUPTION DU SAMALAS EN 1257 LE LONG DU DÉTROIT D'ALAS, NUSA TENGGARA OUEST, INDONÉSIE Defense on: 11 December 2018 Supervised by : Prof. Franck LAVIGNE (Université Paris 1 – Panthhéon Sorbonne) Prof. HARTONO (Universitas Gadjah Mada) Rapporteurs : Prof. Hervé REGNAULD (Université de Rennes 2) Prof. SUWARDJI (Universitas Mataram) Examiners : Prof. Nathalie CARCAUD (AgroCampus Ouest) Dr. Danang Sri HADMOKO (Universitas Gadjah Mada) 1 Abstract As the most powerful event in Lombok’s recent eruptive history, volcanic materials that were expelled by the Samalas volcano in 1257 CE covered the entire of Lombok Island and are widespread in its eastern part. Almost 800 years after the eruption, the geomorphological impact of this eruption on the island of Lombok remains unknown, whereas its overall climatic and societal consequences are now better understood. A combination of stratigraphic information, present-day topography, geophysical measurement with two-dimensional resistivity profiling technique, local written sources, as well as laboratory and computational analysis, were used to obtain detailed information concerning geomorphic impacts of the 1257 CE eruption of Samalas volcano on the coastal area along the Alas Strait in West Nusa Tenggara Province, Indonesia. This study provides new information related to the geomorphic impact of a major eruption volcanic in coastal areas, in this case, on the eastern part of Lombok and the western coast of Sumbawa. In the first place, the study result shows that since the 1257 CE eruption, the landscape on the eastern part of Lombok is still evolved until the present time.
    [Show full text]
  • Characteristics of Tuna Fisheries Associated with Anchored Fads in the Indonesian Fisheries Management Areas 572 and 573 in the Indian Ocean
    IOTC–2016–WPTT18–29 Received: 20 October 2016 Characteristics of tuna fisheries associated with anchored FADs in the Indonesian Fisheries Management Areas 572 and 573 in the Indian Ocean. Authors : Agustinus Anung Widodo1, Wudianto1, Craig Proctor2, Fayakun Satria3, Mahiswara3, Mohamad Natsir1, I Gede Bayu Sedana1, Ignatius Hargiyatno1 and Scott Cooper2 1Center for Fisheries Research and Development-Indonesia, 2 Commonwealth Scientific and Industrial Research Organisation-Australia 3Research Institute for Marine Fisheries-Indonesia Abstract With the primary aim of addressing information gaps on the scale and operations of Indonesia’s FAD based tuna fisheries, to aid improved fisheries management, an Indonesia - Australia research collaboration conducted a study during Nov 2013 – Dec 2015 at four key fishing ports in eastern Indonesia and western Indonesia. The full outputs from this study, involving an enumeration program with skipper interviews, biological sampling and direct observations are to be published as final report and subsequent papers. Presented here are preliminary results from research at two locations in West Sumatera, Muara Padang and Bungus Fishing Port, and Pelabuhanratu Fishing Port in West Java. Tuna FADs in western Indonesian waters are anchored and are of 2 main float types: steel pontoon (ponton), and polystyrene block (gabus). Subsurface attractors are biodegradable materials and most commonly palm branches (nypa and coconut), and do not include netting materials. Tuna fisheries based in Padang region include the fishing gears hand line / troll-line (HL/TL) and purse seine (PS), and fishing areas include the Indian Ocean waters of Indonesian Fishing Management Area (FMA) 572. Tuna fisheries based in Pelabuhanratu include the gear hand-line/troll-line (HL/TL), and fishing areas in the Indian Ocean waters of FMA 573.
    [Show full text]
  • Impact of Land Disaster to the Change of Spatial Planning and Economic Growth
    Impact of Land Disaster to the Change of Spatial Planning and Economic Growth Setyo ANGGRAINI, Erfan SUSANTO, San P. RUDIANTO, Indonesia Key words : Lapindo Mud Disaster; Spatial Planning; Landright sertification; Land Zonation. SUMMARY Sidoarjo is a district located in East Java, Indonesia. This district is in the south of Surabaya, the capital city of East Java, with area 63.438,534 ha or 634,39 km2, consist of agricultural land 28.763 Ha, sugarcane plantations 8.164 Ha, aquaculture land 15.729 Ha, and the rest are settlement and industrial land. This district located on the lowland between two great river, Kali Surabaya and Kali Porong, and its impact to the structure of the soil which are Grey Alluvial 6.236,37 Ha, Assosiation of Grey and Brown Alluvial 4.970,23 Ha, Hydromart Alluvial 29.346,95 Ha, and Dark Grey Gromosol 870,70 Ha. Lapindo mud is an event leaking gas drilling that occurs in Sidoarjo by negligence of PT. Lapindo Brantas. Impact of Lapindo mud is felt by people at three (3) Districts, there are Porong District, Jabon subdistrict, and Tanggulangin District. This proved to some areas near the Lapindo mudflow as: Houses, factories, fields, places of worship, schools and others into a sea of Lapindo mud. These facts indicate that spatial planning changes, also the economic, social life and agricultural. The first part of this paper contains a preliminary study / literature based on books, papers, internet sources and also field study about the Sidoarjo District such as geographical location, its potential demography, and a bit about its history.
    [Show full text]
  • Tidal, Wave, Current and Sediment Flow Patterns in Wet Season in the Estuary of Porong River Sidoarjo, Indonesia
    MATEC Web of Conferences 177, 01016 (2018) https://doi.org/10.1051/matecconf/201817701016 ISOCEEN 2017 Tidal, wave, current and sediment flow patterns in wet season in the estuary of Porong River Sidoarjo, Indonesia Engki A. Kisnarti1,*, and Viv Dj. Prasita1 1 Department of Oceanography, Hang Tuah University, Jl. Arif Rahman Hakim 150, Surabaya- Indonesia Abstract. The objectives of this research are to analyze characteristics of physical oceanography, such as : tides, waves, currents, and discharges at Muara Kali Porong. This research also discuss sediment flow patterns and morphology in around the Estuary of Porong River. Tidal data were used as correction to the depth. The calculation to determine the tidal current velocity and wind data along with current data are used for simulation model. Sedimentation process with a simulation of 15 days in the West Season occured in the Northeast of Lusi Island with sediment thickness ranged from 1.6 to 2.6 m. 1 Introduction The bursts of mud and hot mudflow in Porong, Sidoarjo that have occurred since May 29, 2006 until today still continues, and there are no signs that this natural phenomenon will stop in the near future. The amount of mud volumes emerging from the center of the eruption is enormous, in 2006-2007 estimated at 100,000 m3/day and even reaching 180,000 m3/day in December 2006, and tend to decrease to about 75,000 m3/day in July 2009. The estimated volumes of bursts 50.000 m3/day in September 2011. In 2006, the volumes of mud that went out continuously caused panic.
    [Show full text]
  • 25 the Land Capability Classification of Sabah Volume 2 the Sandakan Residency
    25 The land capability classification of Sabah Volume 2 The Sandakan Residency Q&ffls) (Kteg®QflK§@© EAï98©8CöXjCb Ö^!ÖfiCfDÖ©ÖGr^7 CsX? (§XÄH7©©©© Cß>SFMCS0®E«XÄJD(SCn3ß Scanned from original by ISRIC - World Soil Information, as i(_su /Vorld Data Centre for Soils. The purpose is to make a safe jepository for endangered documents and to make the accrued nformation available for consultation, following Fair Use Guidelines. Every effort is taken to respect Copyright of the naterials within the archives where the identification of the Copyright holder is clear and, where feasible, to contact the >riginators. For questions please contact soil.isricOwur.nl ndicating the item reference number concerned. The land capability classification of Sabah Volume 2 The Sandakan Residency 1M 5>5 Land Resources Division The land capability classification of Sabah Volume 2 The Sandakan Residency P Thomas, F K C Lo and A J Hepburn Land Resource Study 25 Land Resources Division, Ministry of Overseas Development Tolworth Tower, Surbiton, Surrey, England KT6 7DY 1976 in THE LAND RESOURCES DIVISION The Land Resources Division of the Ministry of Overseas Development assists developing countries in mapping, investigating and assessing land resources, and makes recommendations on the use of these resources for the development of agriculture, livestock husbandry and forestry; it also gives advice on related subjects to overseas governments and organisations, makes scientific personnel available for appointment abroad and provides lectures and training courses in the basic techniques of resource appraisal. The Division works in close co-operation with government departments, research institutes, universities and international organisations concerned with land resource assessment and development planning.
    [Show full text]
  • The Pollution Index and Carrying Capacity of the Upstream Brantas River
    International Journal of GEOMATE, Sept., 2020, Vol.19, Issue 73, pp. 26 – 32 ISSN: 2186International-2982 (P), 2186-2990 Journal (O), Japan, of GEOMATE,DOI: https://doi.org/10.21660/2020.73.55874 Sept., 2020, Vol.19, Issue 73, pp. 26 – 32 Geotechnique, Construction Materials and Environment THE POLLUTION INDEX AND CARRYING CAPACITY OF THE UPSTREAM BRANTAS RIVER Kustamar1 and *Lies Kurniawati Wulandari1 1Faculty of Civil Engineering and Planning, National Institute of Technology (ITN) Malang, Indonesia *Corresponding Author, Received: 28 July 2019, Revised: 13 Jan. 2020, Accepted: 17 March 2020 ABSTRACT: River is one of the surface water resources that is often polluted by various human activities. With its dynamic characteristics, a river must be periodically examined to determine its water quality. This study aims to investigate the carrying capacity of the Brantas river in East Java, Indonesia. The observation was done by measuring TSS (Total suspended solid), TDS (Total dissolved solid), and oil and grease in the upstream zone of the Brantas river. This research used a descriptive method. The determination of the research stations was based on the condition of the watershed and its surroundings, assuming that there was a decrease in water quality. The sampling points include Pendem Bridge (1), DAM (local water company) Sengkaling (2), Simpang Remujung Bridge (3), and Samaan District (4). The results demonstrated that the upstream Brantas river at each sampling point had different pollution levels. Generally, the sampling point 1 (Pendem Bridge) was the cleanest zone compared to other sampling points. On the other hand, sampling point 4 (Samaan District) was the most polluted site of the upstream zone.
    [Show full text]
  • Individual Work Paper
    Shelter Design and Development for Resettlement. Resettlement for Mud-Volcano Disaster’s Victims in Porong, Sidoarjo, Indonesia Johanes Krisdianto Lecturer and Researcher, Architect Department of Architecture and the Laboratory of Housing and Human Settlements, Institute of Techology Sepuluh Nopember (ITS) Surabaya, Indonesia. Shelter Situation Analysis Basic General Data Indonesia is the fourth most populous country in the world after China, India, and USA. It consists of 221.9 million people (cencus 2006)1, 60% or more than 133 million people lived in about 7% of the total land area on the island of Java. The Indonesian area is 1,904,443 km². It consists of nearly 18,000 islands of which about 3,000 inhabited. The biggest Islands are Java, Sumatra, Kalimantan, Sulawesi, and Irian Jaya. INDONESIA SIDOARJO Figure 1. The map of Indonesia and Sidoarjo 1 www.world-gazetteer.com, download July 20th, 2007 1 Johanes Krisdianto - Indonesia Sidoarjo is 23 km from Surabaya, the regional government of Sidoarjo regency was born on January 31,1859. It is from 112.5° and 112.9° east longitude to 7.3° and 7.5° south latitude. The regency is bordered on the north by Surabaya municipality and Gresik regency, on the south by Pasuruan regency, or the west by Mojokerto regency and on the east by the straits of Madura. The minimum temperature is 20˚ C, and the maximum one is 35˚ C. As the smallest regency in East Java, Sidoarjo occupies an area of land of 634.89 km², it is located between the Surabaya river (32.5 km long) and the Porong river (47 km long) the land use is classified into the followings: Rice fields: 28,763 Ha, Sugar cane plantation: 8,000 Ha, Fishpond: 15,729 Ha.
    [Show full text]
  • Analysis of Fertility Rate and Water Quality in the Jeneberang River, Gowa Regency, Indonesia
    International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.12 No.02, pp 95-103, 2019 Analysis of Fertility Rate and Water Quality in The Jeneberang River, Gowa Regency, Indonesia Patang*1 1Universitas Negeri Makassar, Indonesia Abstract : This research aims to know fertility rate based on nitrogen, phosphate and eutrification content and water quality content along the Jeneberang River in Gowa Regency, Indonesia. This research was conducted by taking samples at five observation stations in the waters of the Jeneberang River, Gowa Regency, Indonesia by measuring biological parameters, namely community structure and plankton abundance as the main parameter, while as a supporting parameter, the water quality parameters are physical and chemical parameters, namely temperature, pH, dissolved oxygen, nitrogen (N) and phosphate (PO4). Data obtained from observations, presented in the form of tables and graphs and analyzed by descriptive analysis. Keywords : Fertility, Water Quality, Jeneberang River, Plankton. Introduction Naturally, rivers can be polluted only on the surface of the water, on a large river with heavy water flows, a small amount of contamination material will undergo dilution so the pollution level is very low. This causes the consumption of dissolved oxygen needed by aquatic life and biodegradation will be updated quickly, but sometimes a river experiences heavy pollution so that the water contains contamination material one of which is phosphate 11. The Jeneberang River is one of the rivers located in Gowa Regency, Indonesia has a length of 75 km with a watershed area of 727 Km2 and sourced from Mount Bawakaraeng at an elevation of +2,833.00 MSL10.
    [Show full text]