Synthesis of the Elements in Stars

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of the Elements in Stars 588 BURB I DGE, BURB I DGE, FOWLER, AN D HOYLE A. Path of the r Process We have said that Q„decreases as more and more A nucleus of 6xed Z cannot add neutrons inde6nitely neutrons are added at fixed Z. This statement ignored neutron even in the presence of an intense neutron Qux. The pairing effects. Thus Q„is higher for odd /=A —Z 5 to 3 Mev on than is energy of binding of each successive neutron becomes by 1. (depending A) it for even X=A — This means progressively weaker as more and more neutrons are Z. that instead of a simple monotonic decrease A added, until ultimately the binding falls to zero. This of Q„with increasing (Z fixed) we have two decreasing sequences, one for 1V the sets an upper limit to neutron addition at fixed Z. odd, Moreover, not even this limit will be attained because other for à even, the two sequences being separated about 2 Mev in the range of A of interest in this of the incidence of (y,n) reactions at the temperature by discussion. necessary to produce the neutrons by charged particle Consider the eGect of these two sequences on the interactions. The effect of (y,n) reactions can readily be understood from statistical considerations. Write criterion for neutron addition. Evidently the pairing effect makes it substantially more difficult for to n(A, Z) and n„for the number densities of nuclei A, Z Q„ the when is and of neutrons respectively, and let Q„(A,Z) be the satisfy criterion S even, and hence neutron addition must always be expected to cease when is neutron binding to the nucleus X(A,Z) in the reaction, E even. Thus if a neutron can be added at N even, then X(A,Z)+n X(A+1, Z)+y+Q„(A,Z), a further neutron will always be added, since an addi- tional energy approximately equal to 2 Mev is then such that available for binding the second neutron. On the other Q„(A,Z) =B„(A+1,Z) hand, when a neutron is added' at odd S, the situation is reversed —a second neutron would in that case be less =o'[M(A M Z) (13) Z)+M„—(A+1, j. strongly bound by ~2 Mev —so that, although the first neutron might satisfy our criterion, the second is a good Note that Q for nucleus A, Z is equal to the neutron deal less likely to do and eventually, when à be- binding energy akenpositive) in nucleus A+1, Z. so, 8„(t comes will not in fact do so. Thus we With 7 in units of 10' degrees, Q„in Mev, and neglect- large enough, expect that neutron addition will always cease with ing weight factors of order unity, the statistical balance E at an even value, so that if A is odd Z must be odd, and in this reaction is expressed by if A is even Z must be even. n(A+1, Z) 5,04 These remarks all refer to a fixed value of Z. Now Z ——' log =loge„—34.07 , log Ts+ Q~ (14) must increase by unity from time to time, since the T'9 n(A, Z) neutron-rich nuclei at present under consideration are with all logarithms to the base 10. For neutron addition all unstable against negative beta decay, the lifetimes — to be highly effective we require n(A+ 1,Z)/n (A,Z) ))1. being 0.01 10 sec. When Z thus increases, the energy When n(A+1, Z)/n(A, Z)~1, neutron addition is less of binding of the next neutron increases quite sub- stantially, so that one or more neutrons can again be effective. When n, (A+1, Z)/n(A, Z)((1, neutrons are scarcely added at all. As an approximation, adequate added. Once again, however, neutron addition will cease at some even X. Neutron addition cannot then proceed for the present discussion, we may consider that neu- — trons are added or not added according to whether until Z increases by a further unit and so on. Ke therefore obtain a clear picture of how the nuclei evolve, n(A+1, Z)/n(A, Z) & 1 is satisfied or not, i.e., according with to whether by repeated neutron addition interspersed p T9 processes, the nuclei always being obliged to "wait" for Q„) (34.07+-', logTg —loge„) (15) a P process when neutron addition decreases Q„to the 5.04 limit allowed by our criterion. The process is shown schematically in Fig. V,2. A detail of this figure for or not. With F9~1 and N„~1024as found in is satished 118(A(132 is shown in Fig. V,3. Sec. III F, we have The s and r processes dier in a very crucial way. In &2 Mev. Q the s process, neutrons are made available very slowly neutron is low. In such Larger Q values would be required at higher tempera- so that the density always tures or at lower neutron densities. n(A+ 1, Z)/n(A, Z) circumstances the addition of neutrons to the nuclei is is very sensitive to small changes in Q or T9. Under controlled by their (n,y) cross sections. That is to say, the conditions discussed above 5.04Q„/T9=10.Hence the various nuclei compete among themselves for the a ten percent change in Q„,namely by 0.2 Mev, or a capture of a slow trickle of neutrons, the abundances oI ten percent change in TQ, namely by 10 degrees, will the nuclei being governed by the ffow equation (11) a factor of ten. Con- change n(A+1, Z)/ill'(A, Z), by dn(A)/dt = —)i„(A)n(A)+)„(A—1)n(A —1), versely, for given Q, Tg, and Z the distribution in abun- dance will exhibit a sharp peak where n(A+1, Z) where n(A) is the abundance of that beta-stable isobar =n(A, Z). This peak will be at most two or three units at A which occurs in the s-process capture path. In the in A in width. r process, on the other hand, we are concerned with a SYNTHESIS OF ELK M ENTS IN STARS situation in which there is no neutron shortage, and of A that occur between the waiting points. This treat- neutron addition is limited not by (N,y) cross sections ment is of course approximate, but it is thought ade- but by (p,rt) competition and by "waiting" for P quate for the present purpose, since the present analysis processes to take place. Essentially, we assume that contains other simplifications that are explained at a equilibrium is reached between the rapid (rt,&) and later stage. We arbitrarily take the spread from a given (y,n) processes, viz. , e, ~y, n, and that the slow beta- waiting point at A to the next higher waiting point at decay processes constitute a slow leakage from this A+AA rather than in the reverse direction. Physically, equilibrium. The corresponding Qow equation in the r this corresponds to the assumption that, in freezing, the process, derived from the general equation (10), takes material accumulated at a waiting point with given A, Z the form is spread out, as y radiation dies out, by final neutron captures over an interval in A up to the waiting A for de(Z)/dt= )p(Z) N—(Z)+Xp (Z 1)rt(Z ——1), (16) Z+1. The equation for the equilibrium between (n,p) where e(Z) is the density of that isotope of element Z and (y,n) reactions is much more sensitive to T, (linear at which waiting for negative beta decay occurs, i.e., dependence), than to e„,(logarithmic dependence). the isotope for which Q„2Mev. The quantity Xtt(Z) Thus, as T and e„decrease, the equilibrium is displaced is related to the beta-decay mean lifetime, vp, and half- toward slightly greater A values, representing the cap- life, ts, by Xs= 1/rs=0. 693/tz. The condition for steady ture of the last neutrons. Qow in the r process is The solution of the dynamical problem in the r process falls into two parts. The first part consists in a Xz(Z)e(Z) =Xp(Z —1)n(Z —1)=const determination of the track shown schematically in Ol Fig. V,2, the second consists in estimating the beta- e(Z) ~Xp '(Z)=rp(Z) decay waiting time. The relative abundances given by This is the analog of the steady-Qow condition in the steady Qow then follow immediately from s process, namely, rp(A, Z) dZ &„(A)n(A)=X„(A—1)e(A —1)=const e(A) ~ = rs(A, Z) or hA dA e(A) ~ X„'(A). where rz(A, Z) is now the mean beta-decay lifetime at Just as the abundances of the s nuclei suggest that the waiting point, A, for a given Z. A determination of steady Qow has occurred in the s process, so the abun- the track demands a precise specilcation of the cri- dances of the r nuclei suggest that steady Qow has terion for neutron addition. This criterion can be written occurred in the r process. as Q„)Q„whereQ, is to be a specified quantity, of The rt(Z) given by the flow equations cannot immedi- order 2 Mev, which depends on n„,T in accordance ately be interpreted as atomic abundances. At first sight with the inequality (15).
Recommended publications
  • Variable Star
    Variable star A variable star is a star whose brightness as seen from Earth (its apparent magnitude) fluctuates. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes Trifid Nebula contains Cepheid variable stars eclipses it. Many, possibly most, stars have at least some variation in luminosity: the energy output of our Sun, for example, varies by about 0.1% over an 11-year solar cycle.[1] Contents Discovery Detecting variability Variable star observations Interpretation of observations Nomenclature Classification Intrinsic variable stars Pulsating variable stars Eruptive variable stars Cataclysmic or explosive variable stars Extrinsic variable stars Rotating variable stars Eclipsing binaries Planetary transits See also References External links Discovery An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago may be the oldest preserved historical document of the discovery of a variable star, the eclipsing binary Algol.[2][3][4] Of the modern astronomers, the first variable star was identified in 1638 when Johannes Holwarda noticed that Omicron Ceti (later named Mira) pulsated in a cycle taking 11 months; the star had previously been described as a nova by David Fabricius in 1596. This discovery, combined with supernovae observed in 1572 and 1604, proved that the starry sky was not eternally invariable as Aristotle and other ancient philosophers had taught.
    [Show full text]
  • Further Observations of the Lambda 10830 He Line in Stars and Their Significance As a Measure of Stellar Activity
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) or I CALIFORNIA INSTITUTE OF TECHNOLOGY BIG BEAR SOLA R OBSERVATORY HALE OBSERVATORIES 4 I r -b cb c^ a y CNN (NASA-CR-145974) FURTHER CBSEPVATIONS CF N76-14992 THE LAMEDA 1083u He LING, IN STARS AND THEIR SIGNIFIC!NCE AS A MEAEURE OF STELLAR ACTIVITY (dale CbseEvatories, Pasadena, Unclas Calif.) 28 p HC $4.('. CSCL J3A G3;89 1,7726 t I FURTHER OBSERVATIONS OF THE XZ0830 HE LINE IN STARS AND THEIR SIGNIFICANCE AS A MEASURE OF STELLAR ACTIVITY H. Zirin HALE OBSERVATORIES CARNEGIE INSTITUTION OF WASHINGTON CALIFORNIA INSTITUTE OF TECHNOLOGY BBSO #0150 November, 1975 ABSTRACT Measurements of the x10830 He line in 198 stars are given, f along with data on other features in that spectral range. Nearly 80% of all G and K stars show some 110830; of these, half are variable and 1/4 show emission.
    [Show full text]
  • Macrocosmo Nº33
    HA MAIS DE DOIS ANOS DIFUNDINDO A ASTRONOMIA EM LÍNGUA PORTUGUESA K Y . v HE iniacroCOsmo.com SN 1808-0731 Ano III - Edição n° 33 - Agosto de 2006 * t i •■•'• bSÈlÈWW-'^Sif J fé . ’ ' w s » ws» ■ ' v> í- < • , -N V Í ’\ * ' "fc i 1 7 í l ! - 4 'T\ i V ■ }'- ■t i' ' % r ! ■ 7 ji; ■ 'Í t, ■ ,T $ -f . 3 j i A 'A ! : 1 l 4/ í o dia que o ceu explodiu! t \ Constelação de Andrômeda - Parte II Desnudando a princesa acorrentada £ Dicas Digitais: Softwares e afins, ATM, cursos online e publicações eletrônicas revista macroCOSMO .com Ano III - Edição n° 33 - Agosto de I2006 Editorial Além da órbita de Marte está o cinturão de asteróides, uma região povoada com Redação o material que restou da formação do Sistema Solar. Longe de serem chamados como simples pedras espaciais, os asteróides são objetos rochosos e/ou metálicos, [email protected] sem atmosfera, que estão em órbita do Sol, mas são pequenos demais para serem considerados como planetas. Até agora já foram descobertos mais de 70 Diretor Editor Chefe mil asteróides, a maior parte situados no cinturão de asteróides entre as órbitas Hemerson Brandão de Marte e Júpiter. [email protected] Além desse cinturão podemos encontrar pequenos grupos de asteróides isolados chamados de Troianos que compartilham a mesma órbita de Júpiter. Existem Editora Científica também aqueles que possuem órbitas livres, como é o caso de Hidalgo, Apolo e Walkiria Schulz Ícaro. [email protected] Quando um desses asteróides cruza a nossa órbita temos as crateras de impacto. A maior cratera visível de nosso planeta é a Meteor Crater, com cerca de 1 km de Diagramadores diâmetro e 600 metros de profundidade.
    [Show full text]
  • Index to JRASC Volumes 61-90 (PDF)
    THE ROYAL ASTRONOMICAL SOCIETY OF CANADA GENERAL INDEX to the JOURNAL 1967–1996 Volumes 61 to 90 inclusive (including the NATIONAL NEWSLETTER, NATIONAL NEWSLETTER/BULLETIN, and BULLETIN) Compiled by Beverly Miskolczi and David Turner* * Editor of the Journal 1994–2000 Layout and Production by David Lane Published by and Copyright 2002 by The Royal Astronomical Society of Canada 136 Dupont Street Toronto, Ontario, M5R 1V2 Canada www.rasc.ca — [email protected] Table of Contents Preface ....................................................................................2 Volume Number Reference ...................................................3 Subject Index Reference ........................................................4 Subject Index ..........................................................................7 Author Index ..................................................................... 121 Abstracts of Papers Presented at Annual Meetings of the National Committee for Canada of the I.A.U. (1967–1970) and Canadian Astronomical Society (1971–1996) .......................................................................168 Abstracts of Papers Presented at the Annual General Assembly of the Royal Astronomical Society of Canada (1969–1996) ...........................................................207 JRASC Index (1967-1996) Page 1 PREFACE The last cumulative Index to the Journal, published in 1971, was compiled by Ruth J. Northcott and assembled for publication by Helen Sawyer Hogg. It included all articles published in the Journal during the interval 1932–1966, Volumes 26–60. In the intervening years the Journal has undergone a variety of changes. In 1970 the National Newsletter was published along with the Journal, being bound with the regular pages of the Journal. In 1978 the National Newsletter was physically separated but still included with the Journal, and in 1989 it became simply the Newsletter/Bulletin and in 1991 the Bulletin. That continued until the eventual merger of the two publications into the new Journal in 1997.
    [Show full text]
  • R Aquarii: Understanding the Mystery of Its Jets by Model Comparison Michelle Marie Risse Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2009 R Aquarii: Understanding the mystery of its jets by model comparison Michelle Marie Risse Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Physics Commons Recommended Citation Risse, Michelle Marie, "R Aquarii: Understanding the mystery of its jets by model comparison" (2009). Graduate Theses and Dissertations. 10565. https://lib.dr.iastate.edu/etd/10565 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. R Aquarii: Understanding the mystery of its jets by model comparison by Michelle Marie Risse A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Astrophysics Program of Study Committee: Lee Anne Willson, Major Professor Steven D. Kawaler Craig A. Ogilvie David B. Wilson Iowa State University Ames, Iowa 2009 Copyright c Michelle Marie Risse, 2009. All rights reserved. ii TABLE OF CONTENTS LISTOFTABLES ................................... iv LISTOFFIGURES .................................. v CHAPTER1. Intent ................................. 1 CHAPTER2. Introduction ............................. 2 2.1
    [Show full text]
  • The Photometric Catalogues of the Harvard College Observatory
    ASTRONOMISCHE NACHRICHTEN. 3229. Band 135. No .13. ~ ~ ~ ~ ~~~ The Photometric Catalogues of the Harvard College Observatory. By Adward C. Piekering. Mr. S. C. Chandler, formerly employed in the Harvard comparison will reveal. Such imperfections are inevitable I College Observatory, states, in a recent number of the in such work. Astronornische Nachrichten (Vol. I 34, p. 35 j), that there are Fifteen instances of error are pointed out in the total certain errors in the photometric catalogues of that Obser- of eighty- six variable stars whose observations are printed vatory, and draws certain conclusions as to the general I in Volume XXIV, and we are given to understand that value of the whole work. As shown below in detd the i similar errors probably exist throughout the entire catalogue particular errors specified are in general confirmed, but the of over twenty thousand stars contained in that volume. inferences he has drawn regarding the whole work are not I Every astronomer is of coiirse aware that the difficulties justified. Whatever animus underlies the attack can only of identification in the case of variable stars, especially be important in so far as, if it exists, it tends to weaken ~ when they are faint, are much greater than with stars the force of sweeping assertions and deductions sought to I photometrically constant. It is somewhat as though it be drawn from scanty premises. Animus unfortunately is i shoiild be argued from a physician’s losing twenty per cent not unknown in scientific discussion, and may exist, as we I of his cholrra patients thdt he had been equally unfortunate believe it exists, if at ail, in this case, without the person in his general practice.
    [Show full text]
  • Observing Variable Stars with Binoculars
    OBSERVING VARIABLE STARS - -WITH BINOCULARS by K.E.,Chilton,F.R.A.S. A Centennial Observatory Publication. public price 50¢ Price to RASC Members 35¢ Introduction This booklet is not intended to be a technical treatise on variable stars. Nor is it for the serious amateur astronomer whose instruments and capabilities carry him far beyond what is to follow. Rather, I intend this to be read and used by the beginner, equipped only with hie eyes and a pair of binoculars. The information contained herein has been gathered from many sources, including my own experience. I da not pretend, however, to be an expert on variable star observing. I write this only as a guide to those who follow, so that they may avoid some of the pitfalls involved in variable star observing.Hopefully, this booklet will enable the beginner to make a start, make a few observations, and progress into more serious work. My own equipment, aside from the telescopes housed in the observatory, consists of a pair of 7x50 binoculars, which I use to observe many of the stars mentioned herein. The only other equip- ment needed is a wrist watch, a flashlight, a comfortable lawn chair, some warm clothing, a pencil, this booklet, and the desire to learn and see something different! I wish the reader good fortune and clear skies for his debut in the field of variable star observing with binoculars. K.E.Chilton Chapter 1 Why Observe Variable Stars? Have you ever stood in the quiet solitude by a northern lake on a moonless summer night while an orchestra of crickets played their favourite symphony and myriads of stare reflected off the calm water ? Have you ever lain on your back, gazing up at the seemingly countless points of light and wondered if shepherds,long ago, had done the same ? If you watch those stars for hours and hours, you may never see a change, and if you watch them for years and years, you may be almost certain that the stars looked the same to those ancient shepherds as they do to you now.
    [Show full text]
  • Ian J. M. Crossfield Appointments & Experience Education
    Ian J. M. Crossfield http://www.mit.edu/∼iancross/ Massachusetts Institute of Technology, Physics Department [email protected] MIT Kavli Institute +1 949 923-0578 (USA) 77 Massachusetts Avenue, Cambridge, MA 02139 Appointments & Experience MIT Department of Physics Assistant Professor 07/2017- present • Discovery of new planets using TESS, studying planets' atmospheres using HST and ground-based tele- scopes, new isotopic measurements of cool dwarfs. University of California, Santa Cruz Adjunct Professor 12/2017- present Associate Researcher 06/2017- 07/2017 Sagan Fellow 08/2016- 05/2016 • Continued the discovery of new planets using K2 and characterizing their atmospheres with ground- and space-based telescopes. U. Arizona, Lunar and Planetary Lab Sagan Fellow 07/2014 - 08/2016 • Work to understand hazy atmospheres of extrasolar objects: cloud properties and molecular abundances in known `super-Earth' planets; discovering new transiting planets with the K2 mission. Max Planck Institut f¨urAstronomie Postdoctoral Fellow 07/2012 - 06/2014 • Extrasolar planet atmosphere characterization via transits and secondary eclipses from ground- and space-based observatories. High-resolution spectroscopy of nearby brown dwarfs. University of California, Los Angeles Graduate Studies 09/2007 - 06/2012 • Characterization of exoplanet atmospheres via phase curves, secondary eclipses, and transits. Refined parameters of known transiting planets via optical transit photometry. NASA/Jet Propulsion Laboratory Systems Engineer 07/2004 - 06/2007 • High-contrast instrument performance simulations for the Gemini Planet Imager and TMT Planet For- mation Instrument. Optical testbed work for the Space Interferometry Mission. Exoplanet science. Education University of California, Los Angeles, Los Angeles, California USA • Ph.D., Astrophysics (Dissertation Year Fellow), 06/2012 Advisor: Prof.
    [Show full text]
  • Modern Physics
    REVIEWS OF MODERN PHYSICS VoLUME 29, NuMBER 4 OcroBER, 1957 Synthesis of the Elements in Stars* E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM: A. FOWLER, AND F. HOYLE Kellogg Radiation1Laboratory, California Institute of Technology, and M aunt Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California "It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3) but perhaps "The fault, dear Brutus, is not in our stars, But in ourselves," (Julius Caesar, Act I, Scene 2) TABLE OF CONTENTS Page I. Introduction ...............................................................· ............... 548 A. Element Abundances and Nuclear Structure. 548 B. Four Theories of the Origin of the Elements ............................................... 550 C. General Features of Stellar Synthesis ..................................................... 550 II. Physical Processes Involved in Stellar Synthesis, Their Place of Occurrence, and the Time-Scales Associated with Them ...............· ..................... · ................................. 551 A. Modes of Element Synthesis ............................................................. 551 B. Method of Assignment of Isotopes among Processes (i) to (viii) .............................. 553 C. Abundances and Synthesis Assignments Given in the Appendix. 555 D. Time-Scales for Different Modes of Synthesis .............................................. 556 III. Hydrogen Burning, Helium Burning, the a Process,
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • 219Th Meeting of the American Astronomical Society
    219TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 8-12 JANUARY 2012 AUSTIN, TX All scientific sessions will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez Street Austin, TX 78701-4121 EXHIBITORS ..................... 4 AAS Paper Sorters ATTENDEE SERVICES .......................... 9 Tom Armstrong, Blaise Canzian, Thayne Curry, Shantanu Desai, Aaron Evans, Nimish P. Hathi, SCHEDULE .....................15 Jason Jackiewicz, Sebastien Lepine, Kevin Marvel, Karen Masters, J. Allyn Smith, Joseph Tenn, SATURDAY .....................25 Stephen C. Unwin, Gerritt Vershuur, Joseph C. Weingartner, Lee Anne Willson SUNDAY..........................28 Session Numbering Key MONDAY ........................36 90s Sunday TUESDAY ........................91 100s Monday WEDNESDAY .............. 146 200s Tuesday 300s Wednesday THURSDAY .................. 199 400s Thursday AUTHOR INDEX ........ 251 Sessions are numbered in the Program Book by day and time. Please note, posters are only up for the day listed. Changes after 7 December 2011 are only included in the online program materials. 1 AAS Officers & Councilors President (6/2010-6/2013) Debra Elmegreen Vassar College Vice President (6/2009-6/2012) Lee Anne Willson Iowa State Univ. Vice President (6/2010-6/2013) Nicholas B. Suntzeff Texas A&M Univ. Vice President (6/2011-6/2014) Edward B. Churchwell Univ. of Wisconsin Secretary (6/2010-6/2013) G. Fritz Benedict Univ. of Texas, Austin Treasurer (6/2008-6/2014) Hervey (Peter) Stockman STScI Education Officer (6/2006-6/2012) Timothy F. Slater Univ. of Wyoming Publications Board Chair (6/2011-6/2015) Anne P. Cowley Arizona State Univ. Executive Officer (6/2006-Present) Kevin Marvel AAS Councilors Richard G. French Wellesley College (6/2009-6/2012) James D.
    [Show full text]
  • Synthesis of the Elements in Stars Takes Place
    ~l "'r $7 ~ L. Vot.UME 29, NUMnaa 4 OcToaaR, 1957 ' '~ Synt iesis oI. t.~e . .ements in Stars K. MARGARET BURBIDGE) G. R. BURMDGE) %ILIIAM: A. Fowl, ER) AND F. HQYLK Eellogg EadiatzonlLaboratory, California Instztute of Technology, and Mount Wilson and Palonzar Observatories, Carnegie Institution of Washington, Calzfornia Instztute of Technology, Pasadena, California "It is the stars, The stars above us, govern our conditions"; (Eing Lear, Act IV, Scene 3) "The fault, dear Brutus, is not in our stars, But in ourselves, " (Julius Caesar, Act I, Scene 2) TABLE OF CONTENTS IQge I. Introduction. 548 A. Element Abundances and Nuclear Structure. , . 548 B. Four Theories of the Origin of the Elements. 550 C. General Features of Stellar Synthesis. 550 II. Physical Processes Involved in Stellar Synthesis, Their Place of Occurrence, and the Time-Scales Associated with Them 551 A. Modes of Element Synthesis. , . 55j. B. Method of AsslgnIIlent of IBotopes atnong PI'ocesses (i) to (vill) . 553 C. Abundances and Synthesis Assignments Given in the Appendix . 555 D. Time-Scales for Different Modes of Synthesis. 556 III. Hydrogen Burning, Helium Burning, the e Process, and Neutron Production . ~ ~ ~ ~ t ~ ~ ~ o ~ o ~ ~ ~ 0 ~ ~ & r 559 A. Cross-Section Factor and Reaction Rates. , . 559 B. PuI'e HydI'ogen Burning. ,. ; . 562 C. Pure Helium Burning. ~. 565 D ~ 6 Process t ~ o + ~ ~ ~ ~ ~ + ~ o o s e ~ + ~ ~ ~ e s ~ 4 ~ ~ ~ ~ ~ ~ ~ l ~ ~ ~ ~ ~ I ~ ~ ~ ~ i ~ 567 E. Succession of NU. clear Fuels in an Evolving Star. ~ \ J ~ ~ 1 ~ ~ ~ ~ ~ ~ , . 568 F. Burning of Hydrogen and Helium with Mixtures of Other Elements; Stellar Neutron Sources . 569 IV. e Process .
    [Show full text]