Big Data: Juli 2016 Eine Interdimensionale Analyse

Total Page:16

File Type:pdf, Size:1020Kb

Big Data: Juli 2016 Eine Interdimensionale Analyse Eingereicht von Lucas Garzarolli, BSc Angefertigt am Institut für Wirtschaftsinformatik - Information Engineering Beurteiler o. Univ.-Prof. em. Mag. Dr. Friedrich Roithmayr Big Data: Juli 2016 Eine interdimensionale Analyse Masterarbeit zur Erlangung des akademischen Grades Master of Science im Masterstudium Wirtschaftsinformatik Eidesstattliche Erklärung Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe. Die vorliegende Masterarbeit ist mit dem elektronisch übermittelten Textdokument identisch. Linz, am 18. Juli 2016 Lucas Garzarolli II Abstract Big Data hat bereits heute einen bedeutenden Einfluss auf Technologien, Unternehmen, den Staat, sowie die Gesellschaft selbst. Dieser Einfluss wird von einer Vielzahl an Aspekten maßgeblich geprägt, die sich wiederum gegenseitig beeinflussen und in bestimmten Belangen auch limitieren. Im Zuge dieser Arbeit werden diesbezügliche Sachverhalte im Detail untersucht, um die aktuelle Situation zu dem Thema Big Data analysieren zu können. Ein spezieller Fokus liegt hierbei auch auf der Untersuchung der Auswirkung von individuellem Datenschutzbewusstsein und Privatsphäre-Bedenken in Bezug auf die Nutzung, beziehungsweise den Kauf von Diensten und Produkten. Methodisch wurde dazu in einem ersten Schritt eine Literaturrecherche durchgeführt, um die notwendigen Informationen über die organisationalen, technologischen, sowie rechtlichen Aspekte zu erheben. Darauf folgend wurde eine empirische Untersuchung in Form eines Online-Fragebogens durchgeführt, bei der die Einstellung von Studenten und Absolventen informatiknaher Studiengänge bezüglich diverser Big Data Aspekte und existierenden Datenerhebungsmethoden untersucht wurde, da diese hinsichtlich dieser Thematik eine überdurchschnittliche Sensibilisierung aufweisen. Insgesamt soll die Arbeit somit ein Gesamtbild darüber vermitteln, welche technologischen, organisationalen, sowie rechtlichen Herausforderungen und Möglichkeiten für die Nutzung von Big Data existieren und inwiefern die Einstellung von technisch versierten Privatpersonen sowohl die aktuelle Situation, als auch zukünftige Entwicklungen im Bereich Big Data potentiell beeinflussen. III Inhaltsverzeichnis Eidesstattliche Erklärung ........................................................................................................... II Abstract .................................................................................................................................... III Inhaltsverzeichnis ..................................................................................................................... IV Abbildungsverzeichnis ............................................................................................................. VI Tabellenverzeichnis ............................................................................................................... VIII 1 Einleitung ............................................................................................................................ 1 1.1 Problemstellung ........................................................................................................... 3 1.2 Ziel der Arbeit ............................................................................................................. 5 1.3 Forschungsfragen......................................................................................................... 5 1.4 Problemlösungsweg ..................................................................................................... 7 1.5 Erwartete Ergebnisse ................................................................................................... 8 1.6 Motivation ................................................................................................................... 8 2 Big Data Dimensionen ........................................................................................................ 9 3 Organisationale Dimension ............................................................................................... 10 3.1 Organisationale Herausforderungen .......................................................................... 10 3.1.1 Herausforderungen für das Management ........................................................... 11 3.1.2 Betriebliche Herausforderungen ........................................................................ 15 3.2 Organisationale Möglichkeiten .................................................................................. 17 3.3 Geschäftsmodelle im Kontext von Big Data ............................................................. 19 3.3.1 Wertschöpfung durch Big Data .......................................................................... 21 3.3.2 Generierung von dynamischen Wettbewerbsvorteilen durch Big Data ............. 23 3.3.3 Big Data Geschäftsmodelle ................................................................................ 29 3.3.4 Business Model Canvas ..................................................................................... 33 3.3.5 Geschäftsmodell Analyse ................................................................................... 38 3.4 Vorgehensmodell zur organisationalen Integration von Big Data ............................ 45 4 Technologische Dimension ............................................................................................... 48 IV 4.1 Big Data-Techniken und -Werkzeuge ....................................................................... 49 4.1.1 Big Data Mining ................................................................................................. 49 4.1.2 Apache Hadoop .................................................................................................. 51 4.2 Cloud Computing ...................................................................................................... 54 4.3 Datenbanken/Speicherung ......................................................................................... 57 4.3.1 Herausforderungen verteilter Datenbanksysteme .............................................. 58 4.3.2 Datenstream-Managementsysteme ..................................................................... 63 5 Rechtliche Dimension ....................................................................................................... 67 5.1 Dateneigentum ........................................................................................................... 68 5.2 Datenqualität .............................................................................................................. 69 5.3 Datenschutz, Bürgerrechte und Gleichberechtigung ................................................. 72 6 Soziale Dimension ............................................................................................................ 75 6.1 Hypothesen Fragebogen ............................................................................................ 76 6.2 Auswertung Fragebogen ............................................................................................ 77 6.2.1 Nutzung von Diensten ........................................................................................ 78 6.2.2 Allgemeine Geschäftsbedingungen und Transparenz ........................................ 84 6.2.3 Datenschutz ........................................................................................................ 87 6.2.4 Werbeanzeigen und Kaufempfehlung ................................................................ 89 7 Interdimensionale Wechselwirkungen .............................................................................. 93 7.1 Wirtschafts-Ökosysteme ............................................................................................ 95 7.2 Big Data-Ökosysteme ................................................................................................ 97 7.2.1 Schlüsselakteure des Big Data-Wirtschaftsökosystems ................................... 102 7.2.2 Das Wirtschafts-Ökosystem von Big Data ....................................................... 104 7.2.3 Das Wirtschafts-Ökosystem von Big Data ....................................................... 106 8 Conclusio ........................................................................................................................ 107 9 Literaturverzeichnis ........................................................................................................ 112 Anhang ................................................................................................................................... 118 V Abbildungsverzeichnis Abbildung 1: Big Data-Dimensionen [vgl. Vossen 2014, S. 4] ................................................. 9 Abbildung 2: Big Data-Hebel und -Hebeleffekte [vgl. Hagen et al. 2013, S.4; Manyika et al. 2011, S.5] ................................................................................................................................. 32 Abbildung 3: Integrationsstrategie für Big Data [vgl. Vossen 2014, S. 8] .............................. 47 Abbildung 4: Prinzip einer MapReduce Berechnung [vgl. Vossen 2014, S. 8] ....................... 51 Abbildung 6: Systemausprägungen nach dem CAP Theorem [vgl. Erb 2012] ....................... 61 Abbildung 7: Datenverarbeitung in einem DBMS (a) und in einem DSMS (b) [vgl. Carney et al. 2004].
Recommended publications
  • Impact of AI and Robotics in the Tourism Sector: a Critical Insight
    Impact of AI and robotics in the tourism sector: a critical insight Nagaraj Samala, Bharath Shashanka Katkam, Raja Shekhar Bellamkonda and Raul Villamarin Rodriguez Abstract Nagaraj Samala is based at Purpose – The purpose of the present article is to highlight the role of Artificial Intelligence (AI) and the Woxsen School of Robotics in the tourism industry. The various technologies being integrated to improve the service and Business, Hyderabad, customer experience in tourism. The expected changes and challenges in tourism in the future are India and University of focused in this paper. Hyderabad, Hyderabad, Design/methodology/approach – A systematic study on the emerging technologies of AI and Robotics India. Bharath Shashanka applied in the tourism sector is presented in the form of a viewpoint. Katkam and Raja Shekhar Findings – AI certainly enhances tourism experiential services however cannot surpass the human touch Bellamkonda are both which is an essential determinant of experiential tourism. AI acts as an effective complementary based at the University of dimension to the future of tourism. With the emergence of artificial travel intelligence, it is simpler to make Hyderabad, Hyderabad, travel arrangements. AI offers travel services that are automated, customized and insightful. AI allows India. Raul Villamarin travelers to learn about their behaviors, interests to inclinations and provide a personalized experience. Rodriguez is based at the Gone are the days to consult a travel agent, meet him physically and indulge in an endless chain of Woxsen School of Busines, troubling phone calls to inquire about travel arrangements. Hyderabad, India. Practical implications – Tourism marketing to see a positive and improved change that will enhance the tourists’ overall experience due to the application of AI and Robotics.
    [Show full text]
  • In the Common Pleas Court Delaware County, Ohio Civil Division
    IN THE COMMON PLEAS COURT DELAWARE COUNTY, OHIO CIVIL DIVISION STATE OF OHIO ex rel. DAVE YOST, OHIO ATTORNEY GENERAL, Case No. 21 CV H________________ 30 East Broad St. Columbus, OH 43215 Plaintiff, JUDGE ___________________ v. GOOGLE LLC 1600 Amphitheatre Parkway COMPLAINT FOR Mountain View, CA 94043 DECLARATORY JUDGMENT AND INJUNCTIVE RELIEF Also Serve: Google LLC c/o Corporation Service Co. 50 W. Broad St., Ste. 1330 Columbus OH 43215 Defendant. Plaintiff, the State of Ohio, by and through its Attorney General, Dave Yost, (hereinafter “Ohio” or “the State”), upon personal knowledge as to its own acts and beliefs, and upon information and belief as to all matters based upon the investigation by counsel, brings this action seeking declaratory and injunctive relief against Google LLC (“Google” or “Defendant”), alleges as follows: I. INTRODUCTION The vast majority of Ohioans use the internet. And nearly all of those who do use Google Search. Google is so ubiquitous that its name has become a verb. A person does not have to sign a contract, buy a specific device, or pay a fee to use Good Search. Google provides its CLERK OF COURTS - DELAWARE COUNTY, OH - COMMON PLEAS COURT 21 CV H 06 0274 - SCHUCK, JAMES P. FILED: 06/08/2021 09:05 AM search services indiscriminately to the public. To use Google Search, all you have to do is type, click and wait. Primarily, users seek “organic search results”, which, per Google’s website, “[a] free listing in Google Search that appears because it's relevant to someone’s search terms.” In lieu of charging a fee, Google collects user data, which it monetizes in various ways—primarily via selling targeted advertisements.
    [Show full text]
  • Playing the Google Game What's Your Strategy?
    Google - Are You Struggling to Slay the Ever-Powerful Online Giant? Please be respectful of your colleagues by silencing your phone. If you need to answer a call, please go to the hallway. 1 Outline • History of the Problem • Understanding the Problem • Ways to address the Problem History • May 10, 2014 - Google Has A Grand Plan To Dominate The Travel Industry https://www.businessinsider.com/r-googles-hotel-moves-worry-travel-sector-2014-09 • August 2014 – Google releases Google Hotel Ads (Which are almost impossible for smaller properties to integrate with) https://support.google.com/hotelprices/answer/6101897?hl=en • January 1, 2015 – Noticed new “Date Filters” in Google Maps during 4th Q 2014 Spoke to Jade from Google Local at PAII in NOLA as to why – she didn’t know or could not share. • July 14, 2015 – Google "No Known Availability" Issue Addressed by Senator King's Office • April 1, 2016 – Google began adjusting 3 pack local placement based on room availability from OTA feeds http://acorn-is.com/blog/2016/04/ota-availability-now-impacting-googles-3-pack-and-local-listings.html • January 1 thru December 31, 2016 - Priceline Group and Expedia Inc. paid more than $4 billion on Google advertising in 2016. https://skift.com/2017/12/28/google-travel-feeling-intensified-antitrust-pressure/ • March 2019 - Google releases new Hotel Booking site (Local / Maps results no longer in generic search) https://skift.com/2019/03/11/google-quietly-releases-its-hotel-booking-destination-with-potentially-huge- implications/ Booking Direct is a HOT topic! Here are 3 Book Direct Articles posted in the last 30 days • https://skift.com/2019/03/04/whos-really-winning-the-direct-booking- wars-between-hotels-and-online-travel-agencies/amp/ • https://investorplace.com/2019/03/expedia-has-the-same-problem- booking-com-does/amp/ • https://skift.com/2019/03/05/american-airlines-and-hyatt-hotels-to- share-elite-loyalty-benefits/amp/ We could spend DAYS talking about Google! … but we only have 1 hour ….
    [Show full text]
  • Every App in the Universe
    THE BIGGER BOOK OF APPS Resource Guide to (Almost) Every App in the Universe by Beth Ziesenis Your Nerdy Best Friend The Bigger Book of Apps Resource Guide Copyright @2020 Beth Ziesenis All rights reserved. No part of this publication may be reproduced, distributed, or trans- mitted in any form or by any means, including photocopying, recording or other elec- tronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other non- commercial uses permitted by copyright law. For permission requests, write to the pub- lisher at the address below. Special discounts are available on quantity purchases by corporations, associations and others. For details, contact the publisher at the address below. Library of Congress Control Number: ISBN: Printed in the United States of America Avenue Z, Inc. 11205 Lebanon Road #212 Mt. Juliet, TN 37122 yournerdybestfriend.com Organization Manage Lists Manage Schedules Organize and Store Files Keep Track of Ideas: Solo Edition Create a Mind Map Organize and Store Photos and Video Scan Your Old Photos Get Your Affairs in Order Manage Lists BZ Reminder Pocket Lists Reminder Tool with Missed Call Alerts NerdHerd Favorite Simple To-Do List bzreminder.com pocketlists.com Microsoft To Do Todoist The App that Is Eating Award-Winning My Manager’s Favorite Productivity Tool Wunderlist todoist.com todo.microsoft.com Wunderlist Plan The Award-Winning Task Manager with a Task Manager and Planning Tool Rabid Fanbase
    [Show full text]
  • CARS-Delay Concept of Operations Functional Requirements System
    CARS-Delay Concept of Operations Functional Requirements System Design Prepared by: Castle Rock Associates Prepared for: Minnesota Department of Transportation Last Revision: June 30, 2015 Document Version History Version Author Date Change Notes 1 pd 6/29/2014 Initial draft for Idaho. 2 pd 7/14/2014 Reviewed with Dane and Sam 3 fc 8/1/2014 Added background ideas to first draft. 4 kv 8/18/2014 Reviewing initial draft. 5 pd 8/19/2014 Merging separate content for initial Iowa meeting. 6 pd 9/14/2014 Added Iowa and Minnesota inputs. 7 pd 10/30/2014 Reflecting agreed priorities and phasing. 8 pd 11/8/2014 Added many use cases from real data. 9 pd 12/6/2014 Started “build” version for Mn/DOT Innovative Ideas 10 pd 12/16/2014 Continuing “build” version for Minnesota and Idaho. 11 pd 1/7/2015 Further work on “build” version for all three states. 12 pd 1/27/2015 Build version for ITD and Mn/DOT Innovative Ideas. 13 pd 2/7/2015 San Diego corridor delays and travel times added. 14 pd 2/16/2015 Minor changes after review with developers. 15 pd 2/18/2015 Changes during and after Iowa meeting of 2/17/15. 16 pd 2/24/2015 Changes during Boise meeting of 2/24/2015 17 pd Changes during Minnesota meeting 18m du 6/30/15 Updated for MnDOT final submission 2 Final CARS-Delay_SystemDesign_18m_du.docx Confidential. Limited Circulation Document. Listed Agencies Only Table of Contents 1. Concept of Operations ................................................................................................................................. 5 2. Functional Requirements .............................................................................................................................. 9 2.1 Overview .................................................................................................................................................
    [Show full text]
  • Comparing Google Maps and Uber Movement Travel Time Data 1
    Wu, Hao. 2019. “Comparing Google Maps and Uber Movement Travel Time Data.” Transport Findings, February. https://doi.org/10.32866/5115. TRANSPORT FINDINGS Comparing Google Maps and Uber Movement Travel Time Data Hao Wu Keywords: uber movement, google maps api, gps data, travel time https://doi.org/10.32866/5115 Transport Findings The emergence and availability of crowd sourced data provide transport researchers with comprehensive coverage in their research subjects. However, difficulties in dataalidation v and consistency between different sources pose a threat to the credibility of research based on such data. In this paper, travel time data for Sydney, Australia from Google Maps and from Uber Movement are compared for their consistency. Although the results show the two data sources are similar in measuring travel time, travel times from Uber Movement are systematically lower than from Google. This study recommends due caution in the selection of data source, and in comparing research results using different data sources. 1. research questions The objective of this research is to compare travel time data obtained from Google API and from Uber Movement data. There have been studies utilizing Google Distance Matrix API (Wu 2017; Wang and Xu 2011; Seymour, James, and Miller 2007),Tom-Tom data (Owen and Levinson 2015), and to date few if any using the recently released Uber Movement data. These crowd sourced data provide considerably more temporal and areal coverage than conventional data collection efforts, but the quality of data, and the consistency between different sources can be difficult toerify v . This research seeks to answer the questions: • Are these crowd sourced data, and studies based on such data sources reliable? • To what extent do the data sources matter? 2.
    [Show full text]
  • Google Spreadsheet for Sc Fuel Reimbursement
    Google Spreadsheet For Sc Fuel Reimbursement Attack Sig vacillates: he masculinizes his institution binaurally and fantastically. Morty turpentining her accordions avoidably, she unfeudalise it rough. Untuneable and mucoid Nelson ripens some incendiarism so ephemerally! The rental of these. Divorce Lawyers Novi Mi. At for third-party website eg Amazon eBay Google is listed on those websites. IRS issues standard mileage rates for 2021 Internal Revenue. Qbe does for reimbursement form. COVID-19 Vaccine Allocations in South Carolina SCDHEC. Travel is in connection with smile for a SC disability In receipt link a VA pension. Use your Google Account Email or phone Forgot email Type select text to hear cannot see beneath your computer Use draft mode the sign in privately Learn more. Get that overview of mileage reimbursement rules learn seek to. And since July 2015 Charlotte officials have asked contractors working for Google AT T and others to reimburse the city until than 630000. Respect to captive insurers or workers' compensation insurance only. Compensation and subject take the applicable South Carolina State law Relining A process. There any draw back with google reimbursement or otherwise. Camp Lejeune Water Contamination Health Issues Veterans. To ivy the electronic version of exterior fact film and disrupt other products included in. The insurance company said that flake will reduce cover 6 sheets of plywood which and under. Ssi statutory capital expenditures qualify for reimbursement for your help finishing filing a dwelling policy is recoverable depreciation. Liquid Gas Gravity Light in Addition Sentences Single Digital Addition. This corner it that be easy to create a spreadsheet to present a the insurance.
    [Show full text]
  • Multiple Devices and Screens
    YEAR IN REVIEW & THE YEAR AHEAD 10 KEY TRENDS FOR DESTINATION & TOURISM MARKETERS DECEMBER 13, 2017 WEBINAR RESOURCES Webinar Recordings, Slides, Research and Additional Resources Available within 24 hours/by December 14th 2017 www.MilesPartnership.com/Phocuswright Greetings Chris Adams Douglas Quinby +1 303-842-3394 +1 404-760-9182 [email protected] [email protected] Social: KiwiColorado Twitter: twitter.com/douglasquinby Meet Miles 100% travel 240+ travel 7+ year marketing average client Meet experts relationship Miles 90+ 70 million travel brands visitors to clients’ websites Meet our clients In Association with: How to participate in today’s webinar Grab Tab (open or close the control panel) Choose your audio Use Text Box to ask questions In case of “Drop-Off”, use your Link to rejoin the webinar A Question & Answer Session will be held at the end of today’s session Today’s webinar is being recorded and will be made available for later viewing Top 10 Digital Travel Trends for DMOs in 2018 Douglas Quinby SVP Research, Phocuswright [email protected] @douglasquinby 1) The Era of Online Travel Is Over These days, just about every traveler does something online. © 2017 Phocuswright Inc. All Rights Reserved. Percent of Travelers Who Do Anything Trip-Related Online 100% 80% 60% 40% 20% 0% India U.K. Germany U.S. France Australia Brazil Korea China Japan Southeast Asia* Note: *Singapore, Thailand, Malaysia, Indonesia Base: Online Travelers: (U.S. N = 857; U.K. N=795; AU N=786; IN N=777; FR N=762, DE N=760; BR N=740; JP N=811; KR N=753) Sources: Phocuswright’s Google Travel Study 2017; Phocuswright’s The Southeast Asian Traveler; Phocuswright’s China Unbounded: The Rapid Rise of China’s Outbound Millions © 2017 Phocuswright Inc.
    [Show full text]
  • Work Plan & Training
    Work Plan & Training Google DMO Partnership - Miles Support Services January 2019 The goal of the program is to create a role and a voice for the DMO in Search Street View more parts of the decision making process. Trips App YouTube Travel Guides Maps Audit & Activation Impact Google DMO Training Assessment Partnership Program Content Education Understanding how visitors search for the destination, and what they see when they do. Audit & Activation Program Deliverables: Audit & ❏ Consumer/Search Behavior Analysis ❏ Baseline Google Ecosystem Audit Activation ❏ GMB Completeness Audit ❏ Work Plan & Recommendations ❏ GMB Missing Data Submission ❏ Visual Content Review & Asset Submission So… now what? ● Tools and Resources ○ DMO Partnership knowledge base ○ DMO issue form ○ Pixel phone AGENDA ○ Google My Business Dashboard What we’ll ○ Local Guides Program ● Work Plan & Step-By-Steps cover today ○ Verification ○ Listing Information ○ Visual Assets (photos & 360s) ○ Optimization ● Measurements & Tracking Tools & Resources Knowledge Base https://support.google.com/streetview_trusted/answer/7661048?hl=en&ref_topic=7623484 DMO Issue Form https://support.google.com/streetview_trusted/contact/dmo Supplied Pixel Phone Used for: ● Trusted Verifier App Preloaded with your ● Photo Capture account and whitelisted ● Photo Uploads apps. ● Street View Capture Data only sim (no phone number) supplied for 12 ● Street View Upload months. ● GMB Dashboard (Mobile) Google My Business This is the Knowledge Panel It contains everything Google knows about a business. This is the Knowledge Panel It contains everything Google knows about your business. Search Daydream VR Hotel Finder YouTube Trips App Flights Street View Assistant Travel Guides Lens Maps Waze Website Visits Views on Google Search: Views on Google Maps: 11,585 252,397 11,082,365 1000x! Information provided by Nicole Woods for Independence Visitor Center Corp.
    [Show full text]
  • Harvard Journal of Law & Technology Volume 34, Digest Fall 2020
    Harvard Journal of Law & Technology Volume 34, Digest Fall 2020 GLOBETROTTING IN A GOOGLE RUN WORLD: GOOGLE TAKEOVER OF TRAVEL MARKET RISKS STIFLING COMPETITION AND CONSUMER EXPERIENCES Jessica Vu* TABLE OF CONTENTS I. INTRODUCTION .............................................................................. 1 II. GOOGLE SPREADS WINGS INTO TRAVEL OPERATIONS ................... 2 III. COMPETITORS AND TRAVELERS ARE CAPTIVE TO GOOGLE’S RULES .......................................................................... 5 IV. GOOGLE’S HARMFUL ANTICOMPETITIVE CONDUCT INVITES REGULATORY SCRUTINY................................................... 7 V. LOOKING AHEAD: GOOGLE AS THE GATEKEEPER FOR TOURISM INDUSTRY ..................................................................... 12 I. INTRODUCTION “To travel is to live,” once said the great Hans Christian Andersen.1 City lovers flock to Tokyo and London in search of world class shopping and fine dining. Backpackers scale the peaks of Machu Picchu and the Himalayas just to capture the views. The religious faithful make the trek to Jerusalem and the Vatican seeking holy wonder. Many vacation plans were put on hold this year due to the COVID- 19 outbreak, but when tourism comes roaring back to life, travelers have at their fingertips a goldmine of trip planning forums and booking options online. Digital disruption in the travel industry — from the growth of the sharing economy, the shift from live agents to online booking, and the rise of big data analytics — has made globetrotting more affordable and accessible. Online travel communities like ThePointsGuy and FlyerTalk offer advice on opportunities to maximize loyalty status and redemption rewards. Kayak or Momondo let bargain hunters comparison shop for *The author received her J.D. from Harvard Law School in 2010 and her B.A. from the University of California, Berkeley in 2007. Special thanks to Juliette Turner-Jones and Shub Chandrasekaran for helpful insight and comments.
    [Show full text]
  • Business Plan for Launching a Luxury Adventure Tour Operator Based in Canada
    BUSINESS PLAN FOR LAUNCHING A LUXURY ADVENTURE TOUR OPERATOR BASED IN CANADA By Greg Hung And Nikolai Khlystov PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BUSINESS ADMINISTRATION In THE MANAGEMENT OF TECHNOLOGY PROGRAM of the Faculty of Business Administration © Greg Hung, 2011 © Nikolai Khlystov, 2011 SIMON FRASER UNIVERSITY Summer 2011 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for Fair Dealing. Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. Approval Name: Greg Hung and Nikolai Khlystov Degree: Master of Business Administration Title of Project: BUSINESS PLAN FOR LAUNCHING A LUXURY ADVENTURE TOUR OPERATOR BASED IN CANADA Supervisory Committee: Sudheer Gupta _______________________________ Senior Supervisor Associate Professor of Technology & Operations Management; Director, Jack Austin Centre for Asia Pacific Business Studies, Beedie School of Business, Simon Fraser University Ian Hand ____________________________________ Second Reader Adjunct Professor, Beedie School of Business, Simon Fraser University Date Approved: ___________________________________________ 1 Abstract MOT Elite Travel Experiences (METE) is a tour operator and online travel agent start-up company based in Vancouver, British Columbia. METE is faced with the challenge of establishing itself as a business in the travel industry. However, recent advances in technology such as an increase in the number of broadband Internet users, search engine optimization, and the advent of smartphones have created an opportunity to capitalize on the growing popularity of online travel booking services.
    [Show full text]
  • Travel and Logistics: Data Drives the Race for Customers
    Travel and logistics: data drives the race for customers Travel, Transport & Logistics May 2018 Contents Introduction and key findings 3 The digital state of play 6 Measures of maturity 9 Customer behavior 10 Companies’ response 14 Flying high 17 Operational actions 17 Three transformative technology-driven trends 21 A sea change 27 Operational actions 28 Three transformative technology-driven trends 31 Conclusion 35 Authors 36 Travel and logistics: data drives the race for customers 2 Introduction and key findings No industry is immune to the changes brought about by digitization, although some are yielding to the pressure more quickly than others. On the face of it, travel and logistics exem- plify the extremes. There is hardly a consumer in Europe who does not take to the Internet when thinking about booking accommodation or flights or looking at train timetables for an upcoming trip. Yet few businesses search online for information about air cargo. The bal- ance of industry-related searches brings home the point: in 2017, for every 80 travel-related queries there was one logistics-related query, according to our research. However, that same research – undertaken by McKinsey in collaboration with Google and the Kühne Logistics University in Germany, based on data from 15 key European countries and extensive interviews with experts on technology, travel, and logistics1 – reveals significant variations in customers’ online behavior and companies’ response within the sub-sectors of the two industries. It also points to important trends that indicate how companies in both industries should be preparing for a digital future. For example: Where business-to-consumer (B2C) sectors have led, business-to-business (B2B) sectors are being forced to follow.
    [Show full text]