THREE-PHASE INCLUSIONS in EMERALD and THEIR IMPACT on ORIGIN DETERMINATION Sudarat Saeseaw, Vincent Pardieu, and Supharart Sangsawong
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download PDF About Minerals Sorted by Mineral Name
MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky. -
Download the Scanned
Tne AMBRrcAx M rNBRALocrsr JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA Vol.20 NOVEMBER, 1935 No. 11 THE PEGMATITE MINERALS FROM NEAR AMELIA, VIRGINIA* Jnwrr.r. J. Gless, U. S. Geological'Suraey, Washington, D. C. CoNrnxrs 1' rntroduction 741 2. Rutherfordmine 743 3' Morefield mine ' ' 744 4. Minerals 745 Albite, bertrandite, beryl, biotite, calcite, cassiterite, cerussite, chalcopy- rite, fluorite, galena, manganotantalite, microcline, microlite, monazite, muscovite, phenacite, pyrite, pyrolusite, qtsartz, spessartite, topaz, tourmaline, triplite, zinnwaldite, zircon. 5. Rarer elements identified by spectrographic analyses 764 6. Luminescence of minerals 766 7. Selected bibliography 768 1. INTnooucrroN The first commercial mica mines near Amelia Court House, Virginia, were opened in the early seventies, and the remarkable size and quality of the mica early awakened a keen economic in- terest in the pegmatite dikes of the region, but the richnessof the locality in rare and beautiful mineral specimenshas promoted a scientific interest which has persisted for sixty years. Thirty-six mineral species have been reported from the Rutherford mine alone,and the variety and perfection of many of thesehave led to their inclusion in most of the museums of the world. The concen- tration of unusual minerals in an easily accessible deposit at- tracted various scientific investigators and mineral collectors to this locality for successivegenerations. Such intensive investiga- tion of a locality might suggest that little remains to be learned about its minerals, but the recent opening of a new mine near Amelia and the reopening of the Rutherford mine have given new * Published by permission of the Director, U. S. Geological Survey. 742 THE AMERICAN MINERALOGIST opportunities for study. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Minerals and Mineral Products in Our Bedroom Bed Hematite
Minerals and Mineral Products in our Bedroom Make-Up Kit Muscovite Bed Talc Hematite: hinges, handles, Mica mattress springs Hematite: for color Chromite: chrome plating Bismuth Radio Barite Copper: wiring Plastic Pail Quartz: clock Mica Gold: connections Cassiterite: solder Toilet Bowl / Tub Closet Feldspar: porcelain Chromite: chrome plating Pyrolusite: coloring Hematite: hinges, handles (steel) Chromite: plumbing fixtures Quartz : mirror on door Copper: tubing Desk Toothpaste Hematite: hinges, handles (steel) Apatite: teeth Chromite: chrome plating Fluorite: toothpaste Mirror Rutile: to color false Hematite: handle, frame teeth yellow Chromite: plating Gold: fillings Gold: plating Cinnabar: fillings Quartz: mirror Towels Table Lamp Sphalerite: dyes Brass (an alloy of copper and Chromite: dyes zinc): base Quartz: bulb Water Pipe/Faucet/Shower bulb Wolframite: lamp filament Brass Copper: wiring Iron Nickel Minerals and Mineral Products in our Bedroom Chrome: stainless steel Bathroom Cleaner Department of Environment and Natural Resources Borax: abrasive, cleaner, and antiseptic MINES AND GEOSCIENCES BUREAU Deodorant Spray Can Cassiterite Chromite Copper Carpet Quartz Sphalerite: dyes Telephone Chromite: dyes Drinking Glasses Copper: wiring Sulfur: foam padding Quartz Chromite: plating Gold: red color Clock Silver: electronics Pentlandite: spring Graphite: batteries Refrigerator Quartz: glass, time keeper Hematite Television Chromite: stainless steel Chromite: plating Computer Galena Wolframite: monitor Wolframite: monitor Copper Copper: -
Identificación De Estructuras Geológicas
IDENTIFICACIÓN DE AGOSTO DE 2017 ESTRUCTURAS GEOLÓGICAS PARA EL TÍTULO DJU-151, MINA CHAPARRAL, UBICADA EN EL MUNICIPIO DE MARIPÍ EN LA DETERMINACIÓN DE MINERALIZACIONES DE ESMERALDAS PRÁCTICA EMPRESARIAL Tomado de: https://www.mindat.org/gm/1375. Foto web. Diego Rodríguez. GINED LORENA ROSAS PEREZ COPEMIN S.A.S. 0 IDENTIFICACIÓN DE ESTRUCTURAS GEOLÓGICAS PARA EL TÍTULO DJU-151, MINA CHAPARRAL, UBICADA EN EL MUNICIPIO DE MARIPÍ EN LA DETERMINACIÓN DE MINERALIZACIONES DE ESMERALDAS IDENTIFICACIÓN DE ESTRUCTURAS GEOLÓGICAS PARA EL TÍTULO DJU- 151, MINA CHAPARRAL, UBICADA EN EL MUNICIPIO DE MARIPÍ EN LA DETERMINACIÓN DE MINERALIZACIONES DE ESMERALDAS GINED LORENA ROSAS PEREZ UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA SEDE SECCIONAL SOGAMOSO ESCUELA DE INGENIERÍA GEOLÓGICA SOGAMOSO, 2017 UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA SEDE SECCIONAL SOGAMOSO 1 INGENIERÍA GEOLÓGICA IDENTIFICACIÓN DE ESTRUCTURAS GEOLÓGICAS PARA EL TÍTULO DJU-151, MINA CHAPARRAL, UBICADA EN EL MUNICIPIO DE MARIPÍ EN LA DETERMINACIÓN DE MINERALIZACIONES DE ESMERALDAS IDENTIFICACIÓN DE ESTRUCTURAS GEOLÓGICAS PARA EL TÍTULO DJU-151, MINA CHAPARRAL, UBICADA EN EL MUNICIPIO DE MARIPÍ EN LA DETERMINACIÓN DE MINERALIZACIONES DE ESMERALDAS GINED LORENA ROSAS PEREZ Proyecto como modalidad de Práctica con Proyección Empresarial, presentado como requisito para optar al título de: Ingeniero geólogo Director JORGE ELIÉCER MARIÑO MARTÍNEZ Ingeniero geólogo PHD. Geología UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA SEDE SECCIONAL SOGAMOSO ESCUELA DE INGENIERÍA GEOLÓGICA -
Samsonite Ag4mnsb2s6 C 2001-2005 Mineral Data Publishing, Version 1
Samsonite Ag4MnSb2S6 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals prismatic and striated k [001], to 3 cm, in radiating groups. Physical Properties: Fracture: Conchoidal. Tenacity: Brittle. Hardness = 2.5 VHN = 187–212 (100 g load). D(meas.) = 5.51 D(calc.) = 5.50 Optical Properties: Nearly opaque; translucent in thin fragments. Color: Steel-black, deep red to brown in transmitted light; in polished section, bluish white with deep red internal reflections. Streak: Dark red. Luster: Metallic. Pleochroism: Weak. Anisotropism: Weak. R1–R2: (400) 33.8–38.5, (420) 33.6–34.9, (440) 33.2–34.5, (460) 32.6–33.8, (480) 31.6–33.0, (500) 30.6–32.2, (520) 29.6–31.1, (540) 28.8–30.0, (560) 28.1–29.0, (580) 27.5–28.1, (600) 26.8–27.5, (620) 26.3–26.9, (640) 25.9–26.5, (660) 25.4–26.1, (680) 25.1–25.8, (700) 24.8–25.6 Cell Data: Space Group: P 21/n. a = 10.362(4) b = 8.101(3) c = 6.647(3) β =92◦38(4)0 Z=2 X-ray Powder Pattern: St. Andreasberg, Germany. (ICDD 11-74). 3.20 (100), 3.01 (90), 2.59 (60), 2.86 (50), 2.43 (50), 2.51 (40), 6.4 (30) Chemistry: (1) (2) Ag 45.95 46.78 Mn 5.86 5.96 Cu 0.18 Fe 0.22 Sb 26.33 26.40 S 20.55 20.86 rem. 0.87 Total 99.96 100.00 (1) St. -
A Deposit of Manganese Ore in Wyoming
A DEPOSIT OF MANGANESE ORE IN WYOMING. By EDWARD L. JONES, Jr. INTRODUCTION. Few manganese deposits are known in Wyoming, but one deposit in the Laramie Mountains that was reported to the United States Geological Survey was visited by the writer on October 5, 1917. At that time the deposit was being exploited by the Poverty Mining Co., of Laramie, and 200 tons of ore containing about 40 per cent of manganese was on the dumps, although no ore had been shipped. The deposit is opened by a tunnel and a drift 190 feet in total length, which connect with a shaft 25 feet deep. Six claims constitute the group, which was located April 11,1916. GEOGRAPHY. The deposit of the Poverty Mining Co. lies on a gently sloping mesa on the western flank of the Laramie Mountains, near the head of Sheep Creek, at an altitude of approximately 8,000 feet above sea level. It is accessible from Medicine Bow, on the Union Pacific Railroad, by a fair wagon road 38 miles long. Near the deposit Sheep Creek has eroded in the mesa a channel 250 feet deep, which 'affords a measure of the relief. The rainfall is moderate, and the vegetation consists principally of grasses and small shrubs. Water level has not been reached in the workings. GEOLOGY. The core of the Laramie Mountains is a coarse-grained red granite of pre-Cambrian age, but flanking it on the west side is a series of limestones and sandstones which range in age from Carboniferous to Cretaceous. These rocks underlie the mesa toward Medicine Bow. -
Subregión Departamento Municipio Vereda / Tramos Iniciativa De Proyecto Priorizada SUR DE BOLÍVAR BOLÍVAR ARENAL CABECERA
LISTADO DE INDICATIVOS DE PROYECTOS: Este listado corresponde a las iniciativas identificadas por las comunidades en procesos participativos, que se incluye a manera de referencia sobre la posible localización y tipos de obras a estructurar y ejecutar. El listado de iniciativas que se entregue a los contratistas, en desarrollo del anexo técnico, puede incluir proyectos de este listado u otros proyectos incluidos en los PDET. Subregión Departamento Municipio Vereda / Tramos Iniciativa de Proyecto Priorizada Mejoramiento de vías en puntos críticos en el sector sereno, en el tramo de la finca SUR DE BOLÍVAR BOLÍVAR ARENAL CABECERA los palacios hasta la tigrera, con alcantarillado donde José duque, Dagoberto Zayas y Juan campo Mejoramiento de vías en los puntos críticos de las veredas Nueva esperanza, Sabana SUR DE BOLÍVAR BOLÍVAR ARENAL NUEVA ESPERANZA alta SUR DE BOLÍVAR BOLÍVAR ARENAL LA ENVIDIA Mejoramiento de vías en puntos críticos de Arenal – Camino viejo La envidia Rambo SUR DE BOLÍVAR BOLÍVAR ARENAL SABANA BAJA Instalación tanque de almacenamiento de agua para la escuela de Sabana baja Mejoramiento de vía en puntos críticos desde sabana – Zabaleta con un recorrido de SUR DE BOLÍVAR BOLÍVAR ARENAL ZABALETA 26 kilómetros y del tramo Solano – La Dorada con un recorrido de 14 kilómetros Mejoramiento de vía en puntos críticos desde Solano – La Dorada, con un recorrido SUR DE BOLÍVAR BOLÍVAR ARENAL LA DORADA de 14 kilómetros SUR DE BOLÍVAR BOLÍVAR ARENAL LA DORADA Mejoramiento de la escuela Dorada SUR DE BOLÍVAR BOLÍVAR ARENAL SANTO DOMINGO -
South America : Colombia : the Western and Eastern Zones of the Eastern Cordillera : Still Number 1 in the World
South America: Colombia The Western and the Eastern Emerald Zones of the Eastern Cordillera: Still Number 1 in the World Dieunar Schwarz South America is the world's most emerald-rich largest deposits in Colombian emerald history. and continent. Colombia alone produces about 60 The emeralds of the Eastern Cordillera are ex Gaston Giuliani percent of the emeralds on the world market while tremely difficult to mine, and are found in narrow report all the most Brazil's 1999 production was worth some 50 mil veins and breccias in zones where tectonic de important lion US dollars. While there have always been formation occurred. These zones can rarely be emerald deposits rumors about new emerald finds in Peru, Mexico, followed over any distance, and there are pro the world Bolivia or Ecuador, it the quantity and quality of nounced variations in emerald concentration and the emeralds of Colombia and Brazil that make quality throughout the deposits; furthermore, South America the world emerald leader. many veins In emerald-bearing areas do not Age-Old Adornment 37.08 CI pre Columbian emerald head. Ronald Ringsrud collection; Jeff Scovil photo Right: A trans parent crystal (2.2 cm high) and a cut stone (1.66 ct.}. Co lombian eme- ralds are among the most beauti ful on earth. Harold & Erica van Pelt photo Colombia: Nearly 200 Localities! There are nearly 200 known emerald localities between 4-6° north and 73-74° west in the Eastern Cord iJ lera. The emerald districts stretch NNE to SSW across two zones of mineralization: • The western zone or Vasquez-Yacopf mining district encompasses the Yacopi (La Glorieta), Muzo, Maripi (LCI Pita, Polveros), Coscuez and Perras Blancas deposits: contain emeralds. -
Paper Number: 5438 BIF-Hosted Manganese Deposits of Africa Beukes, N.J.1, Swindell, E.P.W.2 and Wabo, H.3
Paper Number: 5438 BIF-hosted manganese deposits of Africa Beukes, N.J.1, Swindell, E.P.W.2 and Wabo, H.3 1CIMERA, Geology Department, University of Johannesburg, Auckland Park 2006, South Africa [email protected] 268 Cuckoo’s Nest Road, Featherbrooke Estate, Krugersdorp 1739, South Africa. 3PPM and CIMERA, Department of Geology, University of Johannesburg, Auckland Park 2006, South Africa. ___________________________________________________________________________ Africa hosts just over 80 percent of the world’s known land-based ore resources of manganese metal and produced some 41.1 percent of the 18 million tons of manganese metal in ores that was mined during 2014. The deposits are mainly of sedimentary and supergene origin comprising four major types, namely banded iron formation (BIF)-hosted, black shale-hosted, oolitic and supergene/karst-hosted deposits. It is the purpose of this presentation to review the geological setting and ore characteristics of the BIF-hosted manganese deposits that include the giant ~2.2 Ga Kalahari Manganese Field (KMF) of South Africa (holding some 4,200 million tons of manganese metal that represents about 77 percent of the world’s known land-based resource) and small ~2.4 Ga Rooinekke and Cryogenic (~0.74 Ga) Otjosondu deposits of South Africa and Namibia respectively. The Kalahari Manganese Field (KMF) is hosted by the Hotazel Formation, composed of BIF with three interbeds of manganese, of the Transvaal Supergroup in the Griqualand West (Cairncross and Beukes, 2013). It is preserved in five erosional relicts below an unconformity at base of ~2,0 Ga Gamagara/Mapedi red beds along the Dimoten syncline, northwest of Kuruman. -
Deposits of Manganese Ore in Arizona
DEPOSITS OF MANGANESE ORE IN ARIZONA. By E. L. JONES, Jr., and F. L. RANSOME. INTRODUCTION. By E. L. JONES, Jr. FIELD WORK. Deposits of manganese ore have long been known in some of the old mining districts of Arizona, notably in the Bisbee, Tombstone, Globe, and Patagonia districts, but prior to 1915 the ore had not been mined except as it formed the gangue of silver ores and was needed as a flux for use in local smelters. Manganese ore as such was first shipped from the Tombstone district in 1915, and from the Globe and Bisbee districts in 1916. The high prices that were offered, for manganese ore in 1916, 1917, and 1918, and the fact that the opening of the new deposits would render the Government patriotic service greatly stimulated the production of the ore and the search' for new deposits. As a result of this search discoveries in many parts of the State have been reported to Government bureaus from time to time. In order to obtain information concerning these newly discovered deposits, their character and grade of ore, ore reserves, and pro ductive capacity, two geologists of the United States Geological Survey examined manganese deposits in Arizona, E. L. Jones, jr., visiting many scattered deposits throughout the State, > and F. L. Ransome those of the Bisbee and Tombstone districts. The work of Mr. Jones was done in August and September, 1917, and in April, May, and June, 1918. It was geologic reconnaissance work, and generally not more than a few hours could be devoted to the examination of each deposit. -
Assessment of Tourmaline As an Indicator Mineral Is Independent of the Method Chosen to Calculate Structural Formulae
Originally published as: Galbraith, C. G., Clarke, D. B., Trumbull, R. B., Wiedenbeck, M. (2009): Assessment of Tourmaline Compositions as an Indicator of Emerald Mineralization at the Tsa da Glisza Prospect, Yukon Territory, Cananda. - Economic Geology, 104, 5, 713-731 DOI: 10.2113/gsecongeo.104.5.713 Assessment of Tourmaline Compositions as an Indicator of Emerald Mineralization at the Tsa da Glisza Prospect, Yukon Territory, Canada Christopher G. Galbraith* Department of Earth Sciences, Dalhousie University, Halifax, NS, Canada B3H 3J5 D. Barrie Clarke Department of Earth Sciences, Dalhousie University, Halifax, NS, Canada B3H 3J5 Robert B. Trumbull GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany and Michael Wiedenbeck GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany Abstract Tourmaline is ubiquitous at the Tsa da Glisza emerald prospect, Yukon Territory, occurring as porphyroblasts in greenschist-facies meta-volcanic and ultramafic rocks, and as crystals in granites, aplites, and quartz-tourmaline veins. The principal occurrence of emerald is along contacts between the quartz-tourmaline veins and mafic country rocks, but it also occurs in the aplites. We assess the potential of using tourmaline compositions as a guide to emerald mineralization at Tsa da Glisza based on major-element, trace-element (Li, Be, Sc, Cr, V, Mn, Ni, Co, Cu, Zn, As, Rb, Sr, Y, Zr, Nb, Cd, Mo, Sn, Sb, Cs, Ba, Ta, W, Bi, Pb, Th, and U), REE (La, Ce, Pr, Nd, Sm, Eu, Yb, Lu), and boron isotopic data. The tourmaline compositions encompass Na-Fe schorl, Na-Mg dravite, and Ca-Mg uvite and show a strong dependence on host-rock chemistry.