2020 Annual Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Page 1 03089500 Mill Creek Near Berlin Center, Ohio 19.13 40.9638 80.9476 10.86 9.13 0.6880 58.17 0.77 0.41 2.10 03092000 Kale C
Table 2-1. Basin characteristics determined for selected streamgages in Ohio and adjacent States. [Characteristics listed in this table are described in detail in the text portion of appendix 2; column headings used in this table are shown in parentheses adjacent to the bolded long variable names] Station number Station name DASS Latc Longc SL10-85 LFPath SVI Agric Imperv OpenWater W 03089500 Mill Creek near Berlin Center, Ohio 19.13 40.9638 80.9476 10.86 9.13 0.6880 58.17 0.77 0.41 2.10 03092000 Kale Creek near Pricetown, Ohio 21.68 41.0908 81.0409 14.09 12.88 0.8076 40.46 1.08 0.48 2.31 03092090 West Branch Mahoning River near Ravenna, Ohio 21.81 41.2084 81.1983 20.23 11.19 0.5068 38.65 2.35 1.01 2.51 03102950 Pymatuning Creek at Kinsman, Ohio 96.62 41.4985 80.6401 5.46 21.10 0.6267 52.26 0.82 1.18 5.60 03109500 Little Beaver Creek near East Liverpool, Ohio 495.57 40.8103 80.6732 7.89 55.27 0.4812 38.05 1.98 0.79 1.41 03110000 Yellow Creek near Hammondsville, Ohio 147.22 40.5091 80.8855 9.37 33.62 0.5439 19.84 0.34 0.33 0.36 03111500 Short Creek near Dillonvale, Ohio 122.95 40.2454 80.8859 15.25 27.26 0.3795 30.19 1.08 0.93 1.16 03111548 Wheeling Creek below Blaine, Ohio 97.60 40.1274 80.9477 13.43 27.46 0.3280 40.92 0.97 0.56 0.64 03114000 Captina Creek at Armstrongs Mills, Ohio 133.69 39.9307 81.0696 13.56 26.99 0.6797 32.76 0.54 0.64 0.66 03115400 Little Muskingum River at Bloomfield, Ohio 209.94 39.6699 81.1370 5.50 44.84 0.7516 10.00 0.25 0.12 0.12 03115500 Little Muskingum River at Fay, Ohio 258.25 39.6406 81.1531 4.32 60.10 0.7834 -
Chagrin River Watershed Action Plan
Chagrin River Watershed Action Plan Chagrin River Watershed Partners, Inc. PO Box 229 Willoughby, Ohio 44096 (440) 975-3870 (Phone) (440) 975- 3865 (Fax) www.crwp.org Endorsed by the Ohio Environmental Protection Agency and Ohio Department of Natural Resources on December 18, 2006 Revised December 2009 Updated September 2011 i List of Tables ............................................................................................................................................... vi List of Figures ............................................................................................................................................. vii List of Appendices ..................................................................................................................................... viii Acknowledgements ....................................................................................................................................... x Endorsement of Plan by Watershed Stakeholders ....................................................................................... xi List of Acronyms ........................................................................................................................................ xii 1 Chagrin River Watershed ............................................................................................................. 1 1.1 Administrative Boundaries .......................................................................................................... 1 1.2 History of Chagrin -
Antidegradation Classifications Assigned to State and National Scenic Rivers in Ohio Under Proposed Rules, March 25, 2002
State of Ohio Environmental Protection Agency Antidegradation Classifications Assigned to State and National Scenic Rivers in Ohio under Proposed Rules, March 25, 2002 March 25, 2002 prepared by Division of Surface Water Division of Surface Water, 122 South Front St., PO Box 1049, Columbus, Ohio 43215 (614) 644-2001 Introduction Federal Water Quality Standard (WQS) program regulations require that States adopt and use an antidegradation policy. The policy has two distinct purposes. First, an antidegradation policy must provide a systematic and reasoned decision making process to evaluate the need to lower water quality. Regulated activities should not lower water quality unless the need to do so is demonstrated based on technical, social and economic criteria. The second purpose of an antidegradation policy is to ensure that the State’s highest quality streams, rivers and lakes are preserved. This document deals with the latter aspect of the antidegradation policy. Section 6111.12(A)(2) of the Ohio Revised Code specifically requires that the Ohio EPA establish provisions “ensuring that waters of exceptional recreational and ecological value are maintained as high quality resources for future generations.” Table 1 explains the proposed classification system to accomplish this directive. The shaded categories denote the special higher resource quality categories. The proposed rule contains 157 stream segments classified as either State Resource Waters (SRW) or Superior High Quality Waters (SHQW). The approximate mileage in each classification is shown in Table 1. The total mileage in both classifications represents less than four percent of Ohio’s streams. Refer to “Methods and Documentation Used to Propose State Resource Water and Superior High Quality Water Classifications for Ohio’s Water Quality Standards” (Ohio EPA, 2002) for further information about the process used to develop the list of streams. -
The Unionidae of the Chagrin River: the Remnant of a Molluscan Fauna1
The Unionidae of the Chagrin River: The Remnant of a Molluscan Fauna1 MICHAEL A. HOGGARTH2, The Ohio Department of Natural Resources, Division of Natural Areas and Preserves, Fountain Square, Columbus, OH 43224 ABSTRACT. The study of the distribution of the Unionidae of Ohio reveals information on the biogeography of this family that may be useful in the study of other groups of animals. Thirty sites on the Chagrin River and its major tributaries, the East and Aurora branches, were sampled for freshwater mussels during this study. A total of 268 specimens representing nine species of the family Unionidae were found. Living and/or freshly dead specimens of eight species were identified. Additionally, a single subfossil fragment of Alasmidonta marginata was taken, indicating that this species once occurred in the river. Three reaches of the Chagrin River system were found to support Unionidae: the Aurora Branch contained five species, the main stem of the Chagrin River below the town of Chagrin Falls contained five species, and the Chagrin River above Chagrin Falls contained seven species. The river above the falls contained the most significant proportion of the fauna in the system, with over 80% of all specimens collected from this reach, and suggests that the falls has not always acted as a barrier to distribution. OHIO J. SCI. 90 (5): 168-170, 1990 INTRODUCTION the collections made. These shells have been deposited at The molluscan fauna of the Chagrin River was the The Ohio State University Museum of Zoology. Hoggarth subject of study nearly 30 years ago (Loos I960). That (1990b) provides a complete account of the Unionidae study reported a fauna consisting of six species of aquatic collected during this study. -
From the Chagrin River Basin, Northeastern Ohio1
OhioJ. Sci. A II IN HEMORRHAGIC HYPOTENSION 181 Copyright© 1982 Ohio Acad. Sci. 0030-0950/82/0004-0181 $2.00/0 LIFE-HISTORY NOTES AND DISTRIBUTIONS OF CRAYFISHES (DECAPODA:CAMBARIDAE) FROM THE CHAGRIN RIVER BASIN, NORTHEASTERN OHIO1 RAYMOND F. JEZERINAC, The Ohio State University, Newark, OH 43055 ABSTRACT. Stream crayfishes were collected from the Chagrin River watershed during 1963-65 to determine their distributional patterns and to gather life-history information. Orconectes rusticus (Girard 1852), probably introduced into the basin in the early 1930s, was the dominant pool-dwelling species in the Chagrin River and Aurora Branch. Orconectespropinquus (Girard 1852), was restricted to the head-water portions of the main stream, the East, the Aurora Branches, and their tributaries; amplexus of this species was observed in September and March. Orconectes sanbornii sanbornii (Faxon 1884), was caught at one locality; this is the first record of its presence in the watershed. Orconectes virilis (Hagen 1870), inhabited pools of the middle and upper portions of the East Branch and its tributaries; its presence in the basin may be a remnant of a more expansive distribution. Orconectes immunis (Hagen 1870), probably a prairie relict, was captured at 2 disjunct localities in the watershed and at 3 other sites in northeastern Ohio. These are the first records of this species in these areas. Cambarus (Puncticambarus) robustus (Girard 1852), was widely distributed and abundant in the pools and riffles of the smaller tributaries and in riffles of the larger streams. An undescribed species, related to Cambarus {Cambarus) bartonii (Fabricius 1798), was captured at 8 localities. -
2017 Monitoring of Lake Erie and the Maumee River Estuary
2017 Monitoring of Lake Erie and the Maumee River Estuary Division of Surface Water March 21, 2017 DSW 2017 Lake Erie Study Plan March 21, 2017 2017 Monitoring of Lake Erie and the Maumee River Estuary V 1.0 March 21, 2017 Ohio Environmental Protection Agency Division of Surface Water Lazarus Government Center 50 West Town Street, Suite 700 Columbus, Ohio 43215 Groveport Field Office 4675 Homer Ohio Lane Groveport, Ohio 43215 Northwest District Office 347 North Dunbridge Road Bowling Green, Ohio 43402 Northeast District Office 2110 East Aurora Road Twinsburg, Ohio 44087 DSW 2017 Lake Erie Study Plan March 21, 2017 DSW 2017 Lake Erie Study Plan March 21, 2017 Introduction The Ohio Environmental Protection Agency’s (Ohio EPA) Division of Surface Water (DSW) implemented an annual Lake Erie monitoring program in 2014. It was the culmination of Ohio’s participation in two recent federal initiatives. The first, in 2010, was the National Coastal Condition Assessment (NCCA), a probabilistic study of Great Lakes and Marine coasts. The second was a state-led study funded by the Great Lakes Restoration Initiative (GLRI) completed from 2011-2013 titled the Lake Erie Comprehensive Nearshore Monitoring Program. Details about the inaugural field season are in a study plan titled 2014 Monitoring of Lake Erie and the Maumee River Estuary. The Clean Water Act Sections 305(b) and 303(d) require Ohio EPA to submit biennial reports on the general condition of waters of the state and to develop a prioritized list of those that are not meeting goals. Ohio fulfills this requirement by submitting the Integrated Water Quality Monitoring and Assessment Report (IR). -
Ohio State Parks
Ohio State Parks Enter Search Term: http://www.dnr.state.oh.us/parks/default.htm [6/24/2002 11:24:54 AM] Park Directory Enter Search Term: or click on a park on the map below http://www.dnr.state.oh.us/parks/parks/ [6/24/2002 11:26:28 AM] Caesar Creek Enter Search Term: Caesar Creek State Park 8570 East S.R. 73 Waynesville, OH 45068-9719 (513) 897-3055 U.S. Army Corps of Engineers -- Caesar Creek Lake Map It! (National Atlas) Park Map Campground Map Activity Facilities Quantity Fees Resource Land, acres 7940 Caesar Creek State Park is highlighted by clear blue waters, Water, acres 2830 scattered woodlands, meadows and steep ravines. The park Nearby Wildlife Area, acres 1500 offers some of the finest outdoor recreation in southwest Day-Use Activities Fishing yes Ohio including boating, hiking, camping and fishing. Hunting yes Hiking Trails, miles 43 Bridle Trails, miles 31 Nature of the Area Backpack Trails, miles 14 Mountain Bike Trail, miles 8.5 Picnicking yes The park area sits astride the crest of the Cincinnati Arch, a Picnic Shelters, # 6 convex tilting of bedrock layers caused by an ancient Swimming Beach, feet 1300 Beach Concession yes upheaval. Younger rocks lie both east and west of this crest Nature Center yes where some of the oldest rocks in Ohio are exposed. The Summer Nature Programs yes sedimentary limestones and shales tell of a sea hundreds of Programs, year-round yes millions of years in our past which once covered the state. Boating Boating Limits UNL Seasonal Dock Rental, # 64 The park's excellent fossil finds give testimony to the life of Launch Ramps, # 5 this long vanished body of water. -
Active Ohio Wetland Mitigation Banks 1/27/09
Active Ohio Mitigation Banks For the most up to date information visit: https://ribits.usace.army.mil/ribits_apex/f?p=107:2 LONG ARMY BANK NAME, SERVICE AREA TERM LOCATION CORPS SPONSOR MANAGER DISTRICT Big Darby-Hellbranch Upper Scioto River Columbus Prairie Twp., SW of Huntington -Stream + Wetlands (05060001) Metro Parks Columbus, Foundation Lower Scioto River Franklin County, Tributaries (05060002- Hellbranch Run 01/02/03/04) (0506001-22-01) Cherry Valley Grand River (04110004) Mt. Pleasant New Lyme Twp., S of Buffalo -Wetland Preservation, Ashtabula-Chagrin River Rod & Gun Sentinel, Ashtabula Ltd. (04110003) Club, County, Conneaut Creek Grand River Peters Creek-Mill Creek (04120101) Partners, Inc. (04110004-04-02) Grand River Lowlands Ashtabula-Chagrin River Mt. Pleasant Orwell Twp., W of Buffalo -Wetland Preservation, (04110003) Rod & Gun Orwell, Ltd. Grand River (04110004) Club, Ashtabula County, Cuyahoga River Grand River Mill Creek-Grand River (04110002) Partners, Inc. (0410004-03-03) Granger Black-Rocky River ODNR Granger Twp., Buffalo -Stream + Wetlands (04110001-01, 04110001- Division of Medina county, Foundation 02, 04110001-06) Wildlife North Branch West Cuyahoga River Branch Rocky River (04110002) within (04110001-01-02) Cuyahoga, Summit, Medina Counties Great Miami Upper Great Miami River Five Rivers Perry Twp., SW of Huntington (Trotwood) (05080001-14/18/19/20) Metro Parks Trotwood, Mitigation Bank Lower Great Miami River Montgomery County, -Five Rivers MetroParks (05080002-01/02/03/04/07) Headwaters Bear Creek (05080002-04-01) -
Boats Built at Toledo, Ohio Including Monroe, Michigan
Boats Built at Toledo, Ohio Including Monroe, Michigan A Comprehensive Listing of the Vessels Built from Schooners to Steamers from 1810 to the Present Written and Compiled by: Matthew J. Weisman and Paula Shorf National Museum of the Great Lakes 1701 Front Street, Toledo, Ohio 43605 Welcome, The Great Lakes are not only the most important natural resource in the world, they represent thousands of years of history. The lakes have dramatically impacted the social, economic and political history of the North American continent. The National Museum of the Great Lakes tells the incredible story of our Great Lakes through over 300 genuine artifacts, a number of powerful audiovisual displays and 40 hands-on interactive exhibits including the Col. James M. Schoonmaker Museum Ship. The tales told here span hundreds of years, from the fur traders in the 1600s to the Underground Railroad operators in the 1800s, the rum runners in the 1900s, to the sailors on the thousand-footers sailing today. The theme of the Great Lakes as a Powerful Force runs through all of these stories and will create a lifelong interest in all who visit from 5 – 95 years old. Toledo and the surrounding area are full of early American History and great places to visit. The Battle of Fallen Timbers, the War of 1812, Fort Meigs and the early shipbuilding cities of Perrysburg and Maumee promise to please those who have an interest in local history. A visit to the world-class Toledo Art Museum, the fine dining along the river, with brew pubs and the world famous Tony Packo’s restaurant, will make for a great visit. -
Section 4.2.2.2
4.0 ENVIRONMENTAL IMPACT ANALYSIS 4.1 GEOLOGY 4.1.1 Existing Resources 4.1.1.1 Geologic Setting The proposed LX Project is located entirely in the Kanawha Section of the Appalachian Plateaus physiographic province. The Appalachian Plateaus consist primarily of Pennsylvanian and Permian layered deposits, with Quaternary Alluvium overlying most geologic formations (USGS, 2015a). Elevations along the project range from 455 feet to 1,500 feet above mean sea level (USGS, 2015b). Topography in the project area ranges from relatively flat-lying rocks and rolling hills to steep slopes, with a local relief of up to several hundred feet (West Virginia Geological and Economic Survey [WVGES], 2004a; Greene County Government, 2013; ODNR, 2014a). The proposed RXE Project Grayson CS is located in the region known as the Eastern Kentucky Coal Field (Kentucky Geological Survey [KGS], 2012a), in an area of Quaternary alluvium composed of sand, silt, clay, and gravel created by floodplain deposits of present day streams. The thickness of the alluvium ranges from 0 to 60 feet (Whittington and Ferm, 1967). The proposed RXE Project Means CS is located within the Lexington Plains Section of the Interior Low Plateaus physiographic province (USGS, 2015a), in a region known as The Knobs, that consists of hundreds of isolated, steep-sloping, cone-shaped hills (KGS, 2012b). The nearest knob, Kashs Knob, is approximately one-quarter mile north of the proposed compressor station site (USGS, 1975). The USDA Soil Conservation Survey (SCS) County soil survey information indicates there are restrictive layers (potentially shallow bedrock) within the upper five feet of the ground surface at both CS locations (USDA SCS, 1974 and 1983). -
1 Quantifying Avian and Forest Communities to Understand
Quantifying avian and forest communities to understand interdependencies of ecological systems and inform forest bird conservation Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Bryce Timothy Adams Graduate Program in Environment and Natural Resources The Ohio State University 2018 Dissertation Committee Stephen N. Matthews, Advisor Robert J. Gates Chris M. Tonra Laura J. Kearns Louis R. Iverson 1 Copyrighted by Bryce Timothy Adams 2018 2 Abstract Forests represent the largest terrestrial biome on Earth, providing a wealth of ecological and social services. Their effective conservation and management under intensifying anthropogenic threats, climate change, and shifting disturbance regimes hinges on an accurate knowledge of ecological process and spatial pattern to address questions related to their dynamics, how they are changing, and what resources they provide to wildlife. Predictive models are currently the main tools used to quantify landscape-level forest parameters and resource use of wildlife communities. Advances in remote sensing technologies and new, innovative ways to characterize these data offer great potential for improved quantification and monitoring of ecological systems. My overall research seeks to integrate new methodologies for landscape-level quantification of avian and forest communities and to investigate interrelationships that inform forest bird conservation in southeastern Ohio. The study area, positioned within the Central Hardwoods Region, displays a pronounced floristic gradient, recognized as one of the most speciose forested regions in the eastern US. I sampled avian and woody plant assemblages across a spectrum of forest stands with different vegetation composition and structure within six study sites during 2015 and 2016. -
Eastern Hemlock (Tsuga Canadensis) Forests of the Hocking Hills Prior to Hemlock Woolly
Eastern Hemlock (Tsuga canadensis) Forests of the Hocking Hills Prior to Hemlock Woolly Adelgid (Adelges tsugae) Infestation _______________________________ A Thesis Presented to The Honors Tutorial College Ohio University _______________________________ In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial College with the degree of Bachelor of Arts in Environmental Studies _______________________________ by Jordan K. Knisley April 2021 1 This thesis has been approved by The Honors Tutorial College and the Department of Environmental Studies Dr. James Dyer Professor, Geography Thesis Adviser _____________________________ Dr. Stephen Scanlan Director of Studies, Environmental Studies _____________________________ Dr. Donal Skinner Dean, Honors Tutorial College 2 Acknowledgements I would like to thank my parents, Keith and Tara Knisley, my grandparents, Sandra Jones- Gordley and Phil Gordley, and the love of my life, Sarah Smith. Each of them has been a constant source of support. Finishing my undergraduate studies and writing this thesis during the COVID-19 pandemic has been difficult, and I am certain I am not alone in this sentiment, but their emotional support has definitely made this process easier. Additionally, thank you to Scott Smith, captain of the “S.S. Airbag,” the boat without which I could not have reached some of my study plots. I would also like to express my thanks to my thesis advisor, Dr. James Dyer. Without his assistance throughout this process, from field work to editing, this thesis would not have been possible. Finally, I would like to thank my Director or Studies, Dr. Stephen Scanlan, for his guidance, and the Honors Tutorial College in general for the opportunities that they have given me.