(San Diego Ambrosia) 5-Year Review: Summary and Evaluation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prospects for Biological Control of Ambrosia Artemisiifolia in Europe: Learning from the Past
DOI: 10.1111/j.1365-3180.2011.00879.x Prospects for biological control of Ambrosia artemisiifolia in Europe: learning from the past EGERBER*,USCHAFFNER*,AGASSMANN*,HLHINZ*,MSEIER & HMU¨ LLER-SCHA¨ RERà *CABI Europe-Switzerland, Dele´mont, Switzerland, CABI Europe-UK, Egham, Surrey, UK, and àDepartment of Biology, Unit of Ecology & Evolution, University of Fribourg, Fribourg, Switzerland Received 18 November 2010 Revised version accepted 16 June 2011 Subject Editor: Paul Hatcher, Reading, UK management approach. Two fungal pathogens have Summary been reported to adversely impact A. artemisiifolia in the The recent invasion by Ambrosia artemisiifolia (common introduced range, but their biology makes them unsuit- ragweed) has, like no other plant, raised the awareness able for mass production and application as a myco- of invasive plants in Europe. The main concerns herbicide. In the native range of A. artemisiifolia, on the regarding this plant are that it produces a large amount other hand, a number of herbivores and pathogens of highly allergenic pollen that causes high rates of associated with this plant have a very narrow host range sensitisation among humans, but also A. artemisiifolia is and reduce pollen and seed production, the stage most increasingly becoming a major weed in agriculture. sensitive for long-term population management of this Recently, chemical and mechanical control methods winter annual. We discuss and propose a prioritisation have been developed and partially implemented in of these biological control candidates for a classical or Europe, but sustainable control strategies to mitigate inundative biological control approach against its spread into areas not yet invaded and to reduce its A. -
Table of Contents
Biological Resources Assessment Rainbow Municipal Water District Fallbrook, San Diego County, California Prepared for: Rainbow Municipal Water District 3707 Old Hwy 395 Fallbrook, California 92028 Contact: Tom Kennedy North American Resort Properties, Inc. 4450 MacArthur Blvd., Ste. 200 Newport Beach, California 92660 Contact: Justin Basie Prepared by: WRA, Inc. 9815 Carroll Canyon Rd., Ste. 206 San Diego, CA 92131 858-842-1800 Contact: Rod Dossey [email protected] Date: January 2018 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................1 1.0 INTRODUCTION ..............................................................................................................2 2.0 REGULATORY BACKGROUND ......................................................................................4 2.1 Sensitive Biological Communities ................................................................................ 4 2.2 Special-Status Species ................................................................................................ 6 2.3 Critical Habitat ............................................................................................................. 7 2.4 San Diego County Multiple Species Conservation Program ......................................... 7 3.0 METHODS .....................................................................................................................10 3.1 Literature Review ........................................................................................................10 -
Section 5 References
Section 5 References 5.0 REFERENCES Akçakaya, H. R. and J. L. Atwood. 1997. A habitat-based metapopulation model of the California Gnatcatcher. Conservation Biology 11:422-434. Akçakaya, H.R. 1998. RAMAS GIS: Linking landscape data with population viability analysis (version 3.0). Applied Biomathematics, Setaauket, New York. Anderson, D.W. and J.W. Hickey. 1970. Eggshell changes in certain North American birds. Ed. K. H. Voous. Proc. (XVth) Inter. Ornith. Congress, pp 514-540. E.J. Brill, Leiden, Netherlands. Anderson, D.W., J.R. Jehl, Jr., R.W. Risebrough, L.A. Woods, Jr., L.R. Deweese, and W.G. Edgecomb. 1975. Brown pelicans: improved reproduction of the southern California coast. Science 190:806-808. Atwood, J.L. 1980. The United States distribution of the California black-tailed gnatcatcher. Western Birds 11: 65-78. Atwood, J.L. 1990. Status review of the California gnatcatcher (Polioptila californica). Unpublished Technical Report, Manomet Bird Observatory, Manomet, Massachusetts. Atwood, J.L. 1992. A maximum estimate of the California gnatcatcher’s population size in the United States. Western Birds. 23:1-9. Atwood, J.L. and J.S. Bolsinger. 1992. Elevational distribution of California gnatcatchers in the United States. Journal of Field Ornithology 63:159-168. Atwood, J.L., S.H. Tsai, C.H. Reynolds, M.R. Fugagli. 1998. Factors affecting estimates of California gnatcatcher territory size. Western Birds 29: 269-279. Baharav, D. 1975. Movement of the horned lizard Phrynosoma solare. Copeia 1975: 649-657. Barry, W.J. 1988. Management of sensitive plants in California state parks. Fremontia 16(2):16-20. Beauchamp, R.M. -
Baja California, Mexico, and a Vegetation Map of Colonet Mesa Alan B
Aliso: A Journal of Systematic and Evolutionary Botany Volume 29 | Issue 1 Article 4 2011 Plants of the Colonet Region, Baja California, Mexico, and a Vegetation Map of Colonet Mesa Alan B. Harper Terra Peninsular, Coronado, California Sula Vanderplank Rancho Santa Ana Botanic Garden, Claremont, California Mark Dodero Recon Environmental Inc., San Diego, California Sergio Mata Terra Peninsular, Coronado, California Jorge Ochoa Long Beach City College, Long Beach, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Biodiversity Commons, Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Harper, Alan B.; Vanderplank, Sula; Dodero, Mark; Mata, Sergio; and Ochoa, Jorge (2011) "Plants of the Colonet Region, Baja California, Mexico, and a Vegetation Map of Colonet Mesa," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 29: Iss. 1, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol29/iss1/4 Aliso, 29(1), pp. 25–42 ’ 2011, Rancho Santa Ana Botanic Garden PLANTS OF THE COLONET REGION, BAJA CALIFORNIA, MEXICO, AND A VEGETATION MAPOF COLONET MESA ALAN B. HARPER,1 SULA VANDERPLANK,2 MARK DODERO,3 SERGIO MATA,1 AND JORGE OCHOA4 1Terra Peninsular, A.C., PMB 189003, Suite 88, Coronado, California 92178, USA ([email protected]); 2Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711, USA; 3Recon Environmental Inc., 1927 Fifth Avenue, San Diego, California 92101, USA; 4Long Beach City College, 1305 East Pacific Coast Highway, Long Beach, California 90806, USA ABSTRACT The Colonet region is located at the southern end of the California Floristic Province, in an area known to have the highest plant diversity in Baja California. -
Letter Report (December 7, 2020)
Appendix B Biological Letter Report (December 7, 2020) STREET 605 THIRD 92024 CALIFORNIA ENCINITAS. F 760.632.0164 T 760.942.5147 December 7, 2020 11575 John R. Tschudin, Jr. Director – Design & Construction Encompass Health 9001 Liberty Parkway Birmingham, Alabama 35242 Subject: Biology Letter Report for Encompass Health Chula Vista, City of Chula Vista, California Dear Mr. Tschudin: This letter report provides an analysis of potential biological resource impacts associated with Encompass Health Chula Vista (proposed project) located in the City of Chula Vista (City), California (Assessor’s Parcel Number 644- 040-01-00). This biology letter report also includes a discussion of any potential biological resources that may be subject to regulation under the City of Chula Vista Multiple Species Conservation Program (MSCP) Subarea Plan (Subarea Plan) (City of Chula Vista 2003). Project Location The property (i.e., on-site; Assessor’s Parcel Number 644-040-01-00) occupies 9.79 acres and is located approximately 0.2 miles east of Interstate 805 between Main Street and Olympic Parkway (Figure 1, Project Location). The project also includes an off-site impact area of 0.22 acre located along the southeastern corner of the site where future utility connections may occur, making the total study area acreage for the project 10.01 acres. The site is located on Shinohara Lane accessed from Brandywine Avenue and is located on the U.S. Geological Service 7.5-minute series topographic Imperial Beach quadrangle map. The site exists within an urban portion of the City and is bound on the south and east by industrial buildings, to the west by single-family residences, and to the north by multi-family condominiums (Figure 2, Aerial Image). -
Clonality in the Endangered Ambrosia Pumila (Nutt.) Gray (Asteraceae)
Clonality in the endangered Ambrosia pumila (Nutt.) Gray (Asteraceae) inferred from RAPD markers; implications for conservation and management Mitchell McGlaughlin and Elizabeth Friar Rancho Santa Ana Botanic Garden / Department of Botany, Claremont Graduate University, 1500 N. College Ave., Claremont, CA, 91711 Abstract Clonal plants have the ability to spread and survive over long periods of time by vegetative growth. For endangered species, the occurrence of clonality can have significant impacts on levels of genetic diversity, population structure, recruitment, and the implementation of appropriate conservation strategies. In the present study, we examine levels of clonal diversity in three populations of Ambrosia pumila (Nutt.) Gray (Asteraceae), an endangered clonal species from southern California. Ambrosia pumila is a perennial herbaceous species spreading from a rhizome like root, frequently found in dense patches of several hundred stems in a few square meters. The primary habitat for this species is upper terraces of rivers and drainages in areas that have been heavily impacted by anthropogenic disturbances and changing flood regimes. RAPD markers were employed to document the number and distribution of clones within multiple 0.5m2 plots from each population. Thirty-one multi-locus genotypes were identified from the 201 stems sampled. The spatial distribution of clones was limited with no genotypes shared between plots or populations. Mean clone size was estimated at 6.48 ramets per genet. Mean values of genotypic diversity (D=0.93) and evenness (E=0.93) were higher than the average for clonal plant species. Mean genetic similarity was 0.64 among all genets and ranged from 0.78 – 0.94 within populations. -
FINAL REPORT a Comparison of Vegetation Management
FINAL REPORT A Comparison of Vegetation Management Techniques to Support Recovery of the Federally Endangered Ambrosia pumila Center for Natural Lands Management 215 West Ash Street Fallbrook, CA 92028 List of Preparers: Dr. Niles Hasselquist Email: [email protected] Eliza Maher Hasselquist Email: [email protected] Dr. Deborah Rogers Email: [email protected] December 2009 ABSTRACT Non-native plant species are considered a threat to virtually all of the extant populations of the federally endangered Ambrosia pumila. The objective of this study was to compare the response of A. pumila among to several vegetation management techniques that included: mowing, application of Fusilade © II Turf and Ornamental Herbicide (a grass-specific herbicide to remove non-native species), hand-pulling of all non-native species, and a control. This study was replicated at three different sites in San Diego and Riverside Counties (Skunk Hollow Preserve, Mission Trails Regional Park, and San Diego National Wildlife Refuge), which in turn allows us to describe management options for the full geographical range in which A. pumila occurs. Across all sites, hand-pulling and Fusilade ©II treatments showed the greatest increase in the number of A. pumila stems compared to the mowing and control treatments. Efficacy of the Fusilade ©II treatment depended on the dominant species at a given site because of the ineffectiveness of this grass-specific herbicide to kill Vulpia spp. We found that Fusilade ©II also effectively reduced the population of Erodium spp., non-native forb species. Furthermore, build up of dead biomass in plots treated with Fusilade ©II may have been another reason why the Fusilade ©II treatment was slightly less effective than the hand-pulling treatment. -
Mini Data Sheet on Ambrosia Confertiflora (Asteraceae)
EPPO, 2014 Mini data sheet on Ambrosia confertiflora (Asteraceae) Added in 2013 – Deleted in 2014 Reasons for deletion: Ambrosia confertiflora was added to the EPPO Alert List in 2013 and transferred to the List of Invasive Alien Plants in 2014. Why Ambrosia confertiflora (Asteraceae) is a perennial herb native to northern Mexico and the southwestern United States. One of its English common names is ‘burr ragweed’. This species has been introduced to Australia and Israel. A. confertiflora has severe agricultural and environmental impacts, and its pollen is a severe allergen. This species has a limited distribution in the EPPO region, and can be considered an emerging invader. Geographic distribution EPPO region: Israel. North America: USA (native) (Arizona, California, Colorado, Hawaii (alien), Kansas, Nebraska, New Mexico, Oklahoma, Tennessee, Texas, Utah). Central America and Caribbean: México (native) (Aguascalientes, Baja California Norte, Baja California Sur, Chihuahua, Coahuila, Colima, Durango, Guanajuato, Guerrero, Jalisco, México, Nuevo León, Querétaro, San Luis Potosí, Sinaloa, Sonora, Tamaulipas and Zacatecas), Puerto Rico (alien). Oceania: Australia (alien) (New South Wales, Queensland, South Australia). Note: In Israel, A. confertiflora began to spread in the Shechem area in central Samaria during the mid-1990s. It is now widespread in Samaria, especially along roads and in cultivated areas, but also in Nature Reserves such as wadi Qana. The plant spread westwards and is now present in the Emek Hefer area (Sharon region), where 480 ha of riverbanks along the Alexander river are already heavily infested. The plant also spread eastward along wadi Tirza and has reached the Northern Jordan Valley. Additional foci were recently discovered along the Yarkon River, on the Carmel mount, in the Haifa region, in the southern part of Yizre'el valley in lower Galilee, and in the south near Gadera and in the Ashdod area. -
Vascular Plant Species of the Comanche National Grassland in United States Department Southeastern Colorado of Agriculture
Vascular Plant Species of the Comanche National Grassland in United States Department Southeastern Colorado of Agriculture Forest Service Donald L. Hazlett Rocky Mountain Research Station General Technical Report RMRS-GTR-130 June 2004 Hazlett, Donald L. 2004. Vascular plant species of the Comanche National Grassland in southeast- ern Colorado. Gen. Tech. Rep. RMRS-GTR-130. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 36 p. Abstract This checklist has 785 species and 801 taxa (for taxa, the varieties and subspecies are included in the count) in 90 plant families. The most common plant families are the grasses (Poaceae) and the sunflower family (Asteraceae). Of this total, 513 taxa are definitely known to occur on the Comanche National Grassland. The remaining 288 taxa occur in nearby areas of southeastern Colorado and may be discovered on the Comanche National Grassland. The Author Dr. Donald L. Hazlett has worked as an ecologist, botanist, ethnobotanist, and teacher in Latin America and in Colorado. He has specialized in the flora of the eastern plains since 1985. His many years in Latin America prompted him to include Spanish common names in this report, names that are seldom reported in floristic pub- lications. He is also compiling plant folklore stories for Great Plains plants. Since Don is a native of Otero county, this project was of special interest. All Photos by the Author Cover: Purgatoire Canyon, Comanche National Grassland You may order additional copies of this publication by sending your mailing information in label form through one of the following media. -
San Diego Multiple Species Conservation Program (MSCP) Rare Plant Monitoring Review and Revision
San Diego Multiple Species Conservation Program (MSCP) Rare Plant Monitoring Review and Revision By Kathryn McEachern, Bruce M. Pavlik, Jon Rebman, and Rob Sutter Western Ecological Research Center Scientific Investigations Report 2007–5016 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested reference: McEachern, Kathryn, Pavlik, Bruce, Rebman, Jon, and Sutter, Rob, 2007, San Diego Multiple Species Conservation Program (MSCP) rare plant monitoring review and revision: U.S. Geological Survey Scientific Investigations Report 2007–5016, 68 p. iii Contents Executive Summary .......................................................................................................................................1 I. Introduction .................................................................................................................................................2 -
Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River
National Park Service U.S. Department of the Interior Natural Resource Program Center Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River Natural Resource Report NPS/CHDN/NRR—2011/299 ON THE COVER Chisos Basin, as viewed from Casa Grande Peak. Image provided by NPS Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River Natural Resource Report NPS/CHDN/NRR—2011/299 James Von Loh Cogan Technology, Inc. 8140 East Lightening View Drive Parker, Colorado 80134 Dan Cogan Cogan Technology, Inc. 21 Valley Road Galena, Illinois 61036 February 2011 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data. -
Checklist of the Vascular Plants of San Diego County 5Th Edition
cHeckliSt of tHe vaScUlaR PlaNtS of SaN DieGo coUNty 5th edition Pinus torreyana subsp. torreyana Downingia concolor var. brevior Thermopsis californica var. semota Pogogyne abramsii Hulsea californica Cylindropuntia fosbergii Dudleya brevifolia Chorizanthe orcuttiana Astragalus deanei by Jon P. Rebman and Michael G. Simpson San Diego Natural History Museum and San Diego State University examples of checklist taxa: SPecieS SPecieS iNfRaSPecieS iNfRaSPecieS NaMe aUtHoR RaNk & NaMe aUtHoR Eriodictyon trichocalyx A. Heller var. lanatum (Brand) Jepson {SD 135251} [E. t. subsp. l. (Brand) Munz] Hairy yerba Santa SyNoNyM SyMBol foR NoN-NATIVE, NATURaliZeD PlaNt *Erodium cicutarium (L.) Aiton {SD 122398} red-Stem Filaree/StorkSbill HeRBaRiUM SPeciMeN coMMoN DocUMeNTATION NaMe SyMBol foR PlaNt Not liSteD iN THE JEPSON MANUAL †Rhus aromatica Aiton var. simplicifolia (Greene) Conquist {SD 118139} Single-leaF SkunkbruSH SyMBol foR StRict eNDeMic TO SaN DieGo coUNty §§Dudleya brevifolia (Moran) Moran {SD 130030} SHort-leaF dudleya [D. blochmaniae (Eastw.) Moran subsp. brevifolia Moran] 1B.1 S1.1 G2t1 ce SyMBol foR NeaR eNDeMic TO SaN DieGo coUNty §Nolina interrata Gentry {SD 79876} deHeSa nolina 1B.1 S2 G2 ce eNviRoNMeNTAL liStiNG SyMBol foR MiSiDeNtifieD PlaNt, Not occURRiNG iN coUNty (Note: this symbol used in appendix 1 only.) ?Cirsium brevistylum Cronq. indian tHiStle i checklist of the vascular plants of san Diego county 5th edition by Jon p. rebman and Michael g. simpson san Diego natural history Museum and san Diego state university publication of: san Diego natural history Museum san Diego, california ii Copyright © 2014 by Jon P. Rebman and Michael G. Simpson Fifth edition 2014. isBn 0-918969-08-5 Copyright © 2006 by Jon P.