PALESTINE POLYTECHNIC UNIVERSITY College of IT and Computer Engineering Department of Computer Science and Computer Engineering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lesslinux Handbook
lesslinux.com Documentation Handbook Mattias Schlenker INUX August-Bebel-Str. 74 L 04275 Leipzig GERMANY ê [email protected] ESS L Contents 1 About LessLinux and this handbook2 2 LessLinux for users3 3 LessLinux for admins4 3.1 Remote access.......................................4 3.1.1 SSH.........................................4 3.1.2 VNC........................................5 3.1.3 RDP........................................6 3.1.4 Xpra........................................7 3.2 Netbooting LessLinux..................................7 3.2.1 CIFS or NFS boot.................................8 3.2.2 HTTP, FTP or TFTP boot.............................8 3.3 LessLinux as thinclient..................................9 3.3.1 Booting to Remmina...............................9 3.3.2 Booting to an RDP login mask.........................9 3.3.3 Booting to a chooser............................... 10 3.3.4 Using XDMCP.................................. 12 3.3.5 Local printers................................... 12 4 LessLinux for builders and contributors 13 4.1 Preparation........................................ 13 4.1.1 Prepare a drive.................................. 13 4.1.2 Create some directories............................. 14 4.1.3 Download the „sources”............................. 14 4.2 Build the first stage.................................... 14 2 Abstract LessLinux is a free Linux system designed to be light and easily modifiable. It is based on Linux from Scratch and was started by Mattias Schlenker in 2009. Since then it has been used as a base for dozens of security and rescue systems published by computer magazines all over the world. It’s simple architecture makes it easy to build LessLinux based systems for use as thinclient, software deployment or the demonstration of software. This book covers the possibilities of LessLinux and tells you how small changes can make LessLinux the lever you need to move your world. -
Job Peer Group Controller Job Peer Group Host a PG for Each Job
Korea-Japan Grid Symposium, Seoul December 1-2, 2004 P3: Personal Power Plant Makes over your PCs into power generator on the Grid Kazuyuki Shudo <[email protected]>, Yoshio Tanaka, Satoshi Sekiguchi Grid Technology Research Center, AIST, Japan P3: Personal Power Plant Middleware for distributed computation utilizing JXTA. Traditional goals Cycle scavenging Harvest compute power of existing PCs in an organization. Conventional dist. computing Internet-wide distributed computing E.g. distributed.net, SETI@home Challenging goals Aggregate PCs and expose them as an integrated Grid resource. Integrate P3 with Grid middleware ? cf. Community Scheduler Framework Dealings and circulation of computational resources Transfer individual resources (C2C, C2B) and also aggregated resources (B2B). Transfer and aggregation of Other resources than processing power. individual resources Commercial dealings need a market and a system supporting it. P2P way of interaction between PCs P3 uses JXTA for all communications JXTA is a widely accepted P2P protocol, project and library, that provides common functions P2P software requires. P2P concepts supported by JXTA efficiently support P3: Ad-hoc self-organization PCs can discover and communicate with each other without pre-configuration. Discovery PCs dynamically discover each other and jobs without a central server. Peer Group PCs are grouped into job groups, in which PCs carry out code distribution, job control, and collective communication for parallel computation. Overlay Network Peer ID in JXTA is independent from physical IDs like IP addresses and MAC addresses. JXTA enables end-to-end bidirectional communication over NA(P)T and firewall (even if the FW allows only unidirectional HTTP). This function supports parallel processing in the message-passing model, not only master-worker model. -
Web Services and PC Grid
Web Services and PC Grid ONG Guan Sin <[email protected]> Grid Evangelist Singapore Computer Systems Ltd APBioNet/APAN 18 Jul 2006 Tera-scale Campus Grid @ NUS LATEST: CIO Award 2006 winner Harnessing existing computation capacity campus-wide, creating large-scale supercomputing capability Computers are aggregated through its gigabit network into a virtual supercomputing platform using United Devices Grid MP middleware Community grid by voluntary participation from depts Two-year collaboration project between NUS and SCS to develop applications and support community Number of Nodes Theoretical# Practical^ 1,042 (Sep 20, 2005) 4.5 TFlops 2.5 TFlops 3,000 (Planned - 2007) 13 TFlops 7.2 TFlops * Accumulated average CPU speed of 2.456GHz as at Sep 20, 2005 # Assuming 90% capacity effectively harnessed ^ Assuming 50% capacity effectively harnessed Copyright 2006 Singapore Computer Systems Limited 2 UD Grid MP Architecture Managed Grid Services Interface (MGSI) ± Web Services API 3 Command-line Interface Application Service 4 Simple Web Interface 5 Application Service Overview Application Service . Is a job submission and result retrieval program which provides users with a simple interface for performing work on the Grid . It is responsible for Splitting and Merging Application Data Features . Control the Grid MP Sever with SOAP or XML-RPC communications . SOAP and XML-RPC Communications are protected with SSL encryption . SOAP and XML-RPC are language and platform independent with many publicly available toolkits and libraries. User interface can be command-line, web-based, GUI, etc. Can be written to run on various operating systems MP Grid Services Interface (MGSI) . All Objects in the Grid MP platform can be controlled through the MGSI . -
Good Practice Guide No. 17 Distributed Computing for Metrology
NPL REPORT DEM-ES 006 Software Support for Metrology - Good Practice Guide No. 17 Distributed computing for metrology applications T J Esward, N J McCormick, K M Lawrence and M J Stevens NOT RESTRICTED March 2007 National Physical Laboratory | Hampton Road | Teddington | Middlesex | United Kingdom | TW11 0LW Switchboard 020 8977 3222 | NPL Helpline 020 8943 6880 | Fax 020 8943 6458 | www.npl.co.uk Software Support for Metrology Good Practice Guide No. 17 Distributed computing for metrology applications T J Esward, N J McCormick, K M Lawrence and M J Stevens Mathematics and Scientific Computing Group March 2007 ABSTRACT This guide aims to facilitate the effective use of distributed computing methods and techniques by other National Measurement System (NMS) programmes and by metrologists in general. It focuses on the needs of those developing applications for distributed computing systems, and on PC desktop grids in particular, and seeks to ensure that application developers are given enough knowledge of system issues to be able to appreciate what is needed for the optimum performance of their own applications. Within metrology, the use of more comprehensive and realistic mathematical models that require extensive computing resources for their solution is increasing. The motivation for the guide is that in several areas of metrology the computational requirements of such models are so demanding that there is a strong requirement for distributed processing using parallel computing on PC networks. Those who need to use such technology can benefit from guidance on how best to structure the models and software to allow the effective use of distributed computing. -
Print This Article
L{{b b Volume 1, No. 3, Sept-Oct 2010 International Journal of Advanced Research in Computer Science RESEARCH PAPER Available Online at www.ijarcs.info A Simplified Network manager for Grid and Presenting the Grid as a Computation Providing Cloud M.Sudha* M.Monica Assistant Professor (Senior) Assistant Professor, School of Information Technology and Engineering, VIT School of Computer Science and Engineering, University INDIA VIT University INDIA [email protected] [email protected] Abstract: One of the common forms of distributed computing is grid computing. A grid uses the resources of many separate computers, loosely connected by a network, to solve large-scale computation problems. Our approach was as follows first computationally large data is split into a number of smaller, more manageable, working units secondly each work-unit is then sent to one member of the grid ,That member completes processing of that work-unit in its own and sends back the result. In this architecture, there needs to be at least one host that performs the task of assigning work-units, and then sending them, to a remote processor, as well as receive the results from remote processors. We call this unit as the Network Manager. In addition to this assigning, sending and receiving the work-units and results, there also is the need for a host that splits tasks into work-units and assimilates the received work units. We call this unit as the Task Broker, which we propose to design. On the server end, there is a program for processing module, splitter and assimilator (broker). -
ETSI TR 102 659-1 V1.2.1 (2009-10) Technical Report
ETSI TR 102 659-1 V1.2.1 (2009-10) Technical Report GRID; Study of ICT Grid interoperability gaps; Part 1: Inventory of ICT Stakeholders 2 ETSI TR 102 659-1 V1.2.1 (2009-10) Reference RTR/GRID-0001-1[2] Keywords analysis, directory, ICT, interoperability, testing ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. -
Linux Networking Cookbook.Pdf
Linux Networking Cookbook ™ Carla Schroder Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo Linux Networking Cookbook™ by Carla Schroder Copyright © 2008 O’Reilly Media, Inc. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or [email protected]. Editor: Mike Loukides Indexer: John Bickelhaupt Production Editor: Sumita Mukherji Cover Designer: Karen Montgomery Copyeditor: Derek Di Matteo Interior Designer: David Futato Proofreader: Sumita Mukherji Illustrator: Jessamyn Read Printing History: November 2007: First Edition. Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. The Cookbook series designations, Linux Networking Cookbook, the image of a female blacksmith, and related trade dress are trademarks of O’Reilly Media, Inc. Java™ is a trademark of Sun Microsystems, Inc. .NET is a registered trademark of Microsoft Corporation. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps. While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. -
Virtual GPU Software User Guide Is Organized As Follows: ‣ This Chapter Introduces the Capabilities and Features of NVIDIA Vgpu Software
Virtual GPU Software User Guide DU-06920-001 _v13.0 Revision 02 | August 2021 Table of Contents Chapter 1. Introduction to NVIDIA vGPU Software..............................................................1 1.1. How NVIDIA vGPU Software Is Used....................................................................................... 1 1.1.2. GPU Pass-Through.............................................................................................................1 1.1.3. Bare-Metal Deployment.....................................................................................................1 1.2. Primary Display Adapter Requirements for NVIDIA vGPU Software Deployments................2 1.3. NVIDIA vGPU Software Features............................................................................................. 3 1.3.1. GPU Instance Support on NVIDIA vGPU Software............................................................3 1.3.2. API Support on NVIDIA vGPU............................................................................................ 5 1.3.3. NVIDIA CUDA Toolkit and OpenCL Support on NVIDIA vGPU Software...........................5 1.3.4. Additional vWS Features....................................................................................................8 1.3.5. NVIDIA GPU Cloud (NGC) Containers Support on NVIDIA vGPU Software...................... 9 1.3.6. NVIDIA GPU Operator Support.......................................................................................... 9 1.4. How this Guide Is Organized..................................................................................................10 -
Vnc Linux Download
Vnc linux download click here to download Enable remote connections between computers by downloading VNC®. macOS · VNC Connect for Linux Linux · VNC Connect for Raspberry Pi Raspberry Pi. Windows · VNC Viewer for macOS macOS · VNC Viewer for Linux Linux · VNC Viewer for Raspberry Pi Raspberry Pi · VNC Viewer for iOS iOS · VNC Viewer for . Sign in to the VNC Server app to apply your subscription, or take a free trial. Note administrative privileges are required (this is typically the user who first set up a. These instructions explain how to install VNC Connect (version 6+), consisting of For a Debian-compatible Linux computer, download the VNC Viewer DEB. VNC Viewer for Windows Windows · VNC Viewer for macOS macOS · VNC Viewer for Linux Linux · VNC Viewer for Raspberry Pi Raspberry Pi · VNC Viewer for. Download the original open source version of VNC® remote access technology. The latest release of TigerVNC can be downloaded from our GitHub release also provide self- contained binaries for bit and bit Linux, installers for bit. sudo apt install tightvncserver. To complete the VNC server's initial configuration after installation, use the vncserver command to set up a. From your Linode, launch the VNC server to test your connection. You will be prompted to set a password: vncserver How To Install VNC Server On Ubuntu This guide explains the installation and Further, we need to start the vncserver with the user, for this use. RealVNC for Linux (bit) is remote control software which allows you to view and interact with one computer (the "server") using a simple. -
Resume Ivo Janssen
Ivo J. Janssen 13266 Kerrville Folkway Austin, TX 78729 (512) 750-9455 / [email protected] Objective To be part of a successful professional services team in a pre-sales and post-sales architecture and deployment role. Summary I'm an experienced, enthusiastic and skilled professional services consultant with experience in architecting and supporting large-scale enterprise software, with extensive experience in designing and implementing custom solutions as part of pre- and post sales support activities in diverse industry verticals across five continents. I'm as comfortable in designing and coding in an engineering role as I am in on-site planning, executing and troubleshooting customer deployments in a professional services role, as well as in participating in sales calls and drafting proposals in a sales engineering role. I'm able to adapt to new environments quickly and rapidly become proficient with new systems, tools and skills. I'm a good team player who thinks beyond the problem at hand instead of following the established paths in order to find a better solution that meets both current and future needs. Professional experience • Virtual Bridges , Austin, TX, USA (Nov 2010 – present) Senior Solution Architect o Solution architect for VDI product line. • Initiate Systems / IBM , Austin, TX, USA (Sep 2008 – Nov 2010) Senior Consultant o Senior implementation engineer for Healthcare sector of Master Data Management product line. o Responsibilities include requirements gathering, product installation and configuration, custom coding, connectivity scripting on Windows and Unix, database performance tuning, customer training workshops, pre/post-sales support. o Successfully architected, implemented and brought live custom implementation projects for major hospital systems and labs in the US, including customers with up to 250 million records (1TB database) connected to 20 auxiliary systems. -
Desktop Grids for Escience
Produced by the IDGF-SP project for the International Desktop Grid Federation A Road Map Desktop Grids for eScience Technical part – December 2013 IDGF/IDGF-SP International Desktop Grid federation http://desktopgridfederation.org Edited by Ad Emmen Leslie Versweyveld Contributions Robert Lovas Bernhard Schott Erika Swiderski Peter Hannape Graphics are produced by the projects. version 4.2 2013-12-27 © 2013 IDGF-SP Consortium: http://idgf-sp.eu IDGF-SP is supported by the FP7 Capacities Programme under contract nr RI-312297. Copyright (c) 2013. Members of IDGF-SP consortium, see http://degisco.eu/partners for details on the copyright holders. You are permitted to copy and distribute verbatim copies of this document containing this copyright notice but modifying this document is not allowed. You are permitted to copy this document in whole or in part into other documents if you attach the following reference to the copied elements: ‘Copyright (c) 2013. Members of IDGF-SP consortium - http://idgf-sp.eu’. The commercial use of any information contained in this document may require a license from the proprietor of that information. The IDGF-SP consortium members do not warrant that the information contained in the deliverable is capable of use, or that use of the information is free from risk, and accept no liability for loss or damage suffered by any person and organisation using this information. – 2 – Preface This document is produced by the IDGF-SP project for the International Desktop Grid Fe- deration. Please note that there are some links in this document pointing to the Desktop Grid Federation portal, that requires you to be signed in first. -
Distributed Computing with the Berkeley Open Infrastructure for Network Computing BOINC
Distributed Computing with the Berkeley Open Infrastructure for Network Computing BOINC Eric Myers 1 September 2010 Mid-Hudson Linux Users Group 2 How BOINC Works BOINC Client BOINC is the software BOINC Server Windows framework that makes Linux Mac OS this all work. Linux 50+ separate projects (& Solaris, AIX, HP-UX, etc…) 1 September 2010 Mid-Hudson Valley Linux Users Group 3 BOINC Dataflow 1 September 2010 Mid-Hudson Valley Linux Users Group 4 Early History SETI@home . May 1999 to Dec 2005 (“Classic”) . 2003 (BOINC) World Community Grid (IBM) . Nov 2004 to mid 2008 (Grid MP) Climatepredition.net . Nov 2007 (BOINC) . Sept 2003 (“Classic”) . August 2004 (BOINC) Einstein@Home . February 2005 Predictor@Home . (Pirates@Home – June 2004 :-) . June 2004 - Scripps . October 2008 – U. Michigan Rosetta@Home (University of Washington) . June 2005 LHC@Home . Sept 2004 - CERN PrimeGrid (Lithuania) . October 2007 - QMC . July 2005 With 50+ to follow… 1 September 2010 Mid-Hudson Valley Linux Users Group 5 http://setiathome.berkeley.edu SETI@home http:/climateprediction.net/ 1 September 2010 Mid-Hudson Valley Linux Users Group 7 http://www.worldcommunitygrid.org/ World Community Grid Active The Clean Energy Project - Phase 2 Help Cure Muscular Dystrophy – Phase 2 Funded and operated by IBM Help Fight Childhood Cancer Help Conquer Cancer Human Proteome Folding - Phase 2 Completed FightAIDS@Home Nutritious Rice for the World Intermittent AfricanClimate@Home Discovering Dengue Drugs - Together - Phase 2 Help Cure Muscular Dystrophy Influenza Antiviral Drug Search Genome Comparison The Clean Energy Project Help Defeat Cancer Discovering Dengue Drugs - Together Human Proteome Folding 1 September 2010 Mid-Hudson Valley Linux Users Group 8 http://einstein.phys.uwm.edu/ or http://einsteinathome.org Einstein@Home 9 Rules and Policies Run BOINC only on authorized computers Run BOINC only on computers that you own, or for which you have obtained the owner’s permission.