Chromosome Assembly of Collichthys Lucidus, a Fish of Sciaenidae with A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolutionary Genomics of a Plastic Life History Trait: Galaxias Maculatus Amphidromous and Resident Populations
EVOLUTIONARY GENOMICS OF A PLASTIC LIFE HISTORY TRAIT: GALAXIAS MACULATUS AMPHIDROMOUS AND RESIDENT POPULATIONS by María Lisette Delgado Aquije Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia August 2021 Dalhousie University is located in Mi'kma'ki, the ancestral and unceded territory of the Mi'kmaq. We are all Treaty people. © Copyright by María Lisette Delgado Aquije, 2021 I dedicate this work to my parents, María and José, my brothers JR and Eduardo for their unconditional love and support and for always encouraging me to pursue my dreams, and to my grandparents Victoria, Estela, Jesús, and Pepe whose example of perseverance and hard work allowed me to reach this point. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ........................................................................................................... ix ABSTRACT ...................................................................................................................... xii LIST OF ABBREVIATION USED ................................................................................ xiii ACKNOWLEDGMENTS ................................................................................................ xv CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 Galaxias maculatus .................................................................................................. -
Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr. -
A New Species of Larimichthys from Terengganu, East Coast of Peninsular Malaysia (Perciformes: Sciaenidae)
Zootaxa 3956 (2): 271–280 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3956.2.7 http://zoobank.org/urn:lsid:zoobank.org:pub:28EA3933-85D8-401B-831E-F5165B4172E4 A new species of Larimichthys from Terengganu, east coast of Peninsular Malaysia (Perciformes: Sciaenidae) YING GIAT SEAH1,2,4,6, NORHAFIZ HANAFI1, ABD GHAFFAR MAZLAN3,4 & NING LABBISH CHAO5 1School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia. E-mail: [email protected] 2Fish Division, South China Sea Repository and Reference Center, Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia 3Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia 4Marine Ecosystem Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. 5National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan, Republic of China 6Corresponding author Abstract A new species of Larimichthys from Terengganu, east coast of Peninsular Malaysia is described from specimens collected from the fish landing port at Pulau Kambing, Kuala Terengganu. Larimichthys terengganui can be readily distinguished from other species of the genus by having an equally short pair of ventral limbs at the end of the gas bladder appendages, which do not extend lateral-ventrally to the lower half of the body wall, and fewer dorsal soft rays (29–32 vs. 31–36) and vertebrae (24 vs. 25–28). Larimichthys terengganui can be distinguished from L. -
Direct Identification of Fish Species by Surface Molecular Transferring
Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2020 Supplementary materials for Direct Identification of Fish Species by Surface Molecular Transferring Mingke Shao, Hongyan Bi* College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China * To whom correspondence should be addressed. E-mail address: [email protected] E-mail address for the other authors: [email protected] S1 S1. Photos and information on the analyzed fish samples Fig. S1. Photos of fishes analyzed in the present study: (A) Oreochromis mossambicus (B) Epinephelus rivulatus (C) Mugil cephalus; (D) Zeus faber (E) Trachinotus ovatus (F) Brama japonica (G) Larimichthys crocea (H) Larimichthys polyactis (I) Pampus argenteus. Scale bar in each photo represents 1 cm. Table S1. List of the scientific classification of fishes analyzed in the study. The classification of fishes refers to https://www.fishbase.de/. Binomial Abbreviatio English Chinese name n common Scientific classification name (Scientific name name) Actinopterygii (class) > Perciformes (order) > Japanese Brama Brama BJ Bramidae (family) > Wufang japonica japonica Brama (genus) > B. brama (species) Actinopterygii (class) > Silver Scombriformes(order) > Baichang pomfret; Pampus PA ( Fish White argenteus Stromateidae family) > pomfret Pampus (genus) > P. argenteus (species) Haifang Zeus faber Actinopterygii (class) > (commonly Linnaeu; Zeus faber ZF Zeiformes (order) > called: John Dory; Zeidae (family) > S2 Yueliang target perch Zeus (genus) > Fish) Z. faber (species) Actinopteri (class) > OM Cichliformes (order) > Mozambique Oreochromis Cichlidae (family) > Luofei Fish tilapia mossambicus Oreochromis (genus) > O.mossambicus (species) Actinopterygii (class) > MC Mugiliformes (order) Xiaozhai Flathead Mugil Mugilidae (family) > Fish grey mullet cephalus Mugil (genus) > M. -
The Genome of Mekong Tiger Perch (Datnioides Undecimradiatus) Provides 3 Insights Into the Phylogenic Position of Lobotiformes and Biological Conservation
bioRxiv preprint doi: https://doi.org/10.1101/787077; this version posted September 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Article 2 The genome of Mekong tiger perch (Datnioides undecimradiatus) provides 3 insights into the phylogenic position of Lobotiformes and biological conservation 4 5 Shuai Sun1,2,3†, Yue Wang1,2,3,†, Xiao Du1,2,3,†, Lei Li1,2,3,4,†, Xiaoning Hong1,2,3,4, Xiaoyun Huang1,2,3, He Zhang1,2,3, 6 Mengqi Zhang1,2,3, Guangyi Fan1,2,3, Xin Liu1,2,3,*, Shanshan Liu1,2,3* 7 8 1 BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China 9 2 BGI-Shenzhen, Shenzhen, 518083, China 10 3 China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China 11 4 School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China 12 13 14 † These authors contributed equally to this work. 15 * Correspondence authors: [email protected] (S. L.), [email protected] (X. L.) 16 17 Abstract 18 Mekong tiger perch (Datnioides undecimradiatus) is one ornamental fish and a 19 vulnerable species, which belongs to order Lobotiformes. Here, we report a ~595 Mb 20 D. undecimradiatus genome, which is the first whole genome sequence in the order 21 Lobotiformes. Based on this genome, the phylogenetic tree analysis suggested that 22 Lobotiformes and Sciaenidae are closer than Tetraodontiformes, resolving a long-time 23 dispute. -
The Genome of Mekong Tiger Perch
www.nature.com/scientificreports OPEN The genome of Mekong tiger perch (Datnioides undecimradiatus) provides insights into the phylogenetic position of Lobotiformes and biological conservation Shuai Sun1,2,3,7, Yue Wang1,2,3,7, Wenhong Zeng4,7, Xiao Du1,2,3,7, Lei Li1,2,3,5,7, Xiaoning Hong1,2,3,6, Xiaoyun Huang1,2,3, He Zhang1,2,3, Mengqi Zhang1,2,3, Guangyi Fan1,2,3, Xin Liu1,2,3 ✉ & Shanshan Liu1,2,3 ✉ Mekong tiger perch (Datnioides undecimradiatus) is an ornamental and vulnerable freshwater fsh native to the Mekong basin in Indochina, belonging to the order Lobotiformes. Here, we generated 121X stLFR co-barcode clean reads and 18X Oxford Nanopore MinION reads and obtained a 595 Mb Mekong tiger perch genome, which is the frst whole genome sequence in the order Lobotiformes. Based on this genome, the phylogenetic tree analysis suggested that Lobotiformes is more closely related to Sciaenidae than to Tetraodontiformes, resolving a long-time dispute. We depicted the genes involved in pigment development in Mekong tiger perch and results confrmed that the four rate-limiting genes of pigment synthesis had been retained after fsh-specifc genome duplication. We also estimated the demographic history of Mekong tiger perch, which showed that the efective population size sufered a continuous reduction possibly related to the contraction of immune-related genes. Our study provided a reference genome resource for the Lobotiformes, as well as insights into the phylogenetic position of Lobotiformes and biological conservation. Mekong tiger perch (Datnioides undecimradiatus) is one tropical freshwater fish, belonging to the order Lobotiformes under series Eupercaria1. -
Molecular Exploration of Hidden Diversity in the Indo-West Pacific Sciaenid Clade
RESEARCH ARTICLE Molecular exploration of hidden diversity in the Indo-West Pacific sciaenid clade Pei-Chun Lo1, Shu-Hui Liu1, Siti Azizah Mohd Nor2, Wei-Jen Chen1* 1 Institute of Oceanography, National Taiwan University, Taipei, Taiwan, 2 School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia * [email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 The family Sciaenidae, known as croakers or drums, is one of the largest perciform fish fami- a1111111111 lies. A recent multi-gene based study investigating the phylogeny and biogeography of global sciaenids revealed that the origin and early diversification of this family occurred in tropical America during the Late OligoceneÐEarly Miocene before undergoing range expansions to other seas including the Indo-West Pacific, where high species richness is observed. Despite OPEN ACCESS this clarification of the overall evolutionary history of the family, knowledge of the taxonomy and phylogeny of sciaenid genera endemic to the Indo-West Pacific is still limited due to lack Citation: Lo P-C, Liu S-H, Nor SAM, Chen W-J (2017) Molecular exploration of hidden diversity in of a thorough survey of all taxa. In this study, we used DNA-based approaches to investigate the Indo-West Pacific sciaenid clade. PLoS ONE 12 the evolutionary relationships, to explore the species diversity, and to elucidate the taxonomic (4): e0176623. https://doi.org/10.1371/journal. status of sciaenid species/genera within the Indo-West Pacific clade. Three datasets were pone.0176623 herein built for the above objectives: the combined dataset (248 samples from 45 currently Editor: Zuogang Peng, Southwest University, recognized species) from one nuclear gene (RAG1) and one mitochondrial gene (COI); the CHINA dataset with only RAG1 gene sequences (245 samples from 44 currently recognized spe- Received: August 31, 2016 cies); and the dataset with only COI gene sequences (308 samples from 51 currently recog- Accepted: April 13, 2017 nized species). -
Genome of the Four-Finger Threadfin Eleutheronema
Qu et al. BMC Genomics (2020) 21:726 https://doi.org/10.1186/s12864-020-07145-1 RESEARCH ARTICLE Open Access Genome of the four-finger threadfin Eleutheronema tetradactylum (Perciforms: Polynemidae) Zhe Qu1*†, Wenyan Nong1†, Yifei Yu1†, Tobias Baril2†, Ho Yin Yip1, Alexander Hayward2* and Jerome H. L. Hui1* Abstract Background: Teleost fish play important roles in aquatic ecosystems and aquaculture. Threadfins (Perciformes: Polynemidae) show a range of interesting biology, and are of considerable importance for both wild fisheries and aquaculture. Additionally, the four-finger threadfin Eleutheronema tetradactylum is of conservation relevance since its populations are considered to be in rapid decline and it is classified as endangered. However, no genomic resources are currently available for the threadfin family Polynemidae. Results: We sequenced and assembled the first threadfin fish genome, the four-finger threadfin E. tetradactylum. We provide a genome assembly for E. tetradactylum with high contiguity (scaffold N50 = 56.3 kb) and high BUSCO completeness at 96.5%. The assembled genome size of E. tetradactylum is just 610.5 Mb, making it the second smallest perciform genome assembled to date. Just 9.07–10.91% of the genome sequence was found to consist of repetitive elements (standard RepeatMasker analysis vs custom analysis), making this the lowest repeat content identified to date for any perciform fish. A total of 37,683 protein-coding genes were annotated, and we include analyses of developmental transcription factors, including the Hox, ParaHox, and Sox families. MicroRNA genes were also annotated and compared with other chordate lineages, elucidating the gains and losses of chordate microRNAs. -
Morphological Study of the Gastrointestinal Tract of Larimichthys
ZOOLOGIA 35: e25171 ISSN 1984-4689 (online) zoologia.pensoft.net RESEARCH ARTICLE Morphological study of the gastrointestinal tract of Larimichthys crocea (Acanthopterygii: Perciformes) Hameeda Kalhoro 1,2, Shengli Tong 1, Lei Wang 1, Ying Hua 1, Josie Ancella Volatiana 1, Qingjun Shao 1 1Aquaculture Nutrition Laboratory, College of Animal Sciences, Zhejiang University. Hangzhou 310058, China. 2Department of Fresh Water Biology and Fisheries, Faculty of Natural Sciences, University of Sindh Jamshoro. Jamshoro 76080, Pakistan. Corresponding author: Qingjun Shao ([email protected]) http://zoobank.org/E6F123A8-B168-4AB7-A45F-F0FD375051A1 ABSTRACT. The present study aimed to investigate the macroscopic and histological structure of the gastrointestinal tract (GIT) of Larimichthys crocea (Richardson, 1846). It consists of esophagus, stomach regions, pyloric caeca, intestinal regions, and rectum. Sixteen tubular light yellowish pyloric caeca of similar sizes were observed in all individuals. The digestive wall consists of mucosa, submucosa, muscularis, and adventitia. No major differences appeared in the structure of the tunica, epithelial cell types, connective tissues and musculature glands of L. crocea GIT. The mucosal epithelia in the oesophagus has longitudinal branched folds with frontward and hindmost zones. The gastric tunica mucosa has a characteristic folded structure and can be divided into three regions. The intestinal tunica mucosa is characterized by villi structures and numerous mucus-secreting cells. Mucus-secreting goblet cells were strongly positive to AB at pH 2.5 in the oesophagus (excluding gastro-oesophageal junction) and intestine mucosal regions, which indicates an abundance of carboxylate mucins. The sur- face epithelia of the gastric mucosa is PAS-positive and AB-negative. SEM examination revealed that cells in the epithelium of the esophagus have an unbroken apical layer and goblet cells. -
PHYLOGENY of the FAMILY SCIAENIDAE, with NOTES on ITS ZOOGEOGRAPHY (TELEOSTEI, Title PERCIFORMES)
PHYLOGENY OF THE FAMILY SCIAENIDAE, WITH NOTES ON ITS ZOOGEOGRAPHY (TELEOSTEI, Title PERCIFORMES) Author(s) SASAKI, Kunio Citation MEMOIRS OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 36(1-2), 1-137 Issue Date 1989-12 Doc URL http://hdl.handle.net/2115/21886 Type bulletin (article) File Information 36(1_2)_P1-137.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP PHYLOGENY OF THE FAMILY SCiAENIDAE, WITH NOTES ON ITS ZOOGEOGRAPHY (TELEOSTEI, PERCIFORMES) By Kunio SASAKI* Laboratory of Marine Zoology, Faculty of Fisheries, Hokkaido University, Hakodate, Hokkaido 041, Japan Contents Page I. Introduction............................................................ 1 II. Acknowledgments ...................................................... 3 III. Materials and methods .................................................. 3 IV. Systematic procedures. 7 V. Monophyly of the Sciaenidae 1. Monophyly of the Sciaenidae ........................................ 9 2. Systematic position of the Sciaenidae within the suborder Percoidei ...... 19 VI. Character analysis 1. Cranium .......................................................... 20 2. Infraorbitals and nasal .............................................. 33 3. Suspensorium, opercular apparatus, and associated muscles .............. 37 4. Jaws.............................................................. 44 5. Hyoid arch ........................................................ 48 6. Branchial arches and associated muscles ............................. -
Complete Mitochondrial Genome of Pseudocaranx Dentex
G C A T T A C G G C A T genes Article Complete Mitochondrial Genome of Pseudocaranx dentex (Carangidae, Perciformes) Provides Insight into Phylogenetic and Evolutionary Relationship among Carangidae Family Busu Li 1,2 , Huan Wang 1,2, Long Yang 1,3, Shufang Liu 1,2,* and Zhimeng Zhuang 1 1 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; [email protected] (B.L.); [email protected] (H.W.); [email protected] (L.Y.); [email protected] (Z.Z.) 2 Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China 3 College of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China * Correspondence: [email protected] Abstract: Pseudocaranx dentex (white trevally) which belongs to the Carangidae family, is an important commercial fishery and aquaculture resource in Asia. However, its evolution and population genetics have received little attention which was limited by the mitogenome information absence. Here, we sequenced and annotated the complete mitochondrial genome of P. dentex which was 16,569 bp in length, containing twenty-two tRNAs (transfer RNAs), thirteen PCGs (protein-coding genes), two rRNAs (ribosomal RNAs), and one non-coding region with conservative gene arrangement. The Ka/Ks ratio analysis among Carangidae fishes indicated the PCGs were suffering purify selection and the values were related to the taxonomic status and further influenced by their living habits. Citation: Li, B.; Wang, H.; Yang, L.; Phylogenetic analysis based on the PCGs sequences of mitogenomes among 36 species presented Liu, S.; Zhuang, Z. -
Evolved Twice Independently Milan Dieris, Daniel Kowatschew & Sigrun I
www.nature.com/scientificreports OPEN Olfactory function in the trace amine‑associated receptor family (TAARs) evolved twice independently Milan Dieris, Daniel Kowatschew & Sigrun I. Korsching* Olfactory receptor families have arisen independently several times during evolution. The origin of taar genes, one of the four major vertebrate olfactory receptor families, is disputed. We performed a phylogenetic analysis making use of 96 recently available genomes, and report that olfactory functionality has arisen twice independently within the TAAR family, once in jawed and once in jawless fsh. In lamprey, an ancestral gene expanded to generate a large family of olfactory receptors, while the sister gene in jawed vertebrates did not expand and is not expressed in olfactory sensory neurons. Both clades do not exhibit the defning TAAR motif, and we suggest naming them taar‑like receptors (tarl). We have identifed the evolutionary origin of both taar and tarl genes in a duplication of the serotonergic receptor 4 that occurred in the most recent common ancestor of vertebrates. We infer two ancestral genes in bony fsh (TAAR12, TAAR13) which gave rise to the complete repertoire of mammalian olfactory taar genes and to class II of the taar repertoire of teleost fsh. We follow their evolution in seventy‑one bony fsh genomes and report a high evolutionary dynamic, with many late gene birth events and both early and late gene death events. Trace amine-associated receptors (TAARs) were discovered in 2001 as a subgroup of mammalian aminergic receptors1. An initial phylogenetic analysis showed the presence of the family in teleost fsh2 and subsequently their function as olfactory receptors was revealed3,4.