Dinosaur Park Formation

Total Page:16

File Type:pdf, Size:1020Kb

Dinosaur Park Formation Canadian Journal of Earth Sciences Anatomical, morphometric, and stratigraphic analyses of theropod biodiversity in the Upper Cretaceous (Campanian) Dinosaur Park Formation Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0145.R2 Manuscript Type: Article Date Submitted by the 13-Dec-2020 Author: Complete List of Authors: Cullen, Thomas; North Carolina Museum of Natural Sciences, Paleontology; North Carolina State University, Biological Sciences; Field Museum of Natural History, Nagaunee Integrative Research Center Zanno, Lindsay;Draft North Carolina Museum of Natural Sciences, Paleontology; North Carolina State University, Biological Sciences Larson, Derek W; Philip J Currie Dinosaur Museum, Todd, Erinn; University of Toronto, Ecology and Evolutionary Biology Currie, Philip J.; University of Alberta, Biological Sciences Evans, David; Royal Ontario Museum, Department of Natural History; University of Toronto, Ecology and Evolutionary Biology theropod, dinosaur, biodiversity, Dinosaur Park Formation, troodontid, Keyword: biostratigraphy Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 52 Canadian Journal of Earth Sciences Anatomical, morphometric, and stratigraphic analyses of theropod biodiversity in the Upper Cretaceous (Campanian) Dinosaur Park Formation THOMAS M. CULLEN*,1,2,3, LINDSAY ZANNO1,2,3, DEREK W. LARSON4,5, ERINN TODD6, PHILIP J. CURRIE7, and DAVID C. EVANS6,8 1Paleontology, North Carolina Museum of Natural Sciences, 11W. Jones, St. Raleigh, NC, 27601, USA 2Department of Biological Sciences, North Carolina State University, 100 Brooks Ave., Raleigh, NC, 27607, USA 3Nagaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Dr., Chicago, IL, 60605, USA. 4Collections Care and Conservation, Royal BC Museum, 675 Belleville St, Victoria, BC, V8V 9W2, Canada. 5Philip J. Currie Dinosaur Museum, Box 328 9301-112 Avenue, Wembley, AB T0H 3S0. 6Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada. 7Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9 8Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, ON M5S 2C6, Canada. *Corresponding author: [email protected]; [email protected] Draft ABSTRACT— The Dinosaur Park Formation (DPF) of Alberta, Canada has produced one of the most diverse dinosaur faunas, with the record favouring large-bodied taxa, in terms of number and completeness of skeletons. Although small theropods are well documented in the assemblage, taxonomic assessments are frequently based on isolated, fragmentary skeletal elements. Here we reassess DPF theropod biodiversity using morphological comparisons, high- resolution biostratigraphy, and morphometric analyses, with a focus on specimens/taxa originally described from isolated material. In addition to clarifying taxic diversity, we test if DPF theropods preserve faunal zonation/turnover patterns similar to those previously documented for megaherbivores. Frontal bones referred to a therizinosaur (cf. Erlikosaurus), representing among the only skeletal record of the group from the Campanian-Maastrichtian (83-66 Ma) fossil record of North America, plot most closely to troodontids in morphospace, distinct from non-DPF therizinosaurs, a placement supported by a suite of troodontid anatomical frontal characters. Postcranial material referred to cf. Erlikosaurus in North America is also reviewed and found © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 52 most similar in morphology to caenagnathids, rather than therizinosaurs. Among troodontids, we document considerable morphospace and biostratigraphic overlap between Stenonychosaurus and the recently described Latenivenatrix, as well as a variable distribution of putatively autapomorphic characters, calling the validity of the latter taxon into question. Biostratigraphically, there are no broad-scale patterns of faunal zonation similar to those previously documented in ornithischians from the DPF, with many theropods ranging throughout much of the formation and overlapping extensively, possibly reflecting a lack of sensitivity to environmental changes, or other cryptic ecological or evolutionary factors. KEYWORDS: theropod; biodiversity; biostratigraphy; Dinosaur Park Formation; troodontid; dinosaur Draft INTRODUCTION A major component of the work of the late Dr. Dale Russell focused on the palaeontology of theropods in Western Canada. This research included a series of systematic assessments of major theropod groups, such as tyrannosaurs, including the description of Daspletosaurus torosus (Russell 1970), ornithomimosaurs, including the description of Dromiceiomimus brevitertius (Russell 1972), a detailed review and re-description of the holotype of the dromaeosaurid Dromaeosaurus albertensis (Colbert and Russell 1969), and a broad review of therizinosaurs (Russell 1997). In addition, and of particular note, was Russell’s work on troodontids from what is now the Dinosaur Park Formation (at the time a part of the Oldman Formation, later split into a separate unit by Eberth and Hamblin [1993]), which included the description of the most © The Author(s) or their Institution(s) Page 3 of 52 Canadian Journal of Earth Sciences complete specimen of Stenonychosaurus inequalis (Russell 1969) and subsequent investigations into the palaeobiology of that taxon alongside discussions of troodontid speculative evolution and intelligence (Russell and Séguin 1982). In this contribution, we build on Russell’s foundational work by reviewing and addressing a series of outstanding questions in theropod biodiversity, taxonomy, and biostratigraphy in the Late Cretaceous of North America, with a specific focus on the Dinosaur Park Formation. The Dinosaur Park Formation (or DPF) of Alberta has produced some of the most diverse dinosaur assemblages in the fossil record (Béland and Russell, 1978; Currie and Koppelhus, 2005; Brown et al., 2013) including a relatively high diversity of small-bodied theropods such as dromaeosaurs, troodontids, ornithomimids,Draft and oviraptorosaurs (Currie, 2005). Unfortunately, some theropod groups are still known from a relative dearth of skeletal materials (Brown et al., 2013). As a result, the number of named theropod taxa in the DPF has often fluctuated, with taxonomic assessments frequently based on isolated, fragmentary, and/or non-overlapping remains. This has impacted some theropod groups more than others. Recent work and the discovery of multiple new skeletons have yielded important insights into the biodiversity and palaeobiology of several of these theropod groups in the DPF. Among ornithomimids, new discoveries and re-assessments of previously collected specimens have led to the recognition of a smaller-bodied taxon, Rativates evadens (McFeeters et al 2016), distinct from the previously recognized DPF ornithomimids Struthiomimus altus and Ornithomimus edmontonicus (in the latter case, following Makovicky et al [2004]’s suggested synonymization of Dromiceiomimus samueli with O. edmontonicus). Additionally, the presence © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 4 of 52 of a currently unnamed large-bodied taxon (Longrich 2008) was hypothesized based on isolated caudal vertebrae, a frontal, and unguals, though the degree to which at least the morphology of the latter represents autapomorphic characters as opposed to individual, positional, or intraspecific variation has been questioned (Cullen et al 2013, McFeeters et al 2018a, McFeeters et al 2018b). Lastly, a partial skeleton and several isolated elements were recently re-examined and hypothesized to represent evidence of the Asian taxon Qiupalong in the DPF (McFeeters et al 2017). Similar to the ornithomimids, caenagnathids in the DPF have undergone a series of recent taxonomic revisions based on the discovery of new material and re-assessment of existing specimens. Throughout the last few decades,Draft Chirostenotes pergracilis and Caenagnathus collinsi have been known from what is now the DPF, with recent work referring additional specimens to the latter (Funston et al 2015). Of greater contention has been the taxonomic identification of other potential caenagnathid taxa within the formation, with this issue recently reviewed by Funston (2020), wherein the taxon Citipes elegans was described. It should also be noted that some authors have raised concerns regarding the use of size classes and grouping of non-overlapping materials in some of these referrals and descriptions (Lamanna et al 2014, Cullen et al 2020b). Dromaeosaurids represent an additional small theropod group of the DPF which are known primarily from isolated materials, but for which several well-preserved specimens exist. The earliest dromaeosaurid described from what is now Dinosaur Provincial Park, and paradoxically now one of the more poorly known, is Dromaeosaurus albertensis (Matthew and Brown, 1992; © The Author(s) or their Institution(s) Page 5 of 52 Canadian Journal of Earth Sciences Colbert and Russell 1969). This taxon is primarily known from its holotype, a nearly complete skull, which unfortunately lacks precise biostratigraphic data (Colbert and Russell 1969). Considerably more common than D. albertensis in the DPF is Saurornitholestes langstoni, described by Sues (1978). This taxon is known from multiple partial skeletons,
Recommended publications
  • Anchiornis and Scansoriopterygidae
    SpringerBriefs in Earth System Sciences SpringerBriefs South America and the Southern Hemisphere Series Editors Gerrit Lohmann Lawrence A. Mysak Justus Notholt Jorge Rabassa Vikram Unnithan For further volumes: http://www.springer.com/series/10032 Federico L. Agnolín · Fernando E. Novas Avian Ancestors A Review of the Phylogenetic Relationships of the Theropods Unenlagiidae, Microraptoria, Anchiornis and Scansoriopterygidae 1 3 Federico L. Agnolín “Félix de Azara”, Departamento de Ciencias Naturales Fundación de Historia Natural, CEBBAD, Universidad Maimónides Buenos Aires Argentina Fernando E. Novas CONICET, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Buenos Aires Argentina ISSN 2191-589X ISSN 2191-5903 (electronic) ISBN 978-94-007-5636-6 ISBN 978-94-007-5637-3 (eBook) DOI 10.1007/978-94-007-5637-3 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012953463 © The Author(s) 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
    ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA.
    [Show full text]
  • Lautenschlager 2012 Therizinosaur Brain
    Lautenschlager, S., Rayfield, E. J., Altangerel, P., & Witmer, L. M. (2012). The endocranial anatomy of Therizinosauria and its implications for sensory and cognitive function. PLoS ONE, 7(12), [e52289]. https://doi.org/10.1371/journal.pone.0052289 Publisher's PDF, also known as Version of record Link to published version (if available): 10.1371/journal.pone.0052289 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ The Endocranial Anatomy of Therizinosauria and Its Implications for Sensory and Cognitive Function Stephan Lautenschlager1*, Emily J. Rayfield1, Perle Altangerel2, Lindsay E. Zanno3,4, Lawrence M. Witmer5 1 School of Earth Sciences, University of Bristol, Bristol, United Kingdom, 2 National University of Mongolia, Ulaanbaatar, Mongolia, 3 Nature Research Center, NC Museum of Natural Sciences, Raleigh, North Carolina, United States of America, 4 Department of Biology, North Carolina State University, Raleigh, North Carolina, United States of America, 5 Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America Abstract Background: Therizinosauria is one of the most enigmatic and peculiar clades among theropod dinosaurs, exhibiting an unusual suite of characters, such as lanceolate teeth, a rostral rhamphotheca, long manual claws, and a wide, opisthopubic pelvis. This specialized anatomy has been associated with a shift in dietary preferences and an adaptation to herbivory.
    [Show full text]
  • A New Caenagnathid Dinosaur from the Upper Cretaceous Wangshi
    www.nature.com/scientificreports OPEN A new caenagnathid dinosaur from the Upper Cretaceous Wangshi Group of Shandong, China, with Received: 12 October 2017 Accepted: 7 March 2018 comments on size variation among Published: xx xx xxxx oviraptorosaurs Yilun Yu1, Kebai Wang2, Shuqing Chen2, Corwin Sullivan3,4, Shuo Wang 5,6, Peiye Wang2 & Xing Xu7 The bone-beds of the Upper Cretaceous Wangshi Group in Zhucheng, Shandong, China are rich in fossil remains of the gigantic hadrosaurid Shantungosaurus. Here we report a new oviraptorosaur, Anomalipes zhaoi gen. et sp. nov., based on a recently collected specimen comprising a partial left hindlimb from the Kugou Locality in Zhucheng. This specimen’s systematic position was assessed by three numerical cladistic analyses based on recently published theropod phylogenetic datasets, with the inclusion of several new characters. Anomalipes zhaoi difers from other known caenagnathids in having a unique combination of features: femoral head anteroposteriorly narrow and with signifcant posterior orientation; accessory trochanter low and confuent with lesser trochanter; lateral ridge present on femoral lateral surface; weak fourth trochanter present; metatarsal III with triangular proximal articular surface, prominent anterior fange near proximal end, highly asymmetrical hemicondyles, and longitudinal groove on distal articular surface; and ungual of pedal digit II with lateral collateral groove deeper and more dorsally located than medial groove. The holotype of Anomalipes zhaoi is smaller than is typical for Caenagnathidae but larger than is typical for the other major oviraptorosaurian subclade, Oviraptoridae. Size comparisons among oviraptorisaurians show that the Caenagnathidae vary much more widely in size than the Oviraptoridae. Oviraptorosauria is a clade of maniraptoran theropod dinosaurs characterized by a short, high skull, long neck and short tail.
    [Show full text]
  • A New Crested Theropod Dinosaur from the Early Jurassic of Yunnan
    第55卷 第2期 古 脊 椎 动 物 学 报 pp. 177-186 2017年4月 VERTEBRATA PALASIATICA figs. 1-3 A new crested theropod dinosaur from the Early Jurassic of Yunnan Province, China WANG Guo-Fu1,2 YOU Hai-Lu3,4* PAN Shi-Gang5 WANG Tao5 (1 Fossil Research Center of Chuxiong Prefecture, Yunnan Province Chuxiong, Yunnan 675000) (2 Chuxiong Prefectural Museum Chuxiong, Yunnan 675000) (3 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 * Corresponding author: [email protected]) (4 College of Earth Sciences, University of Chinese Academy of Sciences Beijing 100049) (5 Bureau of Land and Resources of Lufeng County Lufeng, Yunnan 650031) Abstract A new crested theropod, Shuangbaisaurus anlongbaoensis gen. et sp. nov., is reported. The new taxon is recovered from the Lower Jurassic Fengjiahe Formation of Shuangbai County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, and is represented by a partial cranium. Shuangbaisaurus is unique in possessing parasagittal crests along the orbital dorsal rims. It is also distinguishable from the other two lager-bodied parasagittal crested Early Jurassic theropods (Dilophosaurus and Sinosaurus) by a unique combination of features, such as higher than long premaxillary body, elevated ventral edge of the premaxilla, and small upper temporal fenestra. Comparative morphological study indicates that “Dilophosaurus” sinensis could potentially be assigned to Sinosaurus, but probably not to the type species. The discovery of Shuangbaisaurus will help elucidate the evolution of basal theropods, especially the role of various bony cranial ornamentations had played in the differentiation of early theropods.
    [Show full text]
  • New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia
    Bull. Natn. Sci. Mus., Tokyo, Ser. C, 30, pp. 95–130, December 22, 2004 New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia Junchang Lü1, Yukimitsu Tomida2, Yoichi Azuma3, Zhiming Dong4 and Yuong-Nam Lee5 1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 National Science Museum, 3–23–1 Hyakunincho, Shinjukuku, Tokyo 169–0073, Japan 3 Fukui Prefectural Dinosaur Museum, 51–11 Terao, Muroko, Katsuyama 911–8601, Japan 4 Institute of Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 Korea Institute of Geoscience and Mineral Resources, Geology & Geoinformation Division, 30 Gajeong-dong, Yuseong-gu, Daejeon 305–350, South Korea Abstract Nemegtia barsboldi gen. et sp. nov. here described is a new oviraptorid dinosaur from the Late Cretaceous (mid-Maastrichtian) Nemegt Formation of southwestern Mongolia. It differs from other oviraptorids in the skull having a well-developed crest, the anterior margin of which is nearly vertical, and the dorsal margin of the skull and the anterior margin of the crest form nearly 90°; the nasal process of the premaxilla being less exposed on the dorsal surface of the skull than those in other known oviraptorids; the length of the frontal being approximately one fourth that of the parietal along the midline of the skull. Phylogenetic analysis shows that Nemegtia barsboldi is more closely related to Citipati osmolskae than to any other oviraptorosaurs. Key words : Nemegt Basin, Mongolia, Nemegt Formation, Late Cretaceous, Oviraptorosauria, Nemegtia. dae, and Caudipterygidae (Barsbold, 1976; Stern- Introduction berg, 1940; Currie, 2000; Clark et al., 2001; Ji et Oviraptorosaurs are generally regarded as non- al., 1998; Zhou and Wang, 2000; Zhou et al., avian theropod dinosaurs (Osborn, 1924; Bars- 2000).
    [Show full text]
  • Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
    Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia.
    [Show full text]
  • The Valanginian to Aptian Stages - Current Definitions and Outstanding Problems
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 4‘>3 Zitteliana 10 493-500 München, I. Juli 1983 ISSN 0373 9627 The Valanginian to Aptian stages - current definitions and outstanding problems Compiled by PETER FRANKLIN RAWSON») Willi 3 tables ABSTRACT Current definitions of the Valanginian to Aptian Stages are tion potential. The I’re-Albian Stages Working Croup is in­ reviewed and some of the outstanding problems outlined. Fi­ stigating study of selected sections in various parts of the nal recommendations on stage boundaries can be made only world to provide an integrated framework ol biostraligraphy after much more strat¡(graphical work has been completed, as and event stratigraphy. the eventual boundaries must have good international correla­ KURZFASSUNG Lin Überblick über die gängigen Definitionen der Stufen barsein. Die Prc-Albian Stagcs Working Group regt an, ms vom Valangin bis zum Apt wird gegeben und einige wichtige gewählte Profile in verschiedenen Peilen der Welt zu unterst! Probleme hervorgehoben. Lndgülligc Empfehlungen zu Stu­ ehen, um so den allgemeinen Rahmen liii eine Ncudelinition fengrenzen sind z. Zt. noch nicht möglich. Dazu sind noch der Stufen auf der Grundlage der Biostraligraphie und der weitere stratigraphische Untersuchungen erforderlich, denn Lvenl-Straiigraphic zu schaffen. die fcstzulcgendcn Grenzen müssen international korrelier­ I. INTRODUCTION This review has been compiled on behalf of the Prc-Albian boundaries and to improve the usage of stage names in re­ Stages Working Group of the Subcommission on Cretaceous gions away from stratotype sections." Stratigraphy. The primary role of the working group is to cla ­ Thus our fundamental philosophy is first to make objective rify, and to improve where necessary, the definition and correlations between regions and only then to redefine stages boundaries of the Valanginian to Aptian Stages.
    [Show full text]
  • Norwegian Seaway: a Key Area for Understanding Late Jurassic to Early Cretaceous Paleoenvironments
    CORE Metadata, citation and similar papers at core.ac.uk Provided by OceanRep PALEOCEANOGRAPHY, VOL. 18, NO. 1, 1010, doi:10.1029/2001PA000625, 2003 The Greenland-Norwegian Seaway: A key area for understanding Late Jurassic to Early Cretaceous paleoenvironments Jo¨rg Mutterlose,1 Hans Brumsack,2 Sascha Flo¨gel,3 William Hay,3 Christian Klein,1 Uwe Langrock,4 Marcus Lipinski,2 Werner Ricken,5 Emanuel So¨ding,3 Ru¨diger Stein,4 and Oliver Swientek5 Received 22 January 2001; revised 24 April 2002; accepted 9 July 2002; published 26 February 2003. [1] The paleoclimatology and paleoceanology of the Late Jurassic and Early Cretaceous are of special interest because this was a time when large amounts of marine organic matter were deposited in sediments that have subsequently become petroleum source rocks. However, because of the lack of outcrops, most studies have concentrated on low latitudes, in particular the Tethys and the ‘‘Boreal Realm,’’ where information has been based largely on material from northwest Germany, the North Sea, and England. These areas were all south of 40°N latitude during the Late Jurassic and Early Cretaceous. We have studied sediment samples of Kimmeridgian (154 Ma) to Barremian (121 Ma) age from cores taken at sites offshore mid-Norway and in the Barents Sea that lay in a narrow seaway connecting the Tethys with the northern polar ocean. During the Late Jurassic-Early Cretaceous these sites had paleolatitudes of 42–67°N. The Late Jurassic-Early Cretaceous sequences at these sites reflect the global sea-level rise during the Volgian-Hauterivian and a climatic shift from warm humid conditions in Volgian times to arid cold climates in the early Hauterivian.
    [Show full text]
  • Rare Earth Element Geochemistry and Taphonomy of the Early Cretaceous Crystal
    PALAIOS, 2007, v. 22, p. 500–512 Research Article DOI: 10.2110/palo.2005.p05-125r Rare earth element geochemistry and taphonomy of the Early Cretaceous Crystal Geyser Dinosaur Quarry, east-central Utah Celina A. Suarez,* Marina B. Suarez, Dennis O. Terry Jr., David E. Grandstaff Department of Geology, Temple University, Philadelphia, Pennsylvania 19122, USA e-mail: [email protected] *Corresponding Author. Current address: Department of Geology, University of Kansas, 1475 Jayhawk Blvd., Room 120, Lawrence, Kansas, 66045-7613, USA. Keywords: Falcarius utahensis, Cedar Mountain Formation, vertebrate paleontology, rare earth element, bone fossilization ABSTRACT The Crystal Geyser Dinosaur Quarry contains a large monospecific accumulation of bones from a basal therizinosaur, Falcarius utahensis. The quarry is located approximately 16 km south of Green River, Utah, at the base of the early Cretaceous (Barremian) Yellow Cat Member of the Cedar Mountain Formation. Fossil bones in the quarry occur in three units that have distinct taphonomic, lithologic, and geochemical characteristics. Rare earth element compositions of fossils suggest that bones from each unit were drawn from different reservoirs or sources having distinctly different compositions, and fossils were not reworked between units. Compositions of bones differ greatly within Units 1 and 2, even within the same 1-m2 quarry grid. These chemical differences and taphonomic characteristics, such as current orientation, hydraulic sorting, and occasional extensive abrasion, suggest that bones from these two units are allochthonous and were fossilized at other localities, possibly over an area of several kilometers, and were then eroded, transported, and concentrated in a spring-influenced fluvial environment. Bones in Unit 3 have very similar rare earth element signatures, suggesting that they were probably fossilized in situ at a separate time from bones in Units 1 and 2.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • A Census of Dinosaur Fossils Recovered from the Hell Creek and Lance Formations (Maastrichtian)
    The Journal of Paleontological Sciences: JPS.C.2019.01 1 TAKING COUNT: A Census of Dinosaur Fossils Recovered From the Hell Creek and Lance Formations (Maastrichtian). ______________________________________________________________________________________ Walter W. Stein- President, PaleoAdventures 1432 Mill St.. Belle Fourche, SD 57717. [email protected] 605-210-1275 ABSTRACT: A census of Hell Creek and Lance Formation dinosaur remains was conducted from April, 2017 through February of 2018. Online databases were reviewed and curators and collections managers interviewed in an effort to determine how much material had been collected over the past 130+ years of exploration. The results of this new census has led to numerous observations regarding the quantity, quality, and locations of the total collection, as well as ancillary data on the faunal diversity and density of Late Cretaceous dinosaur populations. By reviewing the available data, it was also possible to make general observations regarding the current state of certain exploration programs, the nature of collection bias present in those collections and the availability of today's online databases. A total of 653 distinct, associated and/or articulated remains (skulls and partial skeletons) were located. Ceratopsid skulls and partial skeletons (mostly identified as Triceratops) were the most numerous, tallying over 335+ specimens. Hadrosaurids (Edmontosaurus) were second with at least 149 associated and/or articulated remains. Tyrannosaurids (Tyrannosaurus and Nanotyrannus) were third with a total of 71 associated and/or articulated specimens currently known to exist. Basal ornithopods (Thescelosaurus) were also well represented by at least 42 known associated and/or articulated remains. The remaining associated and/or articulated specimens, included pachycephalosaurids (18), ankylosaurids (6) nodosaurids (6), ornithomimids (13), oviraptorosaurids (9), dromaeosaurids (1) and troodontids (1).
    [Show full text]