A-Ailable At
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Download
Behavioral Ecology Symposium ’96: Cushing 165 MYRMECOMORPHY AND MYRMECOPHILY IN SPIDERS: A REVIEW PAULA E. CUSHING The College of Wooster Biology Department 931 College Street Wooster, Ohio 44691 ABSTRACT Myrmecomorphs are arthropods that have evolved a morphological resemblance to ants. Myrmecophiles are arthropods that live in or near ant nests and are considered true symbionts. The literature and natural history information about spider myrme- comorphs and myrmecophiles are reviewed. Myrmecomorphy in spiders is generally considered a type of Batesian mimicry in which spiders are gaining protection from predators through their resemblance to aggressive or unpalatable ants. Selection pressure from spider predators and eggsac parasites may trigger greater integration into ant colonies among myrmecophilic spiders. Key Words: Araneae, symbiont, ant-mimicry, ant-associates RESUMEN Los mirmecomorfos son artrópodos que han evolucionado desarrollando una seme- janza morfológica a las hormigas. Los Myrmecófilos son artrópodos que viven dentro o cerca de nidos de hormigas y se consideran verdaderos simbiontes. Ha sido evaluado la literatura e información de historia natural acerca de las arañas mirmecomorfas y mirmecófilas . El myrmecomorfismo en las arañas es generalmente considerado un tipo de mimetismo Batesiano en el cual las arañas están protegiéndose de sus depre- dadores a través de su semejanza con hormigas agresivas o no apetecibles. La presión de selección de los depredadores de arañas y de parásitos de su saco ovopositor pueden inducir una mayor integración de las arañas mirmecófílas hacia las colonias de hor- migas. Myrmecomorphs and myrmecophiles are arthropods that have evolved some level of association with ants. Myrmecomorphs were originally referred to as myrmecoids by Donisthorpe (1927) and are defined as arthropods that mimic ants morphologically and/or behaviorally. -
SA Spider Checklist
REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region. -
L:\PM IJA Vol.3.Pmd
© Indian Society of Arachnology ISSN 2278 - 1587 SPIDER FAUNA OF RADHANAGARI WILDLIFE SANC- TUARY, CHANDOLI NATIONAL PARK AND KOYNA WILDLIFE SANCTUARY Suvarna More and Vijay Sawant* P. V. P. Mahavidyalaya, Kavathe Mahankal, Sangli. *Former Professor and Head, Department of Zoology, Shivaji University, Kolhapur. ABSTRACT Diversity of spiders from Radhanagari Wildlife Sanctuary, Chandoli Na- tional Park and Koyna Wildlife Sanctuary in Western Ghats is studied for the first time. A total of 247 species belonging to 119 genera and 28 families are recorded from the study area during 2010-2012 with a dominance of Araneid, Salticid and Lycosid spiders. Key words: Spider diversity, Western Ghats INTRODUCTION Spiders comprise one of the largest (5-6th) orders of animals. The spider fauna of India has never been studied in its entirety despite of contributions by many arachnologists since Stoliczka (1869). The pioneering contribution on the taxonomy of Indian spiders is that of European arachnologist Stoliczka (1869). Review of available literature reveals that the earliest contribution by Blackwall (1867); Karsch (1873); Simon (1887); Thorell (1895) and Pocock (1900) were the pioneer workers of Indian spiders. They described many species from India. Tikader (1980, 1982), Tikader, and Malhotra (1980a,b) described spiders from India. Tikader (1980) compiled a book on Thomisid spiders of India, comprising two subfamilies, 25 genera and 115 species. Of these, 23 species were new to science. Descriptions, illustrations and distributions of all species were given. Keys to the subfamilies, genera, and species were provided. Tikader and Biswas (1981) studied 15 families, 47 genera and 99 species from Calcutta and surrounding areas with illustrations and descriptions. -
Australasian Arachnology 83.Pdf
Australasian Arachnology 83 Page 1 Australasian Arachnology 83 Page 2 THE AUSTRALASIAN ARTICLES ARACHNOLOGICAL SOCIETY The newsletter Australasian Arachnology depends on the contributions of members. www.australasian-arachnology.org Please send articles to the Editor: Acari – Araneae – Amblypygi – Opiliones – Palpigradi – Pseudoscorpiones – Pycnogonida – Michael G. Rix Schizomida – Scorpiones – Uropygi Department of Terrestrial Zoology Western Australian Museum The aim of the society is to promote interest in Locked Bag 49, Welshpool DC, W.A. 6986 the ecology, behaviour and taxonomy of Email: [email protected] arachnids of the Australasian region. Articles should be typed and saved as a MEMBERSHIP Microsoft Word document, with text in Times New Roman 12-point font. Only electronic Membership is open to all who have an interest email (preferred) or posted CD-ROM submiss- in arachnids – amateurs, students and ions will be accepted. professionals – and is managed by our Administrator (note new address ): Previous issues of the newsletter are available at http://www.australasian- Volker W. Framenau arachnology.org/newsletter/issues . Phoenix Environmental Sciences P.O. Box 857 LIBRARY Balcatta, W.A. 6914 Email: [email protected] For those members who do not have access to a scientific library, the society has a large number Membership fees in Australian dollars (per 4 of reference books, scientific journals and paper issues): reprints available, either for loan or as photo- *discount personal institutional copies. For all enquiries concerning publica- Australia $8 $10 $12 tions please contact our Librarian: NZ/Asia $10 $12 $14 Elsewhere $12 $14 $16 Jean-Claude Herremans There is no agency discount. -
Araneae (Spider) Photos
Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison. -
Title a Revisional Study of the Spider Family Thomisidae (Arachnida
A revisional study of the spider family Thomisidae (Arachnida, Title Araneae) of Japan( Dissertation_全文 ) Author(s) Ono, Hirotsugu Citation 京都大学 Issue Date 1988-01-23 URL https://doi.org/10.14989/doctor.r6388 Right Type Thesis or Dissertation Textversion author Kyoto University 学位 請 論 文 (主 論 文) 小 野 族 嗣 1灘 灘灘 灘轟 1 . Thomisidae aus Japan. I. Das Genus Tmarus Simon (Arachnida: Araneae). Acta arachnol., 27 (spec. no.): 61-84 (1977). 2 . Thomisidae aus Japan. II. Das Genus Oxytate L.Koch 1878 (Arachnida: Araneae). Senckenb. biol., 58: 245-251 (1978). 3 . Thomisidae aus dem Nepal-Himalaya. I. Das Genus Xysticus C.L.Koch 1835 (Arachnida: Araneae). Senckenb. biol., 59: 267-288 (1978). 4 . Thomisidae aus dem Nepal-Himalaya. II. Das Genus Lysiteles Simon 1895 (Arachnida: Araneae). Senckenb. biol., 60: 91-108 (1979). 5 . Fossile Spinnen aus miozanen Sedimenten des Randecker Maars in SW- Deutschland (Arachnida: Araneae). Jh. Ges. Naturkde. Wurttemberg, 134: 133-141 (1979). (W.Schawaller t 4E1t) 6 . Thomisidae aus Japan. III. Das Genus Lysiteles Simon 1895 (Arachnida: Araneae). Senckenb. biol., 60: 203-217 (1980). 7 . Thomisidae aus dem Nepal-Himalaya. III. Das Genus Stiphropus Gerstaecker 1873, mit Revision der asiatischen Arten (Arachnida: Araneae). Senckenb. biol., 61: 57-76 (1980). 8 . Erstnachweis einer Krabbenspinne (Thomisidae) in dominikanischem Bernstein (Stuttgarter Bernsteinsammlung: Arachnida, Araneae). Stuttgart. Beitr. Naturk., B, (73): 1-13 (1981). 9 . Revision japanischer Spinnen. I. Synonymieeiniger Arten der Familien Theridiidae, Araneidae, Tetragnathidae and Agelenidae (Arachnida: Araneae). Acta arachnol., 30: 1-7 (1981). 10 . Verwandtschaft von Tetrablemma phulchoki Lehtinen 1981 (Araneae: Tetrablemmidae). Senckenb. biol., 62: 349-353 (1982). -
Wsn 130 (2019) 181-194 Eissn 2392-2192
Available online at www.worldscientificnews.com WSN 130 (2019) 181-194 EISSN 2392-2192 Anecdote of spiders and their model ants of Bibhutibhusan Wildlife Sanctuary, N-24 Parganas, West Bengal Sumana Saha1,a,*, Tamoghna Roy1,b, and Dinendra Raychaudhuri2,c 1Post Graduate Department of Zoology, Barasat Government College, 10, K.N.C. Road, Barasat, Kolkata – 7000124, India 2IRDM Faculty Centre, Department of Agricultural Biotechnology, Ramakrishna Mission Vivekananda University, Narendrapur, Kolkata – 700103, India a,b,cE-mail address: [email protected] , [email protected] , [email protected] ABSTRACT Our study on ant diversity of Bibhutibhusan Wildlife Sanctuary, N-24 Parganas, West Bengal during the period, August 2017-July 2018, unfolded wonderful Batesian and Wasmannian mimicry (chemical mimicry) between model ants Tetraponera rufonigra (Jerdon) and its sibling T. allaborans (Walker), Oceophylla smaragdina (Fabricius) and salticid spiders of the genus Myrmarachne Macleay. Siblings of Myrmarachne encountered are M. plataleoides O. P. Cambridge, M. maratha Tikader and M. orientales Tikader. It is supposed that chemical or Wasmannian mimicry enables species with ant- like pheromones to live in close contact with ants. The members of spider Myrmarachne that resemble the aggresive weaver ant Oceophylla smaragdina, with which they live in close contact, also show chemical resemblance. Further, by mimicking the ants they gain protection from predators. Since weaver ants have a painful bite and also taste bad, this strategy appears to be successful. Though these spiders mimic the weaver ants very well, they are known to stay away from them. They weave a thin web on the leaves, hide under their webbing and ambush their prey. -
Aggressive Mimicry: a Potential Tool of Predators
Journal of Pharmacognosy and Phytochemistry 2017; 6(5): 1305-1307 E-ISSN: 2278-4136 P-ISSN: 2349-8234 Aggressive mimicry: A potential tool of Predators JPP 2017; 6(5): 1305-1307 Received: 10-07-2017 Accepted: 11-08-2017 Ramya N, Padala Vinod Kumar, Keerthi MC, Srinivasa N and Ramesh Ramya N KB ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India Abstract Mimicry is a similarity of one organism to another. Generally mimicry evolved to defend against the Padala Vinod Kumar predators. But one form of mimicry adopted by some predators to attract and attack their prey is ICAR-Indian Agricultural Aggressive mimicry. Aggressive mimicry is a form of mimicry in which predators, parasites or Research Institute (IARI), New parasitoids share similar signals with a harmless model, to avoid being correctly identified by their prey Delhi, India or host. In this type of mimicry predator, parasite or pasasitoid mimic the different signals of its prey perception that may be food, sexual signals mutualistic species or prey itself. It is classified into different Keerthi MC types based on the luring, number of species and taxa involved, based on model, etc. The success of this ICAR-Indian Agricultural mimicry depends on the active planning, decision-making and flexibility of the mimic. Sexual signals Research Institute (IARI), New mimicking by the predators are highly specific than the other signals. Research on aggressive mimicry Delhi, India holds exceptional potential for advancing our understanding of insect communication cognition which is having greater importance in insect ecology and in addition aids in speciation studies. Srinivasa N ICAR-Indian Agricultural Research Institute (IARI), New Keywords: Aggressive mimicry, a potential tool of Predators Delhi, India Introduction Ramesh KB Mimicry is the similarity or resemblance of one organism, to another. -
Crab Spiders from Xishuangbanna, Yunnan Province, China (Araneae, Thomisidae)
Zootaxa 2703: 1–105 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 2703 Crab spiders from Xishuangbanna, Yunnan Province, China (Araneae, Thomisidae) GUO TANG1, 2 & SHUQIANG LI1, 3 1 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 2 College of Life Sciences, Hunan Normal University, Changsha 410081, China 3 Corresponding author: [email protected] Magnolia Press Auckland, New Zealand Accepted by C. Muster: 17 Nov. 2010; published: 3 Dec. 2010 GUO TANG & SHUQIANG LI Crab spiders from Xishuangbanna, Yunnan Province, China (Araneae, Thomisidae) (Zootaxa 2703) 105 pp.; 30 cm. 3 Dec. 2010 ISBN 978-1-86977-623-7 (paperback) ISBN 978-1-86977-624-4 (Online edition) FIRST PUBLISHED IN 2010 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2010 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 2703 © 2010 Magnolia Press TANG & LI Table of contents Abstract . 4 Introduction . 5 Material and methods . 5 Taxonomy . 6 Family Thomisidae Sundevall, 1833 . 6 Gen. Alcimochthes Simon, 1885 . -
Burmese Amber Taxa
Burmese (Myanmar) amber taxa, on-line checklist v.2018.2 Andrew J. Ross 03/09/2018 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] http://www.nms.ac.uk/collections-research/collections-departments/natural-sciences/palaeobiology/dr- andrew-ross/ This taxonomic list is based on Ross et al (2010) plus non-arthropod taxa and published papers up to the end of August 2018. It does not contain unpublished records or records from papers in press (including on-line proofs) or unsubstantiated on-line records. Often the final versions of papers were published on- line the year before they appeared in print, so the on-line published year is accepted and referred to accordingly. Note, the authorship of species does not necessarily correspond to the full authorship of papers where they were described. The latest high level classification is used where possible though in some cases conflicts were encountered, usually due to cladistic studies, so in these cases an older classification was adopted for convenience. The classification for Hexapoda follows Nicholson et al. (2015), plus subsequent papers. † denotes extinct orders and families. New additions or changes to the previous list (v.2018.1) are marked in blue, corrections are marked in red. The list comprises 38 classes (or similar rank), 102 orders (or similar rank), 525 families, 777 genera and 1013 species (excluding Tilin amber and copal records). This includes 8 classes, 65 orders, 480 families, 714 genera and 941 species of arthropods. 1 Some previously recorded families have since been synonymised or relegated to subfamily level- these are included in parentheses in the main list below. -
Kleptoparasitic Flies and Jumping Spiders 1
Peckhamia 202.1 Kleptoparasitic flies and jumping spiders 1 PECKHAMIA 202.1, 20 March 2020, 1―7 ISSN 2161―8526 (print) LSID urn:lsid:zoobank.org:pub:E72CE1F1-5B48-4CD9-8E7D-F81809157F60 (registered 19 MAR 2020) ISSN 1944―8120 (online) Kleptoparasitic flies and jumping spiders (Araneae: Salticidae) David E. Hill,1 Abhijith A. P. C.2 and Pavan Ramachandra 3 1 213 Wild Horse Creek Drive, Simpsonville SC 29680, USA, email [email protected] 2 Indraprastha Organic Farm, Kalalwadi Village, Udboor Post, Mysuru-570008, Karnataka, India, email abhiapc @gmail.com 3 #B 4-20, BEML Layout, Srirampura 2 stage, Mysuru - 570023. Karnataka, India, email [email protected] Abstract. Kleptoparasitic flies that associate with predatory insects and spiders are also vulnerable to the attacks of salticid spiders. Keywords. Cecidomyiidae, Didactylomyia longimana, Harpegnathos saltator, Hyllus semicupreus, Indian Jumping Ant, Karnataka, Milichiidae, Myrmarachne, myrmecophily, Sepsidae, Telamonia dimidiata Many flies are kleptoparasites, feeding on prey captured by predatory insects or spiders (Table 1, Figures 1-5). Table 1. Flies (Diptera) that are known to be spider kleptoparasites. Sepsidae is included here as some species may feed on the remains of insects captured by spiders. family genera common names references Cecidomyiidae Didactylomyia gall midges or gall gnats Gagné 1994; Sivinski & Stowe 1981; Sivinski et al. 1999; Fedotova & Perkovsky 2012; Gillung & Borkent 2017 Ceratopogonidae Atrichopogon, Culicoides biting midges Sivinski et al. 1999; Gillung & Borkent 2017 Chloropidae Anomoeoceros, Guarax, Olcella, frit flies or grass flies Sivinski et al. 1999; Brake & von Tschirnhaus 2010; Gillung & Borkent Trachysiophonella 2017 Dolichopodidae Microphor long-legged flies Sivinski et al. 1999; Gillung & Borkent 2017 Lonchaeidae Lonchaea, Setisquamalonchaea lance flies Sivinski et al. -
Revision of the Spider Genus Mystaria Simon, 1895 (Araneae: Thomisidae) and the Description of a New Genus from the Afrotropical Region
Zootaxa 3873 (2): 101–144 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3873.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:AC318953-2804-4BBB-B885-27A8F1DB1EAB Revision of the spider genus Mystaria Simon, 1895 (Araneae: Thomisidae) and the description of a new genus from the Afrotropical region ALLET S. HONIBALL LEWIS1,3 & ANSIE S. DIPPENAAR-SCHOEMAN1, 2 1Department of Zoology & Entomology, University of Pretoria, Pretoria, 0002 South Africa 2ARC-Plant Protection Research Institute, P/Bag X134, Queenswood, 0121 South Africa 3Corresponding author. E-mail: [email protected] Table of contents Abstract . 101 Introduction . 102 Material and methods . 104 Taxonomy . 106 Family Thomisidae Sundevall, 1833. 106 Genus Mystaria Simon, 1895 . 107 Key to species of Mystaria . 108 Mystaria budongo sp. n. 114 Mystaria flavogutatta (Lawrence, 1952) comb. n. 118 Mystaria irmatrix sp. n.. 119 Mystaria lata (Lawrence, 1927) comb. n. 120 Mystaria lindaicapensis sp. n. 121 Mystaria mnyama sp. n. 122 Mystaria occidentalis (Millot, 1942) comb. n. 123 Mystaria oreadae sp. n.. 126 Mystaria rufolimbata Simon, 1895 . 126 Mystaria savannensis sp. n. 127 Mystaria soleil sp. n. 130 Mystaria stakesbyi sp. n. 131 Mystaria variabilis (Lessert, 1919) comb. n. 133 Insufficiently known species . 135 Mystaria decorata (Lessert, 1919) comb. n. 135 Mystaria variabilis delesserti (Caporiacco, 1949) comb. n. 135 Genus Leroya gen. n. 135 Leroya silva sp. n. 136 Leroya unicolor (Simon, 1895) comb. n. 139 Conclusion. 142 Key to genera of the Mystarini-Apyretini-Tagulini tribes of the Afrotropical crab spiders .