Evidence of Common Progenitors and Patterns of Dispersion in Rat Striatum and Cerebral Cortex
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nervous Tissue
Nervous Tissue Prof.Prof. ZhouZhou LiLi Dept.Dept. ofof HistologyHistology andand EmbryologyEmbryology Organization:Organization: neuronsneurons (nerve(nerve cells)cells) neuroglialneuroglial cellscells Function:Function: Ⅰ Neurons 1.1. structurestructure ofof neuronneuron somasoma neuriteneurite a.a. dendritedendrite b.b. axonaxon 1.11.1 somasoma (1)(1) nucleusnucleus LocatedLocated inin thethe centercenter ofof soma,soma, largelarge andand palepale--stainingstaining nucleusnucleus ProminentProminent nucleolusnucleolus (2)(2) cytoplasmcytoplasm (perikaryon)(perikaryon) a.a. NisslNissl bodybody b.b. neurofibrilneurofibril NisslNissl’’ss bodiesbodies LM:LM: basophilicbasophilic massmass oror granulesgranules Nissl’s Body (TEM) EMEM:: RERRER,, freefree RbRb FunctionFunction:: producingproducing thethe proteinprotein ofof neuronneuron structurestructure andand enzymeenzyme producingproducing thethe neurotransmitterneurotransmitter NeurofibrilNeurofibril thethe structurestructure LM:LM: EM:EM: NeurofilamentNeurofilament micmicrotubulerotubule FunctionFunction cytoskeleton,cytoskeleton, toto participateparticipate inin substancesubstance transporttransport LipofuscinLipofuscin (3)(3) CellCell membranemembrane excitableexcitable membranemembrane ,, receivingreceiving stimutation,stimutation, fromingfroming andand conductingconducting nervenerve impulesimpules neurite: 1.2 Dendrite dendritic spine spine apparatus Function: 1.3 Axon axon hillock, axon terminal, axolemma Axoplasm: microfilament, microtubules, neurofilament, mitochondria, -
Biophysically Realistic Neuron Models for Simulation of Cortical Stimulation
bioRxiv preprint doi: https://doi.org/10.1101/328534; this version posted August 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Biophysically Realistic Neuron Models for Simulation of Cortical Stimulation Authors: Aman S. Aberra1, Angel V. Peterchev1,2,3,4, Warren M. Grill1,3,4,5,* 1 Dept. of Biomedical Engineering, School of Engineering, Duke University, NC 2 Dept. of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, NC 3 Dept. of Electrical and Computer Engineering, School of Engineering, Duke University, NC 4 Dept. of Neurosurgery, School of Medicine, Duke University, NC 5 Dept. of Neurobiology, School of Medicine, Duke University, NC * Corresponding Author: Warren M. Grill Keywords: neuron model, cortex, myelination, simulation, electric field, stimulation, axon bioRxiv preprint doi: https://doi.org/10.1101/328534; this version posted August 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 1. Abstract Objective. We implemented computational models of human and rat cortical neurons for simulating the neural response to cortical stimulation with electromagnetic fields. Approach. We adapted model neurons from the library of Blue Brain models to reflect biophysical and geometric properties of both adult rat and human cortical neurons and coupled the model neurons to exogenous electric fields (E-fields). The models included 3D reconstructed axonal and dendritic arbors, experimentally-validated electrophysiological behaviors, and multiple, morphological variants within cell types. -
Contribution of Apical and Basal Dendrites of L2/3 Pyramidal Neurons to Orientation Encoding in Mouse V1 Jiyoung Park1,4*†, Athanasia Papoutsi3†, Ryan T
bioRxiv preprint doi: https://doi.org/10.1101/566588; this version posted March 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Contribution of Apical and Basal Dendrites of L2/3 Pyramidal Neurons to Orientation Encoding in Mouse V1 Jiyoung Park1,4*†, Athanasia Papoutsi3†, Ryan T. Ash2,4, Miguel A. Marin2, Panayiota Poirazi3* & Stelios M. Smirnakis4* 1Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 2Department of Neuroscience, Baylor College of Medicine, Houston, Texas 3Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology Hellas (FORTH), Vassilika Vouton, Heraklion, Crete, Greece 4Brigham and Women’s Hospital and Jamaica Plain VA Hospital, Harvard Medical School, Boston, MA †Equal contribution. * Correspondence: [email protected], [email protected], [email protected] Abstract: Pyramidal neurons integrate synaptic inputs from basal and apical dendrites to generate stimulus-specific responses. It has been proposed that feed-forward inputs to basal dendrites drive a neuron’s stimulus preference, while feedback inputs to apical dendrites sharpen selectivity. However, how a neuron’s dendritic domains relate to its functional selectivity has not been demonstrated experimentally. We performed 2-photon dendritic micro-dissection on layer- 2/3 pyramidal neurons in mouse primary visual cortex. We found that removing the apical dendritic tuft did not alter orientation-tuning. Furthermore, orientation-tuning curves were remarkably robust to the removal of basal dendrites: ablation of 2-3 basal dendrites was needed to cause a small shift in orientation preference, without significantly altering tuning width. -
Synaptic Mechanisms of Bipolar Cell Terminals
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Vision Research 39 (1999) 2469–2476 Synaptic mechanisms of bipolar cell terminals Gary Matthews * Department of Neurobiology and Beha6ior, State Uni6ersity of New York, Stony Brook, NY 11794-5230, USA Received 8 May 1998; received in revised form 24 August 1998 Abstract Giant synaptic terminals of goldfish bipolar neurons allow direct studies of presynaptic mechanisms underlying neurotransmit- ter release and its modulation. Calcium influx via L-type calcium channels of the terminal triggers synaptic vesicle exocytosis, which can be monitored in isolated terminals by means of the associated changes in membrane capacitance. Information about the kinetics and calcium dependence of synaptic exocytosis has been obtained from capacitance measurements in these ribbon-type synaptic terminals. © 1999 Elsevier Science Ltd. All rights reserved. Keywords: Synaptic mechanisms; Terminals; Bipolar neurons Studies of presynaptic mechanisms in the vertebrate enzymatic digestion of goldfish retina or in single, central nervous system (CNS) are complicated by the isolated terminals. Consistent with their central role in small size of most CNS synaptic terminals. However, neurotransmitter release, voltage-dependent calcium several notable exceptions allow direct electrical mea- channels are located predominantly in the synaptic surements to be made from single terminals, including terminal of the bipolar cell (Tachibana & Okada, 1991; giant -
Neuronal Organization of Olfactory Bulb Circuits
REVIEW ARTICLE published: 03 September 2014 doi: 10.3389/fncir.2014.00098 Neuronal organization of olfactory bulb circuits Shin Nagayama 1*, Ryota Homma1 and Fumiaki Imamura 2 1 Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, TX, USA 2 Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA Edited by: Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is Benjamin R. Arenkiel, Baylor College dedicated to odor information processing.The olfactory bulb is divided into multiple layers, of Medicine, USA with different types of neurons found in each of the layers. Therefore, neurons in the Reviewed by: olfactory bulb have conventionally been categorized based on the layers in which their cell Kazushige Touhara, University of Tokyo, Japan bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the Veronica Egger, external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule Ludwig-Maximilians-Universität, cell layer. More recently, numerous studies have revealed the heterogeneous nature of each Germany Kathleen Quast, Baylor College of of these cell types, allowing them to be further divided into subclasses based on differences Medicine, USA in morphological, molecular, and electrophysiological properties. In addition, technical *Correspondence: developments and advances have resulted in an increasing number of studies regarding Shin Nagayama, Department of cell types other than the conventionally categorized ones described above, including short- Neurobiology and Anatomy, The axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the University of Texas Medical School at Houston, 6431 Fannin Street, olfactory bulb is now being acknowledged. -
Notch-Signaling in Retinal Regeneration and Müller Glial Plasticity
Notch-Signaling in Retinal Regeneration and Müller glial Plasticity DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kanika Ghai, MS Neuroscience Graduate Studies Program The Ohio State University 2009 Dissertation Committee: Dr. Andy J Fischer, Advisor Dr. Heithem El-Hodiri Dr. Susan Cole Dr. Paul Henion Copyright by Kanika Ghai 2009 ABSTRACT Eye diseases such as blindness, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are highly prevalent in the developed world, especially in a rapidly aging population. These sight-threatening diseases all involve the progressive loss of cells from the retina, the light-sensing neural tissue that lines the back of the eye. Thus, developing strategies to replace dying retinal cells or prolonging neuronal survival is essential to preserving sight. In this regard, cell-based therapies hold great potential as a treatment for retinal diseases. One strategy is to stimulate cells within the retina to produce new neurons. This dissertation elucidates the properties of the primary support cell in the chicken retina, known as the Müller glia, which have recently been shown to possess stem-cell like properties, with the potential to form new neurons in damaged retinas. However, the mechanisms that govern this stem-cell like ability are less well understood. In order to better understand these properties, we analyze the role of one of the key developmental processes, i.e., the Notch-Signaling Pathway in regulating proliferative, neuroprotective and regenerative properties of Müller glia and bestow them with this plasticity. -
Action Potentials in Basal and Oblique Dendrites of Rat Neocortical Pyramidal Neurons Srdjan D
Physiology in Press; published online on May 9, 2003 as 10.1113/jphysiol.2002.033746 J Physiol (2003), xxx.x, pp. 000–000 DOI: 10.1113/jphysiol.2002.033746 © The Physiological Society 2003 www.jphysiol.org Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons Srdjan D. Antic Department of Cellular and Molecular Physiology, and Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Basal and oblique dendrites comprise ~2/3 of the total excitable membrane in the mammalian cerebral cortex, yet they have never been probed with glass electrodes, and therefore their electrical properties and overall impact on synaptic processing are unknown. In the present study, fast multi- site voltage-sensitive dye imaging combined with somatic recording was used to provide a detailed description of the membrane potential transients in basal and oblique dendrites of pyramidal neurons during single and trains of action potentials (APs). The optical method allowed simultaneous measurements from several dendrites in the visual field up to 200 mm from the soma, thus providing a unique report on how an AP invades the entire dendritic tree. In contrast to apical dendrites, basal and oblique branches: (1) impose very little amplitude and time course modulation on backpropagating APs; (2) are strongly invaded by the somatic spike even when somatic firing rates reach 40 Hz (activity-independent backpropagation); and (3) do not exhibit signs of a ‘calcium shoulder’ on the falling phase of the AP. A compartmental model incorporating AP peak latencies and half-widths obtained from the apical, oblique and basal dendrites indicates that the specific intracellular resistance (Ri) is less than 100 V cm. -
Microcircuitry of Bipolar Cells in Cat Retina1
0270.6474/84/0412-2920$02.00/0 The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 12, pp. 2920-2938 Printed in U.S.A. December 1984 MICROCIRCUITRY OF BIPOLAR CELLS IN CAT RETINA1 BARBARA A. McGUIRE,’ JOHN K. STEVENS,3 AND PETER STERLING Department of Anatomy, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Received October 31, 1983; Revised June 4, 1984; Accepted June 6, 1984 Abstract We have studied 15 bipolar neurons from a small patch (14 x 120 Frn) of adult cat retina located within the area centralis. From electron micrographs of 189 serial ultrathin sections, the axon of each bipolar cell was substantially reconstructed with its synaptic inputs and outputs by means of a computer-controlled reconstruc- tion system. Based on differences in stratification, cytology, and synaptic connections, we identified eight different cell types among the group of 15 neurons: one type of rod bipolar and seven types of cone bipolar neurons. These types correspond to those identified by the Golgi method and by intracellular recording. Those bipolar cell types for which we reconstructed three or four examples were extremely regular in form, size, and cytology, and also in the quantitative details of their synaptic connections. They appeared quite as specific in these respects as invertebrate “identified” neurons. The synaptic patterns observed for each type of bipolar neuron were complex but may be summarized as follows: the rod bipolar axon ended in sublamina b of the inner plexiform layer and provided major input to the AI1 amacrine cell. The axons of three types of cone bipolar cells also terminated in sublamina b and provided contacts to dendrites of on-6 and other ganglion cells. -
Transient Hypoxemia Chronically Disrupts Maturation of Preterm Fetal Ovine Subplate Neuron Arborization and Activity
11912 • The Journal of Neuroscience, December 6, 2017 • 37(49):11912–11929 Development/Plasticity/Repair Transient Hypoxemia Chronically Disrupts Maturation of Preterm Fetal Ovine Subplate Neuron Arborization and Activity XEvelyn McClendon,1 Daniel C. Shaver,1 Kiera Degener-O’Brien,1 Xi Gong,1 Thuan Nguyen,2 Anna Hoerder-Suabedissen,3 Zolta´n Molna´r,3 Claudia Mohr,4 XBen D. Richardson,4 David J. Rossi,4 and Stephen A. Back1,5 1Department of Pediatrics and 2Public Health and Preventive Medicine, Oregon Health & Science University, Portland, Oregon 97239, 3Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom OX1 3QX, 4Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164, and 5Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239 Preterm infants are at risk for a broad spectrum of neurobehavioral disabilities associated with diffuse disturbances in cortical growth and development. During brain development, subplate neurons (SPNs) are a largely transient population that serves a critical role to establish functional cortical circuits. By dynamically integrating into developing cortical circuits, they assist in consolidation of intra- cortical and extracortical circuits. Although SPNs reside in close proximity to cerebral white matter, which is particularly vulnerable to oxidative stress, the susceptibility of SPNs remains controversial. We determined SPN responses to two common insults to the preterm brain: hypoxia-ischemia and hypoxia. We used a preterm fetal sheep model using both sexes that reproduces the spectrum of human cerebral injury and abnormal cortical growth. Unlike oligodendrocyte progenitors, SPNs displayed pronounced resistance to early or delayed cell death from hypoxia or hypoxia-ischemia. -
Autism Spectrum Disorder Susceptibility Gene TAOK2 Affects
ART ic LE s Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex Froylan Calderon de Anda1,2, Ana Lucia Rosario1,2, Omer Durak1–3, Tracy Tran2,4,5, Johannes Gräff1,2, Konstantinos Meletis1–3,5, Damien Rei1,2, Takahiro Soda1,2, Ram Madabhushi1,2, David D Ginty2,4, Alex L Kolodkin2,4 & Li-Huei Tsai1–3 How neurons develop their morphology is an important question in neurobiology. Here we describe a new pathway that specifically affects the formation of basal dendrites and axonal projections in cortical pyramidal neurons. We report that thousand-and-one- amino acid 2 kinase (TAOK2), also known as TAO2, is essential for dendrite morphogenesis. TAOK2 downregulation impairs basal dendrite formation in vivo without affecting apical dendrites. Moreover, TAOK2 interacts with Neuropilin 1 (Nrp1), a receptor protein that binds the secreted guidance cue Semaphorin 3A (Sema3A). TAOK2 overexpression restores dendrite formation in cultured cortical neurons from Nrp1Sema− mice, which express Nrp1 receptors incapable of binding Sema3A. TAOK2 overexpression also ameliorates the basal dendrite impairment resulting from Nrp1 downregulation in vivo. Finally, Sema3A and TAOK2 modulate the formation of basal dendrites through the activation of the c-Jun N-terminal kinase (JNK). These results delineate a pathway whereby Sema3A and Nrp1 transduce signals through TAOK2 and JNK to regulate basal dendrite development in cortical neurons. Pyramidal neurons are abundant in brain regions associated with through the activation of JNK11. TAOK2 is subjected to alternative complex cognitive functions, including the cortex, hippocampus and splicing to produce the TAOK2α (140 kDa) and TAOK2β (120 kDa) amygdala1. -
The Diverse Roles of Ribbon Synapses in Sensory Neurotransmission
Nature Reviews Neuroscience | AOP, published online 3 November 2010; doi:10.1038/nrn2924 REVIEWS The diverse roles of ribbon synapses in sensory neurotransmission Gary Matthews* and Paul Fuchs‡ Abstract | Sensory synapses of the visual and auditory systems must faithfully encode a wide dynamic range of graded signals, and must be capable of sustained transmitter release over long periods of time. Functionally and morphologically, these sensory synapses are unique: their active zones are specialized in several ways for sustained, rapid vesicle exocytosis, but their most striking feature is an organelle called the synaptic ribbon, which is a proteinaceous structure that extends into the cytoplasm at the active zone and tethers a large pool of releasable vesicles. But precisely how does the ribbon function to support tonic release at these synapses? Recent genetic and biophysical advances have begun to open the ‘black box’ of the synaptic ribbon with some surprising findings and promise to resolve its function in vision and hearing. Changes in our external environment are detected by photoreceptors, electroreceptors, and hair cells of sensory receptor cells, which transduce sensory stim- vesti bular organs and the lateral line system. In the uli into an electrical signal that is graded depending visual system, ribbons are also found at the output on the stimulus intensity. In vision, balance and hear- synapses of the second-order retinal b ipolar neurons, ing, synapses of the receptor cells are unusual because which signal by means of graded changes in mem- they function tonically — that is, they transmit graded brane potential, similar to photoreceptors and hair information with high fidelity across a broad range of cells. -
Down-Regulation of Dendritic Spine and Glutamic Acid Decarboxylase 67 Expressions in the Reelin Haploinsufficient Heterozygous Reeler Mouse
Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse Wen Sheng Liu*, Christine Pesold*, Miguel A. Rodriguez*, Giovanni Carboni*, James Auta*, Pascal Lacor*, John Larson*, Brian G. Condie†, Alessandro Guidotti*, and Erminio Costa*‡ *Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, IL 60612; and †Institute of Molecular Medicine and Genetics, Departments of Medicine and Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912 Contributed by Erminio Costa, December 22, 2000 Heterozygous reeler mice (HRM) haploinsufficient for reelin ex- heterozygote reeler mice (HRM) and in heterozygote GAD67 Ϸ press 50% of the brain reelin content of wild-type mice, but are knockout mice (HG67M) and compared them to their respective phenotypically different from both wild-type mice and homozy- wild-type background mice (WTM). In the present study, we gous reeler mice. They exhibit, (i) a down-regulation of glutamic have also quantified the number of neurons immunopositive for acid decarboxylase 67 (GAD67)-positive neurons in some but not reelin in the motor area of the frontoparietal cortex (FPC) of every cortical layer of frontoparietal cortex (FPC), (ii) an increase of HRM, as well as the total number of neurons immunopositive for neuronal packing density and a decrease of cortical thickness NeuN and the number of glial cells stained by Nissl (13) because of neuropil hypoplasia, (iii) a decrease of dendritic spine expressed in each of the six layers of this cortical area. In WTM, expression density on basal and apical dendritic branches of motor HRM, and HG67M, we have also quantified the laminar expres- FPC layer III pyramidal neurons, and (iv) a similar decrease in sion of GAD67-immunopositive neurons and the dendritic spine dendritic spines expressed on the basal dendrite branches of CA1 density expressed by pyramidal neurons of layer III FPC and of pyramidal neurons of the hippocampus.