Cell Cycle RNA Regulons Coordinating Early Lymphocyte Development

Total Page:16

File Type:pdf, Size:1020Kb

Cell Cycle RNA Regulons Coordinating Early Lymphocyte Development Focus Article Cell cycle RNA regulons coordinating early lymphocyte development Alison Galloway1 and Martin Turner2* Lymphocytes undergo dynamic changes in gene expression as they develop from progenitor cells lacking antigen receptors, to mature cells that are prepared to mount immune responses. While transcription factors have established roles in lymphocyte development, they act in concert with post-transcriptional and post- translational regulators to determine the proteome. Furthermore, the post- transcriptional regulation of RNA regulons consisting of mRNAs whose protein products act cooperatively allows RNA binding proteins to exert their effects at multiple points in a pathway. Here, we review recent evidence demonstrating the importance of RNA binding proteins that control the cell cycle in lymphocyte development and discuss the implications for tumorigenesis. © 2017 The Authors. WIREs RNA published by Wiley Periodicals, Inc. How to cite this article: WIREs RNA 2017, 8:e1419. doi: 10.1002/wrna.1419 INTRODUCTION progenitor cells that have migrated from the bone marrow to the thymus. ymphocytes are the cells responsible for adaptive Developing B and T cells must execute V(D)J Limmunity in vertebrates. B cells are the subset of recombination of the DNA encoding immunoglobu- lymphocytes uniquely producing antibodies (secreted lin heavy and light chain or of the TCRα and TCRβ immunoglobulins) and recognize antigens through loci respectively to produce diverse receptor specifici- their B cell receptors (BCRs, transmembrane immu- ties while avoiding inappropriate DNA damage and noglobulins). In mammals B cells continuously maintaining genome integrity. Lymphocytes that pro- develop from haematopoietic stem cells in the bone duce functional antigen receptors with nonself- marrow throughout adulthood to sustain the mature specificities must be positively selected while those pool of antigen inexperienced (naïve) B cells. T cells producing non-functional proteins or self-reactive are lymphocytes that recognize antigenic determi- specificities must be removed. Furthermore, lympho- nants that have been processed and presented by cytes must adapt to a number of distinct niches as antigen presenting cells through their T cell receptors they migrate within the bone marrow, blood, spleen, (TCRs). T cells provide cell-mediated immunity and lymph nodes, and other tissues in a developmental help B cells produce antibodies. T cells develop from stage appropriate manner. To mediate these pro- cesses, developing lymphocytes are known to respond to environmental and developmental cues through signal transduction pathways activated by *Correspondence to: [email protected] cytokine/chemokine, adhesion receptors and the anti- 1Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK gen receptor or its precursor (the pre-BCR or the pre- 2 TCR). These regulate gene expression through the Laboratory of Lymphocyte Signalling and Development, The Bab- raham Institute, Cambridge, UK expression and activation of developmental stage- specific transcription factors.1 However, it is becom- Conflict of interest: The authors have declared no conflicts of inter- est for this article. ing increasingly apparent that the gene regulatory Volume 8, September/October 2017 1of15 © 2017 The Authors. WIREs RNA published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Focus Article wires.wiley.com/rna networks that control lymphocyte development also B cell development 3000 require the activity of factors that act post- transcriptionally on RNA. These regulatory networks Pro B allow the integration of signaling pathways with the 2000 Early Pre B control of mRNA transcription, processing, stability, Late pre B Immature B and localisation. 1000 Post-transcriptional control of gene expression is mediated by RNA binding proteins (RBPs) and Relative mRNA non-coding RNAs. Although microRNAs have 0 important roles in lymphocyte development, this Zfp36 Cnot3 review will focus on the role of RBP in early lym- Zfp36l1 Zfp36l2 Elavl1(HuR) phoid development as this topic has received less T cell development attention. Regulation through RBP allows signaling 3000 events to rapidly influence the fate of existing coding DN3a and non-coding RNAs, thus avoiding the lag time DN3b associated with transcriptional changes, and allowing 2000 DN4 a more diverse and dynamic range of molecular out- DP CD4 SP comes. Co-regulated RNAs may comprise sets of 1000 transcripts mediating a common function and have Relative mRNA been termed RNA regulons.2 These can be controlled 0 concurrently by signaling events allowing the cell to Zfp36 Cnot3 coordinate within and between biological processes Zfp36l1 Zfp36l2 that might otherwise be considered distinct if they Elavl1 (HuR) are not coordinately regulated by transcriptional or FIGURE 1 | epigenetic mechanisms. RBP have emerged as a fre- Expression of mRNAs encoding RNA binding proteins in early lymphocyte development. Relative expression of selected quent constituent of the proteome and many different mRNAs has been extracted from the immgen database. Source: http: protein domains can interact with RNA in a //www.immgen.org. Bars represent the mean, and error bars show the fi fi sequence-speci c or -nonspeci c manner with varying standard deviation of three measurements. affinities.3 The mRNA expression of five RBPs dis- cussed in this review during B and T lymphocyte identifying RBP and RNA regulons that contribute to development is shown in Figure 1, this data was B and T cell development and consider whether these extracted from the immgen immunological genome findings have broader relevance to non-lymphoid sys- database.4 The RBP-encoding mRNAs shown: tems and malignancy. Zfp36, Zfp36l1, Zfp36l2, Elavl1, and Cnot3 are broadly expressed throughout the early stages of lymphocyte development and may exert their effects EARLY B CELL DEVELOPMENT at many distinct stages. Amongst sequence elements recognized by spe- V(D)J recombination is a process of somatic gene cific RBPs, the AU-rich element (ARE), which has the rearrangement unique to lymphocytes where variable consensus sequence WWAUUUAWW, where W may (V), diversity (D), and joining (J) gene segments, be U or A, is one of the best studied. AREs are pres- encoding the complementarity determining regions of ent in as many as 10% of human mRNAs5 and inter- the antigen receptors, are recombined by the activity act with a variety of different RNA binding domains. of the recombination activating genes (RAG) to form This may allow several RBP to act in concert while different coding sequences resulting in a large num- decoding cellular signals. Figure 2 demonstrates how ber of receptor specificities. This allows generation AREs are prevalent in the 30UTRs of mRNAs encod- of a diverse repertoire of B and T cells each able to ing factors involved in cell cycle progression; note recognize a unique antigen. In B cell development, that the UTRs often make up a significant proportion V(D)J recombination generally occurs first at the of the transcript suggesting that there could be fur- immunoglobulin heavy chain (IgH) locus with D to J ther regulatory sequences encoded there. Additional recombination which is complete at the pre-pro-B cell regulatory potential may also arise from interactions stage of development (Figure 3). Next, V to DJ between the different ARE-binding proteins, and recombination occurs in a subset of quiescent pro-B other transacting factors such as microRNAs. In this cells. When this generates a functional Igμ protein manuscript, we will discuss recent progress capable of forming a complex with the surrogate 2of15 © 2017 The Authors. WIREs RNA published by Wiley Periodicals, Inc. Volume 8, September/October 2017 WIREs RNA Cell cycle RNA regulons Ccne2 Ccng2 Cdc25a Cdkn1a Cdkn1b E2f1 Mcm5 Mdm2 Orc2 Orc4 Rb1 Ccna1 Ccnd1 Ccnd3 Ccnh Cdc45 Cdk2 Cdk6 Cdk7 Cdkn1c Cdkn2b Element Cdkn2c Cdkn2d E2f3 5UTR Myc Gene CDS Orc1 Rbl1 3UTR Tfdp1 Tfdp2 ARE Ccnd2 Ccne1 Cdk1 Cdk4 Cdkn2a E2f2 Mcm2 Mcm3 Mcm4 Mcm6 Mcm7 Orc3 Orc5 Orc6 Prim1 Prim2 Rpa2 Trp53 Wee1 0 255075100 Percent FIGURE 2 | mRNA structure and AU-rich elements (AREs) within mouse mRNAs encoding factors involved in the G1-S transition in the cell cycle. The proportion of each transcript that is 50 UTR (blue), coding DNA sequence (CDS; red) and 30 UTR (yellow) is shown. AREs in the 3’UTR with the sequence ‘WWAUUUAWW’ where W can be either U or A are marked with black symbols. Transcript information was downloaded from the Ensembl project of genome databases with BioMart software. Where genes were annotated with alternative UTRs or CDS, the longest sequence was selected. light chains (VpreB and λ5), a cell-surface signaling occur. The transcription factors Aiolos and Ikaros, receptor, termed the precursor B cell receptor (pre- which repress c-Myc, are induced and the Dyrk1a BCR), is formed that both promotes a limited, but kinase limits the expression of Cyclin D3 at this very vigorous burst of proliferation of the early pre-B stage.8,9 Expression of a light chain leads to the cell, and, through a feedback mechanism, the transi- expression of the BCR at the beginning of the imma- tion to the late pre-B cell stage.6 Expression of the ture B cell stage where cells are quiescent and pre-BCR induces the transcription factor
Recommended publications
  • Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an Mrna Decay− Independent Manner
    Published OnlineFirst July 16, 2015; DOI: 10.1158/0008-5472.CAN-15-0205 Cancer Microenvironment and Immunology Research Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay–Independent Manner Franz Kratochvill1,2, Nina Gratz1, Joseph E. Qualls1,2, Lee-Ann Van De Velde1,2, Hongbo Chi2, Pavel Kovarik3, and Peter J. Murray1,2 Abstract Tristetraprolin (TTP) is an inducible zinc finger AU-rich (TAM). However, TTP's effects on AU-rich mRNA stability RNA-binding protein essential for enforcing degradation of were negligible and limited by constitutive p38a MAPK activ- mRNAs encoding inflammatory chemokines and cytokines. ity, which was the main driver of proinflammatory cytokine Most studies on TTP center on the connection between mRNA production in TAMs at the posttranscriptional level. Instead, half-life and inflammatory output, because loss of TTP ampli- elimination of TTP caused excessive protein production of fies inflammation by increasing the stability of AU-rich inflammatory mediators, suggesting TTP-dependent transla- mRNAs. Here, we focused on how TTP controls cytokine and tional suppression of AU-rich mRNAs. Manipulation of the chemokine production in the nonresolving inflammation of p38a–TTP axis in macrophages has significant effects on the cancer using tissue-specific approaches. In contrast with mod- growth of tumors and therefore represents a means to mani- el in vitro macrophage systems, we found constitutive TTP pulate inflammation in the tumor microenvironment. Cancer expression in late-stage tumor-associated macrophages Res; 75(15); 1–11. Ó2015 AACR. Introduction TLR signaling phosphorylates TTP thereby blocking its function and sustaining TNF output (9, 10).
    [Show full text]
  • Synergistic Genetic Interactions Between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models
    BASIC RESEARCH www.jasn.org Synergistic Genetic Interactions between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models Rory J. Olson,1 Katharina Hopp ,2 Harrison Wells,3 Jessica M. Smith,3 Jessica Furtado,1,4 Megan M. Constans,3 Diana L. Escobar,3 Aron M. Geurts,5 Vicente E. Torres,3 and Peter C. Harris 1,3 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocys- tin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD’s mild phenotype in murine models versus in humans has hampered investi- gating its pathogenesis. Methods To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. Results The genetic interaction was synergistic in both species, with digenic animals exhibiting pheno- types of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction be- tween Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached.
    [Show full text]
  • The Basal Bodies of Chlamydomonas Reinhardtii Susan K
    Dutcher and O’Toole Cilia (2016) 5:18 DOI 10.1186/s13630-016-0039-z Cilia REVIEW Open Access The basal bodies of Chlamydomonas reinhardtii Susan K. Dutcher1* and Eileen T. O’Toole2 Abstract The unicellular green alga, Chlamydomonas reinhardtii, is a biflagellated cell that can swim or glide. C. reinhardtii cells are amenable to genetic, biochemical, proteomic, and microscopic analysis of its basal bodies. The basal bodies contain triplet microtubules and a well-ordered transition zone. Both the mother and daughter basal bodies assemble flagella. Many of the proteins found in other basal body-containing organisms are present in the Chlamydomonas genome, and mutants in these genes affect the assembly of basal bodies. Electron microscopic analysis shows that basal body duplication is site-specific and this may be important for the proper duplication and spatial organization of these organelles. Chlamydomonas is an excellent model for the study of basal bodies as well as the transition zone. Keywords: Site-specific basal body duplication, Cartwheel, Transition zone, Centrin fibers Phylogeny and conservation of proteins Centrin, SPD2/CEP192, Asterless/CEP152; CEP70, The green lineage or Viridiplantae consists of the green delta-tubulin, and epsilon-tubulin. Chlamydomonas has algae, which include Chlamydomonas, the angiosperms homologs of all of these based on sequence conservation (the land plants), and the gymnosperms (conifers, cycads, except PLK4, CEP152, and CEP192. Several lines of evi- ginkgos). They are grouped together because they have dence suggests that CEP152, CEP192, and PLK4 interact chlorophyll a and b and lack phycobiliproteins. The green [20, 52] and their concomitant absence in several organ- algae together with the cycads and ginkgos have basal isms suggests that other mechanisms exist that allow for bodies and cilia, while the angiosperms and conifers have control of duplication [4].
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • ZFP36L1 and AUF1 Induction Contribute to the Suppression of Inflammatory Mediators Expression by Globular Adiponectin Via Autophagy Induction in Macrophages
    Original Article Biomol Ther 26(5), 446-457 (2018) ZFP36L1 and AUF1 Induction Contribute to the Suppression of Inflammatory Mediators Expression by Globular Adiponectin via Autophagy Induction in Macrophages Aastha Shrestha†, Nirmala Tilija Pun† and Pil-Hoon Park* College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea Abstract Adiponectin, a hormone predominantly originated from adipose tissue, has exhibited potent anti-inflammatory properties. Accumu- lating evidence suggests that autophagy induction plays a crucial role in anti-inflammatory responses by adiponectin. However, underlying molecular mechanisms are still largely unknown. Association of Bcl-2 with Beclin-1, an autophagy activating protein, prevents autophagy induction. We have previously shown that adiponectin-induced autophagy activation is mediated through inhibition of interaction between Bcl-2 and Beclin-1. In the present study, we examined the molecular mechanisms by which adi- ponectin modulates association of Bcl-2 and Beclin-1 in macrophages. Herein, we demonstrated that globular adiponectin (gAcrp) induced increase in the expression of AUF1 and ZFP36L1, which act as mRNA destabilizing proteins, both in RAW 264.7 macro- phages and primary peritoneal macrophages. In addition, gene silencing of AUF1 and ZFP36L1 caused restoration of decrease in Bcl-2 expression and Bcl-2 mRNA half-life by gAcrp, indicating crucial roles of AUF1 and ZFP36L1 induction in Bcl-2 mRNA destabilization by gAcrp. Moreover, knock-down of AUF1 and ZFP36L1 enhanced interaction of Bcl-2 with Beclin-1, and subse- quently prevented gAcrp-induced autophagy activation, suggesting that AUF1 and ZFP36L1 induction mediates gAcrp-induced autophagy activation via Bcl-2 mRNA destabilization. Furthermore, suppressive effects of gAcrp on LPS-stimulated inflammatory mediators expression were prevented by gene silencing of AUF1 and ZFP36L1 in macrophages.
    [Show full text]
  • Westminsterresearch ZFP36 Proteins and Mrna Targets in B Cell
    WestminsterResearch http://www.westminster.ac.uk/westminsterresearch ZFP36 proteins and mRNA targets in B cell malignancies Alcaraz, A. This is an electronic version of a PhD thesis awarded by the University of Westminster. © Miss Amor Alcaraz, 2015. The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners. Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/). In case of abuse or copyright appearing without permission e-mail [email protected] ZFP36 proteins and mRNA targets in B cell malignancies Maria del Amor Alcaraz-Serrano A Thesis submitted in partial fulfilment of the requirements of the University of Westminster for the degree of Doctor of Philosophy September 2015 Abstract The ZFP36 proteins are a family of post-transcriptional regulator proteins that bind to adenine uridine rich elements (AREs) in 3’ untranslated (3’UTR) regions of mRNAs. The members of the human family, ZFP36L1, ZFP36L2 and ZFP36 are able to degrade mRNAs of important cell regulators that include cytokines, cell signalling proteins and transcriptional factors. This project investigated two proposed targets for the protein family that have important roles in B cell biology, BCL2 and CD38 mRNAs. BCL2 is an anti-apoptotic protein with key roles in cell survival and carcinogenesis; CD38 is a membrane protein differentially expressed in B cells and with a prognostic value in B chronic lymphocytic leukaemia (B-CLL), patients positive for CD38 are considered to have a poor prognosis.
    [Show full text]
  • Cep78 Is a New Centriolar Protein Involved in Plk4-Induced Centriole
    © 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 2713-2718 doi:10.1242/jcs.184093 SHORT REPORT Cep78 is a new centriolar protein involved in Plk4-induced centriole overduplication Kathrin Brunk1,§, Mei Zhu1,*,§, Felix Bärenz1, Anne-Sophie Kratz1, Uta Haselmann-Weiss2, Claude Antony2,‡ and Ingrid Hoffmann1,¶ ABSTRACT 2006; Brito et al., 2012). Major components of the pathway in Centrioles are core components of centrosomes, the major human cells are the serine/threonine polo-like kinase 4 (Plk4), microtubule-organizing centers of animal cells, and act as basal Cep192, Cep152, Sas-6, STIL and CPAP (also known as CENPJ) bodies for cilia formation. Control of centriole number is therefore (Brito et al., 2012). In human cells, Plk4, Sas-6 and STIL localize to crucial for genome stability and embryogenesis. Centriole duplication the sites of procentriole formation and collaborate to induce requires the serine/threonine protein kinase Plk4. Here, we identify cartwheel assembly during daughter centriole formation. Plk4 is a Cep78 as a human centrosomal protein and a new interaction partner structurally divergent polo-like kinase family member as it harbors – of Plk4. Cep78 is mainly a centriolar protein that localizes to the three polo-boxes (PB1 PB3) whereas Plk1, Plk2 and Plk3 only centriolar wall. Furthermore, we find that Plk4 binds to Cep78 through have two polo-boxes, PB1 and PB2 (Slevin et al., 2012). its N-terminal domain but that Cep78 is not an in vitro Plk4 substrate. Few substrates of Plk4 have been described to date, including Cep78 colocalizes with Plk4 at centrioles and is required for STIL (Ohta et al., 2014; Dzhindzhev et al., 2014; Kratz et al., 2015; Plk4-induced centriole overduplication.
    [Show full text]
  • Is Cep70, a Centrosomal Protein with New Roles in Breast Cancer Dissemination and Metastasis, a Facilitator of Epithelial-Mesenchymal Transition?
    Is Cep70, a centrosomal protein with new roles in breast cancer dissemination and metastasis, a facilitator of epithelial-mesenchymal transition? Pedro A. Lazo 1,2 1 Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain 2 Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain Running title: Cep70 and EMT Disclosures: None declared. Contact address: [email protected] 1 Introduction Microtubules are driving mechanisms of chromosomes, intracellular organelle movement, and cell shape and motility. Microtubules are organized on centrosomes, which are assembled in microtubule-organizing centers (MTOC). In mitosis there is no nuclear envelope and centromeres associated to microtubules are mainly involved in chromosome redistribution into daughter cells. In differentiated cells the microtubule- organizing centers are dispersed in the cytoplasm (non centrosomal (ncMTOC)) and interact with the minus end of microtubules through γ-tubulin. 1 However, it is not known if the microtubule contribution to tumor biology is only by facilitating tumor aneuploidy. During tumor dissemination, a process not linked to cell division, important changes take place in cell shape and motility. Microtubules are very dynamic because of their inherent structural instability, and this plasticity facilitates their reorganization during the epithelial-mesenchymal
    [Show full text]
  • Cooperative Action of Mir-124 and ISX9 in Instructing Direct Reprogramming of Mouse Astrocytes to Induced-Neurons in Vitro and I
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.127126; this version posted June 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Cooperative action of miR‐124 and ISX9 in instructing direct 2 reprogramming of mouse astrocytes to induced‐neurons in 3 vitro and in vivo 4 Elsa Papadimitriou1, Paraskevi N. Koutsoudaki1,&, Timokratis Karamitros2,*, Dimitra 5 Karagkouni3,*, Dafni Chroni‐Tzartou4, Maria Margariti1, Christos Gkemisis1, 6 Evangelia Xingi5, Irini Thanou1, Socrates J. Tzartos4, Artemis G. Hatzigeorgiou3, 7 Dimitra Thomaidou1,5,# 8 Affiliations 9 1Neural Stem Cells and Neuro‐imaging Group, Department of Neurobiology, Hellenic 10 Pasteur Institute 11 2Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic 12 Pasteur Institute 13 3DIANA‐Lab, Hellenic Pasteur Institute & Dept. of Computer Science and Biomedical 14 Informatics, Univ. of Thessaly 15 4Laboratory of Molecular Neurobiology and Immunology, Department of 16 Neurobiology, Hellenic Pasteur Institute 17 5Light Microscopy Unit, Hellenic Pasteur Institute 18 *equally contributing authors 19 &Present address: Molecular Carcinogenesis Group, Department of Histology and 20 Embryology, Medical School, National and Kapodistrian University of Athens, Athens, 21 Greece 22 #Corresponding author 23 Email: [email protected] 24 25 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.127126; this version posted June 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Mtor Activity and Autophagy in Senescent Cells, a Complex Partnership
    International Journal of Molecular Sciences Review mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership Angel Cayo 1, Raúl Segovia 1, Whitney Venturini 1,2, Rodrigo Moore-Carrasco 2, Claudio Valenzuela 1 and Nelson Brown 1,* 1 Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; [email protected] (A.C.); [email protected] (R.S.); [email protected] (W.V.); [email protected] (C.V.) 2 Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile; [email protected] * Correspondence: [email protected] Abstract: Cellular senescence is a form of proliferative arrest triggered in response to a wide variety of stimuli and characterized by unique changes in cell morphology and function. Although unable to divide, senescent cells remain metabolically active and acquire the ability to produce and secrete bioactive molecules, some of which have recognized pro-inflammatory and/or pro-tumorigenic actions. As expected, this “senescence-associated secretory phenotype (SASP)” accounts for most of the non-cell-autonomous effects of senescent cells, which can be beneficial or detrimental for tissue homeostasis, depending on the context. It is now evident that many features linked to cellular senescence, including the SASP, reflect complex changes in the activities of mTOR and other metabolic pathways. Indeed, the available evidence indicates that mTOR-dependent signaling is required for the maintenance or implementation of different aspects of cellular senescence. Thus, depending on the cell type and biological context, inhibiting mTOR in cells undergoing senescence can reverse Citation: Cayo, A.; Segovia, R.; senescence, induce quiescence or cell death, or exacerbate some features of senescent cells while Venturini, W.; Moore-Carrasco, R.; inhibiting others.
    [Show full text]
  • A Post-Transcriptional Mechanism Pacing Expression of Neural Genes with Precursor Cell Differentiation Status
    ARTICLE Received 24 Sep 2014 | Accepted 21 May 2015 | Published 6 Jul 2015 DOI: 10.1038/ncomms8576 OPEN A post-transcriptional mechanism pacing expression of neural genes with precursor cell differentiation status Weijun Dai1, Wencheng Li2, Mainul Hoque2, Zhuyun Li1, Bin Tian2 & Eugene V. Makeyev1,3 Nervous system (NS) development relies on coherent upregulation of extensive sets of genes in a precise spatiotemporal manner. How such transcriptome-wide effects are orchestrated at the molecular level remains an open question. Here we show that 30-untranslated regions (30 UTRs) of multiple neural transcripts contain AU-rich cis-elements (AREs) recognized by tristetraprolin (TTP/Zfp36), an RNA-binding protein previously implicated in regulation of mRNA stability. We further demonstrate that the efficiency of ARE-dependent mRNA degradation declines in the neural lineage because of a decrease in the TTP protein expression mediated by the NS-enriched microRNA miR-9. Importantly, TTP downregulation in this context is essential for proper neuronal differentiation. On the other hand, inactivation of TTP in non-neuronal cells leads to dramatic upregulation of multiple NS-specific genes. We conclude that the newly identified miR-9/TTP circuitry limits unscheduled accumulation of neuronal mRNAs in non-neuronal cells and ensures coordinated upregulation of these transcripts in neurons. 1 School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore. 2 Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA. 3 MRC Centre for Developmental Neurobiology, King’s College London, London SE1 1UL, UK. Correspondence and requests for materials should be addressed to E.V.M.
    [Show full text]
  • The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic Β
    The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic β-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle This information is current as Progression of September 25, 2021. Katharina U. Vogel, Lewis S. Bell, Alison Galloway, Helena Ahlfors and Martin Turner J Immunol 2016; 197:2673-2685; Prepublished online 26 August 2016; Downloaded from doi: 10.4049/jimmunol.1600854 http://www.jimmunol.org/content/197/7/2673 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2016/08/26/jimmunol.160085 Material 4.DCSupplemental References This article cites 61 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/197/7/2673.full#ref-list-1 Why The JI? Submit online. by guest on September 25, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic b-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle Progression Katharina U.
    [Show full text]