Earth Science Mission Thumbnail Description Website E/PO Lead

Total Page:16

File Type:pdf, Size:1020Kb

Earth Science Mission Thumbnail Description Website E/PO Lead Earth Science Mission Thumbnail Description Website E/PO Lead E/PO Lead Organization Email First Name Last Name ACRIMSAT The ACRIMSAT Mission is measuring Total Solar Irradiance (TSI). The http://acrim.jpl.nasa.gov Karen Yuen JPL [email protected] ACRIMSAT spacecraft carries the Active Cavity Radiometer Irradiance Monitor (ACRIM) III instrument, the third in a series of long-term solar monitoring tools. Airborne Science Program The Airborne Science Program within the Earth Science Division is http://airbornescience.nasa.gov Cheryl Yuhas NASA HQ [email protected] responsible for providing aircraft systems that further science and Bruce Tagg [email protected] advance the use of satellite data. Aqua Aqua is obtaining a set of precise atmosphere and ocean http://aqua.nasa.gov Steve Graham GSFC [email protected] measurements to understand their role in Earth's climate and its variations. Aqua carries six state-of-the-art instruments to observe the Earth's oceans, atmosphere, land, ice and snow covers, and vegetation, providing high measurement accuracy, spatial detail, and temporal frequencey. It is gathering data on the Earth's water cycle, in particular information on water vapor and clouds, precipitation from the atmosphere, soil wetness on land, ice on both land and sea, and snow cover. It also provides information on vegetation cover, temperatures of the air, land and water, and radiation from both the Sun and the Earth. Aqua is a joint project of the United States, Japan and Brazil. Aqua/AIRS The Atmospheric Infrared Sounder (AIRS) is one of six instruments http://airs.jpl.nasa.gov Sharon Ray JPL [email protected] aboard the Aqua satellite. Together with the Advanced Microwave Sounding Unit (AMSU-A), these instruments observe the global water and energy cycles, climate variation and trends, and the response of the climate system to increased greenhouse gases. AIRS creates 3-D maps of air and surface water temperature, water vapor and cloud properties. AIRS can also measure trace greenhouse gases such as ozone, carbon monoxide, carbon dioxide, and methane Aquarius Aquarius/SAC-D is a focused satellite mission, planned for launch in http://aquarius.nasa.gov Annette deCharon University of Maine [email protected] 2011, to measure global sea surface salinity (SSS). The Aquarius instrument will measure changes in SSS equivalent to about a "pinch" of salt in one gallon of water. By measuring SSS over the globe, Aquarius will answer long-standing questions about how our oceans respond to climate change and the water cycle. Aquarius will also be used to monitor water masses that regulate ocean circulation and Earth's climate. NASA is partnering with the Space Agency of Argentina (Comisión Nacional de Actividades Especiales, CONAE) on the Aquarius/SAC-D mission. Aura The Aura mission studies the Earth's ozone, air quality and climate. It http://aura.gsfc.nasa.gov Ginger Butcher GSFC/Sigma Space [email protected] is designed exclusively to conduct research on the composition, Corp. chemistry and dynamics of the Earth's atmosphere. Aura's objective is to study the chemistry and dynamics of the Earth's atmosphere with emphasis on the upper troposphere and lower stratosphere by employing multiple instruments on a single satellite. The satellite's measurements enable scientists to investigate questions about ozone trends, air quality changes, and their linkage to climate change Earth Science Mission Thumbnail Description Website E/PO Lead E/PO Lead Organization Email First Name Last Name CALIPSO The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation http://www.calipso.larc.nasa.gov/ Charles Trepte LaRC [email protected] (CALIPSO) satellite is providing new insight into the role that clouds outreach/ and atmospheric aerosols (airborne particles) play in regulating Earth's weather, climate, and air quality. CALIPSO and CloudSat are highly complementary and together provide 3-D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO is a joint preject between NASA and Centre National d'Etudes Spatiales (CNES) of France. CloudSat CloudSat is among the first satellites to study clouds on a global basis. http://cloudsat.atmos.colostate.e Todd Ellis SUNY-Oneonta [email protected] Its key observations are the vertical profiles of cloud liquid water and du/ ice water contents, and related cloud physical and radiative Deanna TeBockhorst Colorado State [email protected] properties. CloudSat flies in a tight formation with the CALIPSO Peter Falcon University [email protected] satellite, and both follow behind the Aqua satellite in a looser formation. The combination of these satellites provide a rich source of information that can be used to assess the role of clouds in both weather and climate. EO-1 The New Millennium Program Earth Observing-1 (EO-1) program http://eo1.gsfc.nasa.gov/new/ext Nancy Leon JPL [email protected] completed its baseline mission requirements successfully after one ended/index.html year of operations on Nov. 20, 2001. In Dec. 2001, NASA HQ approved a plan to permit the EO-1 Program to embark on an Extended Mission operations phase. The objectives of the Extended Mission are to maximize the infusion of EO-1 technology by simultaneously increasing utilization of the on-orbit resource and to reduce the cost of operations through a Continuous Improvement Program. GRACE The primary goal of the Gravity Recovery and Climate Experiment http://www.csr.utexas.edu/grace/ Margaret Baguio University of Texas - [email protected] (GRACE) mission is to accurately map variations in the Earth's gravity Austin field. Another goal of the mission is to create a better profile of the Earth's atmosphere. The results are contributing to global climate change studies. GRACE is a joint project between NASA and Deutsche Forschungsanstalt fur Luft und Raumfahrt (DLR) in Germany. ICESat and ICESat-2 ICESat (Ice, Cloud and land Evaluation Satellite) is the benchmark http://icesat.gsfc.nasa.gov Brian Campbell GSFC/SAIC [email protected] Earth Observing System mission for measuring ice sheet mass balance, cloud and aerosol heights, as well as land topography and vegetation characteristics. From 2003 to 2009, the ICESat mission provided multi- year elevation data needed to determine ice sheet mass balance as well as cloud property information, especially for stratospheric clouds common over polar areas. It also provided topography and vegetation data around the globe, in addition to the polar-specific coverage over the Greenland and Antarcitc ice sheets. ICESat-2 is the 2nd generation of the ICESat orbiting laser altimeter and scheduled for launch in late 2015. Earth Science Mission Thumbnail Description Website E/PO Lead E/PO Lead Organization Email First Name Last Name Jason-1, OSTM/Jason-2 Jason-1 is a satellite oceanography mission, which measures sea- http://sealevel.jpl.nasa.gov Annie Richardson JPL [email protected] surface height to understand global ocean circulation, improve global climate predictions, and monitor events such as El Niño conditions and ocean eddies. Accurate measurements of sea-surface height and ocean winds provide scientists with information about the speed and direction of ocean currents and about the heat stored in the ocean. This, in turn, helps reveal global climate variations. The Ocean Surface Topography Mission on the Jason-2 satellite is a follow-on to Jason-1. It takes the measurment of sea surface height from space into an operational mode, for continued climate forcasting science and research, and for industrial and commercial applications. Landsat and Landsat Data The Landsat Program is a series of Earth-observing satellite missions http://landsat.usgs.gov/index.php Anita Davis GSFC/Sigma Space [email protected] Continuity Mission (LDCM) jointly managed by NASA and the U.S. Geological Survey. For almost Corp. 40 years, Landsat satellites have collected data of the Earth's continental surfaces to support global change research and applications. The data constitutes the longest continuous record of the Earth's surface as seen from space. LDCM is the future of Landsat satellites. In addition to collecting data for land use planning and monitoring on regional to local scales, support of disaster response and evaluations, and water use monitoring, LDCM measurements will serve NASA science research in climate, carbon cycle, ecosystems, water cycle, biogeochemistry, and Earth surface/interior. OCO-2 OCO-2 is a mission in NASA's ongoing study of the global carbon cycle, http://oco.jpl.nasa.gov Karen Yuen JPL [email protected] and will recover important scientific measurements "lost" as a result of the OCO launch vehicle anomaly. OCO-2 will make space-based measurements of atmospheric carbon dioxide (CO2) with the precision, resolution, and coverage needed to more accurately map the geographic distribution of CO2 sources and sinks. This information will be used to improve our understanding of the processes that control atmospheric concentrations of this potent greenhouse gas and will lead to improved predictions of future climate. QuickSCAT QuikSCAT is recording sea-surface wind speed and direction data http://winds.jpl.nasa.gov/missions Peter Falcon JPL [email protected] under all weather and cloud conditions over Earth's oceans. /quickscat/ QuickSCAT can acquire hundreds of times more observations of surface wind velocity each day than can ships and buoys, and can provide continuous, accurate and high-resolution measurements of both wind speeds and direction regardless of weather conditions. This data is vital for global climate research, operational weather forecasting, and storm warning. Earth Science Mission Thumbnail Description Website E/PO Lead E/PO Lead Organization Email First Name Last Name SMAP SMAP Mission will provide a capability for global mapping of soil http://smap.jpl.nasa.gov Karen Yuen JPL [email protected] moisture and freeze/thaw state.
Recommended publications
  • New Millennium Program
    NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 New Millennium Program NASA's New Millennium program, a series of discerning trends, examining planetary climates and missions to test cutting-edge technologies never atmospheres, or landing to study such surface phe- before flown, will pave the way for a 21st century nomena as seismic and meteorological activity. Other fleet of affordable, frequently launched spacecraft sets of spacecraft could form a constellation uniquely perhaps 10 to suited to study 15 per year solar systems with highly beyond our own. focused sci- These goals ence objec- require significant tives. changes in almost New all aspects of Millennium spacecraft design will develop and deployment. and validate New Millennium the essential experimental tech- technologies nology flights will and capabilities validate key tech- required for nologies required these new to move toward. types of mis- Testing these sions. The pro- technologies in gram is flight will speed designed to ini- up their infusion tiate a revolu- New Millenniums Deep Space 1 will test ion propulsion and other technologies into the market- tionary new when the spacecraft flies by an asteroid and later possibly a comet (above). place. Some of way of explor- the space instru- ing Earth, the solar system and astrophysical events in ments of tomorrow may become as small and light- and far beyond the Milky Way galaxy. These new weight as a pocket wallet. missions will ensure NASA's technological readiness Drawing on diverse sectors of the country's sci- for post-2000 space and Earth science missions.
    [Show full text]
  • The Earth Observer. July
    National Aeronautics and Space Administration The Earth Observer. July - August 2012. Volume 24, Issue 4. Editor’s Corner Steve Platnick obser ervth EOS Senior Project Scientist The joint NASA–U.S. Geological Survey (USGS) Landsat program celebrated a major milestone on July 23 with the 40th anniversary of the launch of the Landsat-1 mission—then known as the Earth Resources and Technology Satellite (ERTS). Landsat-1 was the first in a series of seven Landsat satellites launched to date. At least one Landsat satellite has been in operation at all times over the past four decades providing an uninter- rupted record of images of Earth’s land surface. This has allowed researchers to observe patterns of land use from space and also document how the land surface is changing with time. Numerous operational applications of Landsat data have also been developed, leading to improved management of resources and informed land use policy decisions. (The image montage at the bottom of this page shows six examples of how Landsat data has been used over the last four decades.) To commemorate the anniversary, NASA and the USGS helped organize and participated in several events on July 23. A press briefing was held over the lunch hour at the Newseum in Washington, DC, where presenta- tions included the results of a My American Landscape contest. Earlier this year NASA and the USGS sent out a press release asking Americans to describe landscape change that had impacted their lives and local areas. Of the many responses received, six were chosen for discussion at the press briefing with the changes depicted in time series or pairs of Landsat images.
    [Show full text]
  • High-Temporal-Resolution Water Level and Storage Change Data Sets for Lakes on the Tibetan Plateau During 2000–2017 Using Mult
    Earth Syst. Sci. Data, 11, 1603–1627, 2019 https://doi.org/10.5194/essd-11-1603-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions Xingdong Li1, Di Long1, Qi Huang1, Pengfei Han1, Fanyu Zhao1, and Yoshihide Wada2 1State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China 2International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria Correspondence: Di Long ([email protected]) Received: 21 February 2019 – Discussion started: 15 March 2019 Revised: 4 September 2019 – Accepted: 22 September 2019 – Published: 28 October 2019 Abstract. The Tibetan Plateau (TP), known as Asia’s water tower, is quite sensitive to climate change, which is reflected by changes in hydrologic state variables such as lake water storage. Given the extremely limited ground observations on the TP due to the harsh environment and complex terrain, we exploited multiple altimetric mis- sions and Landsat satellite data to create high-temporal-resolution lake water level and storage change time series at weekly to monthly timescales for 52 large lakes (50 lakes larger than 150 km2 and 2 lakes larger than 100 km2) on the TP during 2000–2017. The data sets are available online at https://doi.org/10.1594/PANGAEA.898411 (Li et al., 2019). With Landsat archives and altimetry data, we developed water levels from lake shoreline posi- tions (i.e., Landsat-derived water levels) that cover the study period and serve as an ideal reference for merging multisource lake water levels with systematic biases being removed.
    [Show full text]
  • Landsat Data: Community Standard for Data Calibration
    LANDSAT DATA: COMMUNITY STANDARD FOR DATA CALIBRATION A Report of the National Geospatial Advisory Committee Landsat Advisory Group October 2020 Landsat Data: Community Standard for Data Calibration October 2020 LANDSAT DATA: COMMUNITY STANDARD FOR DATA CALIBRATION Executive Summary Landsat has become a widely recognized “gold” reference for Earth observation satellites. Landsat’s extensive historical record of highly calibrated data is a public good and exploited by other satellite operators to improve their data and products, and is becoming an open standard. However, the significance, value, and use case description of highly calibrated satellite data are typically not presented in a way that is understandable to general audiences. This paper aims to better communicate the fundamental importance of Landsat in making Earth observation data more accessible and interoperable for global users. The U.S. Geological Survey (USGS), in early 2020, requested the Landsat Advisory Group (LAG), subcommittee of the National Geospatial Advisory Committee (NGAC) to prepare this paper for a general audience, clearly capturing the essence of Landsat’s “gold” standard standing. Terminology, descriptions, and specific examples are presented at a layperson’s level. Concepts emphasize radiometric, geometric, spectral, and cross-sensor calibration, without complex algorithms. Referenced applications highlight change detection, time-series analysis, crop type mapping and data fusion/harmonization/integration. Introduction The National Land Imaging Program leadership from the U.S. Geological Survey (USGS) requested that the Landsat Advisory Group (LAG), a subcommittee of the National Geospatial Advisory Committee (NGAC), prepare a paper that accurately and coherently describes how Landsat data have become widely recognized as a radiometric and geometric calibration standard or “good-as-gold” reference for other multi-spectral satellite data.
    [Show full text]
  • GST Responses to “Questions to Inform Development of the National Plan”
    GST Responses to “Questions to Inform Development of the National Plan” Name (optional): Dr. Darrel Williams Position (optional): Chief Scientist, (240) 542-1106; [email protected] Institution (optional): Global Science & Technology, Inc. Greenbelt, Maryland 20770 Global Science & Technology, Inc. (GST) is pleased to provide the following answers as a contribution towards OSTP’s effort to develop a national plan for civil Earth observations. In our response we provide information to support three main themes: 1. There is strong science need for high temporal resolution of moderate spatial resolution satellite earth observation that can be achieved with cost effective, innovative new approaches. 2. Operational programs need to be designed to obtain sustained climate data records. Continuity of Earth observations can be achieved through more efficient and economical means. 3. We need programs to address the integration of remotely sensed data with in situ data. GST has carefully considered these important national Earth observation issues over the past few years and has submitted the following RFI responses: The USGS RFI on Landsat Data Continuity Concepts (April 2012), NASA’s Sustainable Land Imaging Architecture RFI (September 2013), and This USGEO RFI (November 2013) relative to OSTP’s efforts to develop a national plan for civil Earth observations. In addition to the above RFI responses, GST led the development of a mature, fully compliant flight mission concept in response to NASA’s Earth Venture-2 RFP in September 2011. Our capacity to address these critical national issues resides in GST’s considerable bench strength in Earth science understanding (Drs. Darrel Williams, DeWayne Cecil, Samuel Goward, and Dixon Butler) and in NASA systems engineering and senior management oversight (Drs.
    [Show full text]
  • Algorithm Theoretical Basis Document (ATBD) for Land
    ICE, CLOUD, and Land Elevation Satellite (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Land - Vegetation Along-track products (ATL08) Contributions by Land/VEG SDT Team Members and ICESAt-2 Project Science Office (Amy Neuenschwander, Sorin Popescu, Ross Nelson, David Harding, Katherine Pitts, John Robbins, Dylan Pederson, and Ryan Sheridan) ATBD Document prepared by Amy Neuenschwander June 2018 Content reviewed: technical approach, assumptions, scientific soundness, maturity, scientific utility of the data product 21 Contents 1 INTRODUCTION 8 1.1. Background 9 1.2 Photon Counting Lidar 11 1.3 The ICESat-2 concept 12 1.4 Height Retrieval from ATLAS 16 1.5 Accuracy Expected from ATLAS 17 1.6 Additional Potential Height Errors from ATLAS 19 1.7 Dense Canopy Cases 20 1.8 Sparse Canopy Cases 20 2. ATL08: DATA PRODUCT 21 2.1 Subgroup: Land Parameters 23 2.1.1 Georeferenced_segment_number_beg 24 2.1.2 Georeferenced_segment_number_end 25 2.1.3 Segment_terrain_height_mean 25 2.1.4 Segment_terrain_height_med 25 2.1.5 Segment_terrain_height_min 25 2.1.6 Segment_terrain_height_max 26 2.1.7 Segment_terrain_height_mode 26 2.1.8 Segment_terrain_height_skew 26 2.1.9 Segment_number_terrain_photons 26 2.1.10 Segment height_interp 27 2.1.11 Segment h_te_std 27 2.1.12 Segment_terrain_height_uncertainty 27 2.1.13 Segment_terrain_slope 27 21 2.1.14 Segment number_of_photons 27 2.1.15 Segment_terrain_height_best_fit 28 2.2 Subgroup: Vegetation Parameters 28 2.2.1 Georeferenced_segment_number_beg 31 2.2.2 Georeferenced_segment_number_end 31 2.2.3
    [Show full text]
  • GLAS HDF Standard Data Product Specification Revision - November 01, 2012
    ICE, CLOUD, and Land Elevation Satellite (ICESat) Project GLAS_HDF Standard Data Product Specification Revision - November 01, 2012 SGT/Jeffrey Lee Cryospheric Sciences Laboratory Hydrospheric and Biospheric Processes NASA Goddard Space Flight Center Goddard Space Flight Center Greenbelt, Maryland National Aeronautics and Space Administration GLAS_HDF Standard Data Product Specification Revision - Table of Contents Table of Contents ............................................................................................... 1-1 List of Figures ..................................................................................................... 1-3 List of Tables ...................................................................................................... 1-3 1.0 Introduction ................................................................................................ 1-1 1.1 Identification of Document ...................................................................... 1-1 1.2 Scope ..................................................................................................... 1-1 1.3 Purpose and Objectives ......................................................................... 1-1 1.4 Acknowledgements ................................................................................ 1-1 1.5 Document Status and Schedule ............................................................. 1-2 1.6 Document Change History ..................................................................... 1-2 2.0 Related Documentation ............................................................................
    [Show full text]
  • The EO-1 Mission and the Advanced Land Imager the EO-1 Mission and the Advanced Land Imager Constantine J
    • DIGENIS The EO-1 Mission and the Advanced Land Imager The EO-1 Mission and the Advanced Land Imager Constantine J. Digenis n The Advanced Land Imager (ALI) was developed at Lincoln Laboratory under the sponsorship of the National Aeronautics and Space Administration (NASA). The purpose of ALI was to validate in space new technologies that could be utilized in future Landsat satellites, resulting in significant economies of mass, size, power consumption, and cost, and in improved instrument sensitivity and image resolution. The sensor performance on orbit was verified through the collection of high-quality imagery of the earth as seen from space. ALI was launched onboard the Earth Observing 1 (EO-1) satellite in November 2000 and inserted into a 705 km circular, sun-synchronous orbit, flying in formation with Landsat 7. Since then, ALI has met all its performance objectives and continues to provide good science data long after completing its original mission duration of one year. This article serves as a brief introduction to ALI and to six companion articles on ALI in this issue of the Journal. nder the landsat program, a series of sat- in the cross-track direction, covering a ground swath ellites have provided an archive of multispec- width of 185 km. The typical image is also 185 km Utral images of the earth. The first Landsat long along the flight path. satellite was launched in 1972 in a move to explore The Advanced Land Imager (ALI) was developed at the earth from space as the manned exploration of the Lincoln Laboratory under the sponsorship of the Na- moon was ending.
    [Show full text]
  • Cloudsat-CALIPSO Launch
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CloudSat-CALIPSO Launch Press Kit April 2006 Media Contacts Erica Hupp Policy/Program (202) 358-1237 NASA Headquarters, Management [email protected] Washington Alan Buis CloudSat Mission (818) 354-0474 NASA Jet Propulsion Laboratory, [email protected] Pasadena, Calif. Emily Wilmsen Colorado Role - CloudSat (970) 491-2336 Colorado State University, [email protected] Fort Collins, Colo. Julie Simard Canada Role - CloudSat (450) 926-4370 Canadian Space Agency, [email protected] Saint-Hubert, Quebec, Canada Chris Rink CALIPSO Mission (757) 864-6786 NASA Langley Research Center, [email protected] Hampton, Va. Eliane Moreaux France Role - CALIPSO 011 33 5 61 27 33 44 Centre National d'Etudes [email protected] Spatiales, Toulouse, France George Diller Launch Operations (321) 867-2468 NASA Kennedy Space Center, [email protected] Fla. Contents General Release ......................................................................................................................... 3 Media Services Information ........................................................................................................ 5 Quick Facts ................................................................................................................................. 6 Mission Overview ....................................................................................................................... 7 CloudSat Satellite ....................................................................................................................
    [Show full text]
  • Civilian Satellite Remote Sensing: a Strategic Approach
    Civilian Satellite Remote Sensing: A Strategic Approach September 1994 OTA-ISS-607 NTIS order #PB95-109633 GPO stock #052-003-01395-9 Recommended citation: U.S. Congress, Office of Technology Assessment, Civilian Satellite Remote Sensing: A Strategic Approach, OTA-ISS-607 (Washington, DC: U.S. Government Printing Office, September 1994). For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP. Washington, DC 20402-9328 ISBN 0-16 -045310-0 Foreword ver the next two decades, Earth observations from space prom- ise to become increasingly important for predicting the weather, studying global change, and managing global resources. How the U.S. government responds to the political, economic, and technical0 challenges posed by the growing interest in satellite remote sensing could have a major impact on the use and management of global resources. The United States and other countries now collect Earth data by means of several civilian remote sensing systems. These data assist fed- eral and state agencies in carrying out their legislatively mandated pro- grams and offer numerous additional benefits to commerce, science, and the public welfare. Existing U.S. and foreign satellite remote sensing programs often have overlapping requirements and redundant instru- ments and spacecraft. This report, the final one of the Office of Technolo- gy Assessment analysis of Earth Observations Systems, analyzes the case for developing a long-term, comprehensive strategic plan for civil- ian satellite remote sensing, and explores the elements of such a plan, if it were adopted. The report also enumerates many of the congressional de- cisions needed to ensure that future data needs will be satisfied.
    [Show full text]
  • Artificial Intelligence at the Jet Propulsion Laboratory
    AI Magazine Volume 18 Number 1 (1997) (© AAAI) Articles Making an Impact Artificial Intelligence at the Jet Propulsion Laboratory Steve Chien, Dennis DeCoste, Richard Doyle, and Paul Stolorz ■ The National Aeronautics and Space Administra- described here is in the context of the remote- tion (NASA) is being challenged to perform more agent autonomy technology experiment that frequent and intensive space-exploration mis- will fly on the New Millennium Deep Space sions at greatly reduced cost. Nowhere is this One Mission in 1998 (a collaborative effort challenge more acute than among robotic plane- involving JPL and NASA Ames). Many of the tary exploration missions that the Jet Propulsion AI technologists who work at NASA expected Laboratory (JPL) conducts for NASA. This article describes recent and ongoing work on spacecraft to have the opportunity to build an intelli- autonomy and ground systems that builds on a gent spacecraft at some point in their careers; legacy of existing success at JPL applying AI tech- we are surprised and delighted that it has niques to challenging computational problems in come this early. planning and scheduling, real-time monitoring By the year 2000, we expect to demonstrate and control, scientific data analysis, and design NASA spacecraft possessing on-board automat- automation. ed goal-level closed-loop control in the plan- ning and scheduling of activities to achieve mission goals, maneuvering and pointing to execute these activities, and detecting and I research and technology development resolving of faults to continue the mission reached critical mass at the Jet Propul- without requiring ground support. At this Asion Laboratory (JPL) about five years point, mission accomplishment can begin to ago.
    [Show full text]
  • Users, Uses, and Value of Landsat Satellite Imagery— Results from the 2012 Survey of Users
    Users, Uses, and Value of Landsat Satellite Imagery— Results from the 2012 Survey of Users By Holly M. Miller, Leslie Richardson, Stephen R. Koontz, John Loomis, and Lynne Koontz Open-File Report 2013–1269 U.S. Department of the Interior U.S. Geological Survey i U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette Kimball, Acting Director U.S. Geological Survey, Reston, Virginia 2013 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Miller, H.M., Richardson, Leslie, Koontz, S.R., Loomis, John, and Koontz, Lynne, 2013, Users, uses, and value of Landsat satellite imagery—Results from the 2012 survey of users: U.S. Geological Survey Open-File Report 2013–1269, 51 p., http://dx.doi.org/10.3133/ofr20131269. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents Contents ......................................................................................................................................................... ii Acronyms and Initialisms ...............................................................................................................................
    [Show full text]