Abiotic Transformations of Pesticides in Prairie Potholes

Total Page:16

File Type:pdf, Size:1020Kb

Abiotic Transformations of Pesticides in Prairie Potholes Abiotic Transformations of Pesticides in Prairie Potholes A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Teng Zeng IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Adviser: Dr. William A. Arnold August 2012 © Teng Zeng 2012 Acknowledgements I owe my gratitude to many people who have helped me get to this destination. My deepest gratitude goes to my advisor, Dr. William A. Arnold. I have been fortunate to have Bill as an advisor who gave me the freedom to explore on my own, and at the same time the guidance and encouragement to overcome unexpected challenges and crisis situations. In particular, I am thankful to Bill for holding me to a high research standard, for helping me sort out the technical details of my work, and for carefully reading and commenting every piece of my writing. More importantly, Bill taught me to be a versatile environmental chemist. I must thank my dissertation committee members, Dr. Paige J. Novak, Dr. R. Lee Penn, and Dr. Paul D. Capel, for reading previous drafts of this dissertation and providing many valuable comments that improved the presentation and contents of this dissertation. I am especially grateful to Paige for her willingness to serve as my committee chair with relatively short notice. I am also thankful to Dr. Raymond M. Hozalski, who served on my written and oral exam committee and generously allowed me to use large portions of his laboratory space. I am also indebted to our research collaborators Dr. Yu-Ping Chin and Kate L. Ziegelgruber at the Ohio State University as well as Dr. David N. Mushet at the U.S. Geological Survey Northern Prairie Wildlife Research Center. Special thanks are due to Yo for teaching me the art of sediment coring and porewater extraction and for providing thorough review and constructive comments on my manuscripts. I would like to thank Kate for helping me with sediment sample processing and DOC analysis. I also would i like to express my gratitude to Dave for guiding us through sampling sites and for sharing his first-hand experience with prairie potholes. I would like to offer special thanks to Dr. Brandy M. Toner for introducing me to the remarkable XANES technique and for sharing her valuable beamtime and beamline wisdom. Without Brandy’s input, there would not have been Chapter 5 of this dissertation. I also would like to thank Dr. Matthew A. Marcus and Dr. Sirine C. Fakra at the ALS Beamline 10.3.2 for their expert guidance and consistent support during my beamtime. I further wish to thank members of the Toner research group, especially Brandi Cron, Jeffry Sorensen, Jill Coleman Wasik, and Sarah Nicholas, for assisting me with XANES data collection and analysis. I would like to express my appreciation to Dr. Edward L. Cussler for providing focused and constructive commentary on my dissertation practice talk. Ed also guided me through a paint research project and has taught me innumerable lessons and insights on the workings of academic research in general. I am grateful to my fellow graduate students within the Environmental Engineering and Chemistry group, past and present. I would like to thank Amanda Stemig, Andy McCabe, Cale Anger, David Tan, Erin Surdo, Hao Pang, Megan Kelly, Noah Hensley, Jay Roth, Fabrizio Sabba, Greg LeFevre, Mark Krzmarzick, Nate Fleishhacker, Pat McNamara, Andrew Rescorla, Kathryn Wilkinson, Srijan Aggarwal, Alina Grigorescu, and Tucker Burch for their help, talents, and friendship along the way. On the more personal side, I wish to thank Andrew, Fab, Pat, and Srijan for their steadfast encouragement and Megan for always brightening up the office. ii Most importantly, none of this would have been possible without the love and support of my parents and my girlfriend Lydia. Finally, I appreciate the financial support from the Department of Civil Engineering and the National Science Foundation. iii Dedication This dissertation is dedicated to my parents. iv Abstract The prairie pothole region (PPR) is among the most extensively altered ecosystems on Earth. This region covers approximately 780,000 km2 of central North America, and contains numerous glacially formed wetlands embedded in an agricultural landscape. These wetlands, commonly known as prairie pothole lakes (PPLs), provide essential ecosystem services. Over the last 150 years, agricultural drainage has resulted in severe loss of native prairie wetlands. The remaining PPLs continue to be threatened by nonpoint source pesticide pollution from agriculture. Currently, little is known about the fate and persistence of pesticides in PPLs. In this work, the abiotic transformations of commonly used pesticides in PPL sediment porewaters and surface water were explored. Chloroacetanilide and dinitroaniline pesticides were found to react rapidly with naturally abundant reduced sulfur species (i.e., hydrogen sulfide and polysulfides) in sediment porewaters via nucleophilic substitution and reduction reactions, respectively. Dissolved organic matter (DOM) was also found to play a vital role in the reductive transformation. Next, the photodegradation of a suite of pesticides was investigated in PPL surface water under both simulated and natural sunlight. Enhanced pesticide removal rates pointed to the importance of indirect photolysis pathways involving photochemically produced reactive intermediates such as singlet oxygen and triplet excited-state DOM. Finally, the sedimentary sulfur speciation was examined by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy. Sulfur species in PPL sediments were found to consist of organic (di)sulfides, sulfonate, sulfate, and the mineral pyrite. Notably, the fractional abundances of reduced and oxidized sulfur species fluctuate on a seasonal basis. v Table of Contents Acknowledgements .............................................................................................................. i Dedication .......................................................................................................................... iv Abstract ............................................................................................................................... v Table of Contents ............................................................................................................... vi List of Tables ..................................................................................................................... xi List of Figures ................................................................................................................... xv Chapter 1: Introduction ....................................................................................................... 1 1.1 Pesticides in the Aquatic Environments ....................................................... 2 1.2 Prairie Pothole Region of North America ..................................................... 4 1.3 Aqueous Inorganic Sulfur Chemistry: Bisufide and Polysulfides ................ 9 1.4 Aquatic Photochemistry: Direct and Indirect Photolysis ............................ 13 1.5 X-ray Absorption Near-Edge Structure (XANES) spectroscopy ............... 18 1.6 Scope of Dissertation .................................................................................. 23 1.7 References ................................................................................................... 25 Chapter 2: Abiotic Transformation of Pesticides in Prairie Pothole Porewaters: Nucleophilic Reactions ..................................................................................................... 38 2.1 Introduction ................................................................................................. 39 2.2 Experimental Section .................................................................................. 41 2.2.1 Chemicals, Reagents, and Glassware.......................................................... 41 2.2.2 Field Sampling and Sample Analysis ......................................................... 43 2.2.3 Analysis of Porewater Total Hydrogen Sulfide .......................................... 45 2.2.4 Analysis of Porewater Total Polysulfides ................................................... 46 2.2.5 Batch Kinetic Studies and Product Derivatization...................................... 48 2.2.6 Chloroacetanilide and Product Analysis ..................................................... 49 2.2.7 Data Analysis .............................................................................................. 49 2.3 Results and Discussion ............................................................................... 49 2.3.1 Water Chemistry of PPLs ........................................................................... 49 2.3.2 Transformations of Pesticides in PPL Porewaters ...................................... 51 2.3.3 Roles of Bisulfide and Polysulfides ............................................................ 53 vi 2.3.4 Transformation Products of Chloroacetanilides ......................................... 59 2.4 Summary ..................................................................................................... 61 2.5 References ................................................................................................... 61 Chapter 3: Abiotic Transformation of Pesticides in Prairie Pothole Porewaters: Reduction Reactions ..........................................................................................................................
Recommended publications
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • Effects of Metabolic Inhibitors on the Translocation of Auxins
    EFFECTS OF METABOLIC INHIBITORS ON THE TRANSLOCATION OF AUXINS By DAMELIS DIAZ DE CEQUEA q Licenciado in Biology Universidad of Oriente Cumana, Venezuela 1976 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1986 -rkto~~~ I 1:{ (; 0 5'/Je Cop " EFFECTS OF METABOLIC INHIBITORS ON THE TRANSLOCATION OF AUXINS Thesis Approved: 1251232 ~ ii ACKNOWLEDGMENTS I wish to express my most sincere gratitude to Dr. Eddie Basler for his guidance, time and training during the course of this research. I wish to thank Dr. Glenn W. Todd and Dr. Becky Johnson for being members of my graduate committee. I also want to thank Jean Pittman Winters, Trina Wheless, and Roberto Machado for their valuable help received during experiment preparations, and Bobby Winters for his time dedicated to preparing some of the computer programs. Special acknowledgement is due to my husband Hernan, my son Hernan Alejandro, and my family for their constant love and support during my graduate career, without them I would not have been able to achieve this goal. I want to express my gratitude to Dr. John Vitek, Assistant Dean of the Graduate Collage, and Dr. Glenn Todd, Botany Department Head, for giving me the opportunity to study in this University. Finally, I want to recognize the financial support received from Universidad de Oriente Cumana, Venezuela during my time in the U.S.A. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION. • . • • . • 1 II. MATERIALS AND METHODS....................................... 8 III. RESULTS ..•....•.................................•..........• 11 Comparison of the Effect of DCCD and1RIDS on the Tray~location of 2,4,5-T-1- C and IAA -1- C.
    [Show full text]
  • Landscaping Near Black Walnut Trees
    Selecting juglone-tolerant plants Landscaping Near Black Walnut Trees Black walnut trees (Juglans nigra) can be very attractive in the home landscape when grown as shade trees, reaching a potential height of 100 feet. The walnuts they produce are a food source for squirrels, other wildlife and people as well. However, whether a black walnut tree already exists on your property or you are considering planting one, be aware that black walnuts produce juglone. This is a natural but toxic chemical they produce to reduce competition for resources from other plants. This natural self-defense mechanism can be harmful to nearby plants causing “walnut wilt.” Having a walnut tree in your landscape, however, certainly does not mean the landscape will be barren. Not all plants are sensitive to juglone. Many trees, vines, shrubs, ground covers, annuals and perennials will grow and even thrive in close proximity to a walnut tree. Production and Effect of Juglone Toxicity Juglone, which occurs in all parts of the black walnut tree, can affect other plants by several means: Stems Through root contact Leaves Through leakage or decay in the soil Through falling and decaying leaves When rain leaches and drips juglone from leaves Nuts and hulls and branches onto plants below. Juglone is most concentrated in the buds, nut hulls and All parts of the black walnut tree produce roots and, to a lesser degree, in leaves and stems. Plants toxic juglone to varying degrees. located beneath the canopy of walnut trees are most at risk. In general, the toxic zone around a mature walnut tree is within 50 to 60 feet of the trunk, but can extend to 80 feet.
    [Show full text]
  • Black Walnut Toxicity
    General Horticulture • HO-193-W Department of Horticulture Purdue University Cooperative Extension Service • West Lafayette, IN BLACK WALNUT TOXICITY Michael N. Dana and B. Rosie Lerner Black walnut (Juglans nigra L.) is a valuable hardwood to be a respiration inhibitor which deprives sensitive lumber tree and Indiana native. In the home landscape, plants of needed energy for metabolic activity. black walnut is grown as a shade tree and, occasionally, for its edible nuts. While many plants grow well in The largest concentrations of juglone and hydrojuglone proximity to black walnut, there are certain plant species (converted to juglone by sensitive plants) occur in the whose growth is hindered by this tree. The type of walnut’s buds, nut hulls, and roots. However, leaves and relationship between plants in which one produces a stems do contain a smaller quantity. Juglone is only substance which affects the growth of another is know poorly soluble in water and thus does not move very far as “allelopathy.” in the soil. Awareness of black walnut toxicity dates back at least to Since small amounts of juglone are released by live Roman times, when Pliny noted a poisoning effect of roots, particularly juglone-sensitive plants may show walnut trees on “all” plants. More recent research has toxicity symptoms anywhere within the area of root determined the specific chemical involved and its mode growth of a black walnut tree. However, greater quanti­ of action. Many plants have been classified through ties of juglone are generally present in the area immedi­ observation as either sensitive or tolerant to black ately under the canopy of a black walnut tree, due to walnuts.
    [Show full text]
  • Omics Methods for Probing the Mode of Action of Natural and Synthetic Phytotoxins
    J Chem Ecol DOI 10.1007/s10886-013-0240-0 REVIEW ARTICLE Omics Methods for Probing the Mode of Action of Natural and Synthetic Phytotoxins Stephen O. Duke & Joanna Bajsa & Zhiqiang Pan Received: 31 October 2012 /Revised: 20 December 2012 /Accepted: 31 December 2012 # The Author(s) 2013. This article is published with open access at Springerlink.com Abstract For a little over a decade, omics methods (tran- Introduction scriptomics, proteomics, metabolomics, and physionomics) have been used to discover and probe the mode of action of Understanding the modes of action of natural compounds as both synthetic and natural phytotoxins. For mode of action toxicants is important for at least two reasons. From an eco- discovery, the strategy for each of these approaches is to logical and evolutionary standpoint, knowing the mode of generate an omics profile for phytotoxins with known mo- action of such compounds is critical to understanding the lecular targets and to compare this library of responses to the function of the compound in nature. For example, the high responses of compounds with unknown modes of action. activity of phytotoxins from plant pathogens on specific mo- Using more than one omics approach enhances the proba- lecular targets found in green plants, but not in fungi, provides bility of success. Generally, compounds with the same mode strong evidence that the compounds have evolved as virulence of action generate similar responses with a particular omics factors for the pathogens (Duke and Dayan, 2011). From a method. Stress and detoxification responses to phytotoxins more practical standpoint, natural compounds often have been can be much clearer than effects directly related to the target the source of pesticides with new modes of action (Dayan et site.
    [Show full text]
  • Induction of Oxidative Stress and Mitochondrial Dysfunction by Juglone Affects the Development of Bovine Oocytes
    International Journal of Molecular Sciences Article Induction of Oxidative Stress and Mitochondrial Dysfunction by Juglone Affects the Development of Bovine Oocytes Ahmed Atef Mesalam 1,2,†, Marwa El-Sheikh 1,3,†, Myeong-Don Joo 1, Atif Ali Khan Khalil 4 , Ayman Mesalam 5 , Mi-Jeong Ahn 6 and Il-Keun Kong 1,7,8,* 1 Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; [email protected] (A.A.M.); [email protected] (M.E.-S.); [email protected] (M.-D.J.) 2 Department of Therapeutic Chemistry, Division of Pharmaceutical and Drug Industries Research, National Research Centre (NRC), Dokki, Cairo 12622, Egypt 3 Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre (NRC), Dokki, Cairo 12622, Egypt 4 Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan; [email protected] 5 Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; [email protected] 6 College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea; [email protected] 7 Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea 8 Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Juglone, a major naphthalenedione component of walnut trees, has long been used in traditional medicine as an antimicrobial and antitumor agent. Nonetheless, its impact on oocyte and preimplantation embryo development has not been entirely clarified. Using the bovine model, we sought to elucidate the impact of juglone treatment during the in vitro maturation (IVM) of oocytes Citation: Mesalam, A.A.; El-Sheikh, on their maturation and development of embryos.
    [Show full text]
  • Allelochemicals and Signaling Chemicals in Plants
    Review Allelochemicals and Signaling Chemicals in Plants Chui-Hua Kong 1,*, Tran Dang Xuan 2,*, Tran Dang Khanh 3,4, Hoang-Dung Tran 5 and Nguyen Thanh Trung 6 1 College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China 2 Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan 3 Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 122000, Vietnam 4 Center for Expert, Vietnam National University of Agriculture, Hanoi 131000, Vietnam 5 Faculty of Biotechnology, Nguyen Tat Thanh University, Ho Chi Minh 72820, Vietnam 6 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam * Correspondence: [email protected] (C.-H.K.); [email protected] (T.D.X.); Tel.: +86-10-62732752 (C.-H.K.); +81-82-424-6927 (T.D.X.) Academic Editor: Derek McPhee Received: 15 July 2019; Accepted: 25 July 2019; Published: 27 July 2019 Abstract: Plants abound with active ingredients. Among these natural constituents, allelochemicals and signaling chemicals that are released into the environments play important roles in regulating the interactions between plants and other organisms. Allelochemicals participate in the defense of plants against microbial attack, herbivore predation, and/or competition with other plants, most notably in allelopathy, which affects the establishment of competing plants. Allelochemicals could be leads for new pesticide discovery efforts. Signaling chemicals are involved in plant neighbor detection or pest identification, and they induce the production and release of plant defensive metabolites. Through the signaling chemicals, plants can either detect or identify competitors, herbivores, or pathogens, and respond by increasing defensive metabolites levels, providing an advantage for their own growth.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0053773A1 ARMEL Et Al
    US 2011 0053773A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0053773A1 ARMEL et al. (43) Pub. Date: Mar. 3, 2011 (54) METHODS OF IMPROVING NUTRITONAL Publication Classification VALUE OF PLANTS (51) Int. Cl. AOIN 25/32 (2006.01) CI2O 1/02 (2006.01) (75) Inventors: GREGORY RUSSELLARMEL, AOIN 57/6 (2006.01) Knoxville, TN (US); Dean Adam AOIN 43/40 (2006.01) Kopsell, Knoxville, TN (US); AOIN 43/88 (2006.01) James T. Brosnan, Knoxville, TN AOIN 43/70 (2006.01) AOIN 43/653 (2006.01) (US); Brandon J. Horvath, AOIN 47/40 (2006.01) Knoxville, TN (US); John C. AOIN 37/22 (2006.01) Sorochan, Knoxville, TN (US) AOIN 35/06 (2006.01) AOIP3/00 (2006.01) AOIP 2L/00 (2006.01) (73) Assignee: UNIVERSITY OF TENNESSEE AOIP 7/04 (2006.01) RESEARCH FOUNDATION, AOIP5/00 (2006.01) KNOXVILLE, TN (US) AOIPI3/00 (2006.01) AOIP I/00 (2006.01) (52) U.S. Cl. ........... 504/107:435/29; 504/103: 504/108; (21) Appl. No.: 12/875,328 504/128; 504/130, 504/131:504/133; 504/134; 504/139; 504/141; 504/149; 504/234: 504/348 (57) ABSTRACT (22) Filed: Sep. 3, 2010 The subject application provides methods for the direct or indirect improvement of levels of key phytonutrients and/or stress tolerance in plants. Methods of providing for the Related U.S. Application Data improvement in key phytonutrient levels and/or stress toler ance in plants are provided through the application of Safen (60) Provisional application No. 61/239,602, filed on Sep.
    [Show full text]
  • Herbicide Resistance: Toward an Understanding of Resistance Development and the Impact of Herbicide-Resistant Crops William K
    Weed Science 2012 Special Issue:2–30 Herbicide Resistance: Toward an Understanding of Resistance Development and the Impact of Herbicide-Resistant Crops William K. Vencill, Robert L. Nichols, Theodore M. Webster, John K. Soteres, Carol Mallory-Smith, Nilda R. Burgos, William G. Johnson, and Marilyn R. McClelland* Table of Contents and how they affect crop production and are affected by management practices, and to present the environmental impacts Executive Summary……………………………………… 2 of herbicide-resistant crops. This paper will summarize aspects of I. Introduction: A Summary of Weed Science Practices herbicide resistance in five different sections: (1) a description of and Concepts………………………………………… 3 basic weed science management practices and concepts, (2) II. Resistance and Tolerance in Weed Science………… 12 definitions of resistance and tolerance in weed science, (3) envi- III. Environmental Impacts of Herbicide Resistance in ronmental impacts of herbicide-resistant crops, (4) strategies for Crops………………………………………………… 15 management of weed species shifts and herbicide-resistant weeds IV. Strategies for Managing Weed Species Shifts and Devel- and adoption by the agricultural community, and (5) gene-flow opment of Herbicide-Resistant Weeds…………………… 16 potential from herbicide-resistant crops. V. Gene Flow from Herbicide-Resistant Crops………… 19 Literature Cited…………………………………………… 24 Section 1: Introduction. To avoid or delay the development of resistant weeds, a diverse, integrated program of weed management practices is required to minimize reliance
    [Show full text]
  • Biology and Control of Common Purslane (<I>Portulaca Oleracea</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research in Agronomy and Horticulture Agronomy and Horticulture Department Fall 9-9-2013 Biology and Control of Common Purslane (Portulaca oleracea L.) Christopher A. Proctor University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/agronhortdiss Part of the Agronomy and Crop Sciences Commons, and the Plant Biology Commons Proctor, Christopher A., "Biology and Control of Common Purslane (Portulaca oleracea L.)" (2013). Theses, Dissertations, and Student Research in Agronomy and Horticulture. 68. https://digitalcommons.unl.edu/agronhortdiss/68 This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research in Agronomy and Horticulture by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BIOLOGY AND CONTROL OF COMMON PURSLANE (PORTULACA OLERACEA L.) by Christopher A. Proctor A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Agronomy Under the Supervision of Professor Zachary J. Reicher Lincoln, Nebraska September, 2013 BIOLOGY AND CONTROL OF COMMON PURSLANE (PORTULACA OLERACA L.) Christopher A. Proctor, Ph.D. University of Nebraska, 2013 Adviser: Zachary J. Reicher Common purslane (Portulaca oleracea L.) is a summer annual with wide geographic and environmental distribution. Purslane is typically regarded as a weed in North America, but it is consumed as a vegetable in many parts of the world. One of the characteristics that make purslane difficult to control as a weed is its ability to vegetatively reproduce.
    [Show full text]
  • Nomination Background: Juglone (CASRN: 481-39-0)
    SUMMARY OF DATA FOR CHEMICAL SELECTION Juglone 481-39-0 BASIS OF NOMINATION TO THE CSWG Juglone is brought to the attention of the CSWG as a potentially toxic natural product. Juglone, a brown dye, is found in several consumer products, including hair dye formulations and walnut oil stain. Juglone is an active ingredient in dietary supplements prepared from walnut hulls. Walnut hull extracts and poultices have been used for many years in folk remedies. There is some evidence to suggest that juglone is a potential chemotherapeutic or chemopreventive agent. The Developmental Therapeutics Program, National Cancer Institute (NCI) evaluated juglone in its screening panel for HIV-1. However, German Commission E does not approve the use of walnut hull as an herbal medicine because of documented or suspected risk from juglone. This raises questions about the safety of products intended for human consumption that contain juglone as an active ingredient. SELECTION STATUS ACTION BY CSWG: 6/22/99 Studies requested: Preliminary studies: - Mechanistic studies predictive of carcinogenic/anticarcinogenic potential - Metabolism studies - Mouse lymphoma assay - Mammalian mutagenicity assay Follow-up: Based on the results from the preliminary studies, select either juglone or plumbagin for carcinogenicity testing Priority: High Rationale/Remarks: - Natural brown pigment; widespread human exposure through use of walnut-based stains, oils, and dyes - Persistent environmental pollutant released from walnut and butternut trees - Given the close relationship between juglone and plumbagin, chronic studies of only the more reactive compound are recommended. - Existing information on the carcinogenic/anticarcinogenic potential of the two compounds is insufficient to determine which compound is more reactive.
    [Show full text]
  • Wood Avens (Geum Canadense) DESCRIPTION
    Weed Identification and Control Sheet: www.goodoak.com/weeds Wood Avens (Geum canadense) DESCRIPTION: Wood avens is an adaptable, short-lived, weedy native perennial that can be found in any kind of shaded habitat in our region. It is found in small numbers even in healthy woods, but becomes very abundant in disturbed woodlands and groves of weedy trees and brush such as overgrown abandoned fields and pastures. This plant is tolerant to phytotoxic chemical Juglone released by leaves and roots of the walnut tree. Seeds cling to, and are efficiently distributed by, mam- mal fur, bird feathers, and clothing of humans. This attribute can make wood avens a bit of a nuisance where it has become over-abundant. Nectar and pollen from the small white flowers attract numerous spe- cies of bees, wasps, flies and beetles. IDENTIFICATION: Leaves of first-year plants are low to the ground and spread from a central point. These leaves are, linear, compound with many lobes and leaflets, and almost fern-like, often appear pale or frosted towards the center of the leaf and stem. On second year plants leaves on the lower stem are usually broad three-lobed, while upper leaves are typi- cally lobeless all with irregularly-toothed margins. Leaf surfaces are often covered with short, bristly hairs, especially along major veins. Small, white five-pedaled flowers bloom in clusters of 1-3 on top of each stem in mid-summer. Flowers are replaced by spheroid bundles of seeds with hooked tips. CONTROL METHODS: Organic: Generally control of this species is not needed, except in extreme cases.
    [Show full text]