© Smithsonian Institution STC ™: SpaceSystems Exploration 3. 2. 1. Investigation PA.2: Gravity 6. 5. 4. 3. 2. 1. Investigation PA.1: PhasesoftheMoon Student SheetPA: InvestigationResults Student’s Name______Date______Class______4.

What doyouknowabout patternsinsolarsystemsthatmayhaveinfluenced yourmodel? gravity holdsthesolar system together. Think aboutthefactorsyouconsideredas constructedyourmodel.Describehow should be? What factorsdidyouconsiderwhendeciding howfarapartthebodiesinyoursolarsystem What factorsdidyouconsiderindecidingwhichbodieswouldbetheSun,planets,andmoons? Where istheMoonlocatedwithrespecttoEarthandSunduringfullmoon? Where istheMoonlocatedwithrespecttoEarthandSunduringnewmoon? Why isaportionoftheMoonlitandotherdarkinsomeimages? What otherpatterns,ifany, canyouseeinthemonthofpictures? How oftendoesanewmoonappear? How oftendoesafullmoonappear? ______(page 1of6) ______Pre-Assessment / Our Amazing Universe ______you think

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration 5. 4. 3. 2. 1. Investigation PA.3: ScaleProperties Student SheetPA: InvestigationResults Student’s Name______Date______Class______What istheradiusofEuropa’s orbitaround Jupiter?Showyourwork. What isthedistanceofEuropa’s orbitaroundJupiter?Showyourwork. What isthediameter(in Which craterdoyouthinkislarger, AorB?Explain. Which moondoyouthinkislarger, AorB?Explain. kilometers ) ofcraterB?Showyourwork. (page 2of6) ______Pre-Assessment / Our Amazing Universe © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 2. 1. Directions: Investigation PA.4: ScientificExplanation Student SheetPA: InvestigationResults Student’s Name______Date______Class______Does aplanet Does aplanet’s surfacegravitydependonitsmass? c. b. a. c. b. a.

from theSun Make aclaim.(Statewhetherornotyouthink Make aclaim.(Statewhetherornotyouthinkplanet’s surfacegravitydependsonitsmass.) State yourreasoning.(Explainhowevidence supportsyourclaim.) State yourevidence.(Selectdatafromthetable thatsupportsyourclaim.) State yourreasoning.(Explainhowevidencesupportsclaim.) State yourevidence.(Selectdatafromthetablethatsupportsclaim.) Foreachquestion,constructyourexplanationusingaclaim,evidence,andreasoning. ’ s orbitalperiodrelatetoitsdistancefromtheSun .) ______(page 3of6) a planet ’ s orbitalperiodrelatestoitsdistance ? Pre-Assessment ______/ Our Amazing Universe © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 1. Investigation PA.5: Camera ContainerDesignCriteria Student SheetPA: InvestigationResults Student’s Name______Date______Class______Power schedule Power mode Power range(mW) (kg) Maximum weight dimensions (cm) Maximum Criterion Table A.

Specify thedesignforyourcontainerinTable A.UsetheinformationinyourStudentGuideon Explain howyoudecidedonyourdesign,includinganycalculationsmade,inthespaceprovided. overall requirements.Useappropriateunitsandsufficient precisiontoensureasuccessfulsolution. Satellite ContainerDesignCriteria Specification Criterion Design Explanation (page 4of6) Pre-Assessment / Our Amazing Universe © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 2. 1. Investigation PA.6: Camera DesignEvaluation Student SheetPA: InvestigationResults Student’s Name______Date______Class______For eachcamera,summarizehowwellitmeetsthe For eachcriterion,listanycamerasthatdonotmeetthespecificationandexplainwhy. e. d. c. b. a. h. g. f. e. d. c. b. a.

Green: Blue: Resolution:

Exposure time: Frame transferrate: Hyperfocal distance: Orange: Red: Yellow: Compression rate: Depth offield: Field ofview: Focal length: ______(page 5of6) overall designspecifications. Pre-Assessment / Our Amazing Universe © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Investigation PA. Student SheetPA: InvestigationResults Student’s Name______Date______Class______1. 2.

different benefits?Describe yourthinkingandanystepsyouwouldtake. What wouldyoudoifyourtestresultsshowedthattwodifferent combinationsoflayershad Describe yourplanforgeneratingdatatodeterminethebestcombinationofdesignoptions. 7: Testing SolarPanel Performance (page 6of6) Pre-Assessment / Our Amazing Universe © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 4. 3. 2. 1. Directions: Student Sheet1.1a: The Sun-Earth-MoonSystem Student’s Name______Date______Class______your findingsinTable A. must dividethedistancetoeachbodyby diameter ofEarth.Showyourworkhere.Thenrecord Scale thedistancetoSunandMooninterms ofhowmanyEarthsawaytheyare.To dothis,you Table A. Refer to“TheSun-Earth-MoonSystem”andfill inthedistancebetweeneachbodyandEarth are. Showyourworkinthespacebelow. ThenrecordyourfindingsinTable A. Earths, across.FollowthisexampletodeterminethenumberofEarthsacrossMoonand Sunreally For thisexample,x x 150 kmacross,youwouldsetuptheequationasfollows: by dividingonequantitytheother. Forexample,iftheMoonwere50kmacrossandEarth between thediametersofEarthandMoon.Aratioisacomparisontwoquantities.It isfound Scale theSunandMoonintermsofhowmanyEarthsacrosstheyare.You needtofindtheratio in Table A. Refer tothereadingselection“TheSun-Earth-MoonSystem”andfillindiameterofeach body Moon Sun Earth Body Name Table A.Measurements fortheSun-Earth-MoonSystem 5 D M /

D FillinTable Abycompleting#1– E whereD Diameter (km) M 5 isthediameterofMoon,andD

150 50

5 0.33.TheMoon’s diameterwouldbe0.33theofEarth,or Earths Across Number of

4. Lesson 1 1.00 / Calendar intheSky:Introducing the Sun-Earth-Moon System E Distance from isthediameterofEarth. Earth (km) Earths Away Number of

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lighter linesrepresentapproximateweeklyinterval. Darker linesrepresentmonthlyinterval. S Student’s Name______Date______Class______tudent Sheet 1.1b: EarthOrbitCompassRose Lesson 1 / Calendar intheSky:Introducing the Sun-Earth-Moon System © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 7. 6. 5. 4. 3. 2. 1. Earth-Moon system.Discusseachquestionwithyourgroup. Directions: Student Sheet2: ModelingLunarPhases Student’s Name______Date______Class______Is thetiltofMoon’s orbitalplaneexaggerated inthemodel? Why doestherodgothroughglobeatanangle? Why aretherodsdifferent heights? What doyouthinktherodsonyourSun-Earth-MoonBoard™represent? In whichdirectiondoEarthandtheMoonrotatearoundtheiraxes,clockwiseorcounterclockwise? Will theMoonusuallybehigherorlowerthanEarth,levelwithit,asEarthorbitsSun? Do EarthandtheMoonrevolveonsameplane? Usethissheettorecordyourideasasyouplan,construct,andusemodeloftheSun- ______(page 1of2) Lesson 2 ______/ Howling attheMoon: Investigating LunarPhases ______© Smithsonian Institution STC My Generation™: SpaceSystems Exploration Student Sheet2: ModelingLunarPhases Student’s Name______Date______Class______SUN’S RA YS Figure A How theMoonisilluminated bytheSunoveralunarcycle 1 2 86 (page 2of2) EART 7 3 Lesson 2 H / Howling attheMoon: Investigating LunarPhases 4 5 © Smithsonian Institution STC My Generation™: SpaceSystems Exploration your workforeachoftheinvestigationquestions. Directions: Student Sheet3.1a: Analyzing Tidal Data Student’s Name______Date______Class______6 Su 5 Sa 4 F 3 Th 2 W Tu 1 Day Table A. 12:37 p.m. 11:23 p.m. 10:39 p.m. 12:59 a.m. 12:09 a.m. 11:49 a.m. 11:03 a.m. 10:19 a.m. 7:36 p.m. 1:31 p.m. 6:41 p.m. 5:52 p.m. 5:07 p.m. 4:24 p.m. 9:55 p.m. 3:40 p.m. 7:37 a.m. 6:45 a.m. 5:56 a.m. 5:10 a.m. 4:24 a.m. 9:35 a.m. 3:37 a.m. Time (Tidal Datum Predicted TidesandLunarCyclesforVirginiaBeach,Virginia,April2014 UsethissheettoanalyzethetidaldatafromVirginiaBeach,Virginia.Carefullyrecordallof Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low Tide 5 MLLW) Height (ft) 2 2 2 2 2 0.7 2.8 0.6 3.4 0.5 3.0 0.4 3.7 0.2 3.2 0.1 3.9 0.0 3.4 0.2 4.2 0.3 3.6 0.4 4.4 0.5 3.8 0.6

Height 2 2 2 104 113 119 104 128 110 134 116 2 2 (cm) 21 85 18 15 91 12 98 12 15 18 6 3 0 6 9 (page 1of6) Moonrise 11:47 a.m. 10:56 a.m. 10:07 a.m. 8:36 a.m. 7:55 a.m. 9:20 a.m. Time Moonset 11:41 p.m. 10:44 p.m. 12:33 a.m. 9:43 p.m. 1:21 a.m. Time Lesson 3 Percentage / of Moon Pulling Water: Gravity andTides Visible 10 43 34 25 17 4

Lunar Phase © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Student Sheet3.1a: Analyzing Tidal Data Student’s Name______Date______Class______12 Sa 11 F 10 Th 9 W Tu 8 7 M Day Table A. 12:34 p.m. 11:35 p.m. 10:43 p.m. 12:21 a.m. 11:56 a.m. 11:15 a.m. 10:28 a.m. 6:49 p.m. 6:09 p.m. 5:25 p.m. 4:34 p.m. 9:42 p.m. 3:35 p.m. 8:37 p.m. 2:32 p.m. 6:25 a.m. 5:42 a.m. 4:53 a.m. 3:57 a.m. 9:34 a.m. 2:55 a.m. 8:35 a.m. 1:55 a.m. (Tidal Datum Predicted TidesandLunarCyclesforVirginiaBeach,Virginia,April2014 Time High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Tide 5 MLLW) Height (ft) 3.7 0.2 3.3 0.3 3.4 0.4 3.2 0.5 3.2 0.5 3.1 0.7 3.0 0.7 0.8 2.8 0.7 3.1 0.7 2.8 0.7 3.2 3

Height 113 101 104 (cm) 85 21 94 24 85 21 98 12 98 15 98 15 94 21 91 21 91 24 6 9 (page 2of6) 12:39 p.m. Moonrise 1:33 p.m. 5:16 p.m. 4:19 p.m. 3:23 p.m. 2:27 p.m. Time Moonset 2:43 a.m. 2:04 a.m. 4:56 a.m. 4:25 a.m. 5:53 a.m. 3:19 a.m. Time Lesson 3 / Pulling Water: Gravity andTides Percentage of Moon Visible 62 50 93 87 79 71 (continued) Lunar Phase

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration Student Sheet3.1a: Analyzing Tidal Data Student’s Name______Date______Class______18 F 17 Th 16 W 15 Tu 14 M 13 Su Day Table A. 10:09 p.m. 10:56 p.m. 10:32 a.m. 4:37 p.m. 3:51 p.m. 9:26 p.m. 3:09 p.m. 8:45 p.m. 2:28 p.m. 8:06 p.m. 1:49 p.m. 7:27 p.m. 1:12 p.m. 4:35 a.m. 9:47 a.m. 3:50 a.m. 9:05 a.m. 3:06 a.m. 8:24 a.m. 2:25 a.m. 7:45 a.m. 1:44 a.m. 7:05 a.m. 1:03 a.m. (Tidal Datum Predicted TidesandLunarCyclesforVirginiaBeach,Virginia,April2014 Time High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low Tide 5 MLLW) Height (ft) 2 2 2 2 2 2 2 2 2 2 4.3 0.1 3.5 0.3 4.3 0.2 3.5 0.3 4.3 0.2 3.6 0.3 4.2 0.2 3.5 0.2 4.1 0.1 3.5 0.1 3.9 0.1 3.4 0.1

Height 107 119 104 131 107 131 107 131 110 128 107 125 (cm) 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 9 6 9 6 9 6 6 (page 3of6) 11:21 p.m. 10:21 p.m. Moonrise 7:14 p.m. 6:14 p.m. 9:19 p.m. 8:16 p.m. Time Moonset 6:02 a.m. 5:28 a.m. 8:50 a.m. 8:01 a.m. 7:17 a.m. 6:37 a.m. Time Lesson 3 / Pulling Water: Gravity andTides Percentage of Moon Visible 100 100 97 87 94 98 (continued) Lunar Phase

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration Student Sheet3.1a: Analyzing Tidal Data Student’s Name______Date______Class______24 Th 23 W 22 Tu 21 M 20 Su 19 Sa Day Table A. 10:58 p.m. 12:14 p.m. 11:46 p.m. 11:20 a.m. 10:20 a.m. 12:42 a.m. 4:35 p.m. 9:49 p.m. 3:28 p.m. 8:36 p.m. 2:19 p.m. 7:27 p.m. 1:14 p.m. 6:24 p.m. 5:28 p.m. 3:57 a.m. 9:18 a.m. 2:49 a.m. 8:14 a.m. 1:43 a.m. 7:13 a.m. 6:16 a.m. 5:24 a.m. (Tidal Datum Predicted TidesandLunarCyclesforVirginiaBeach,Virginia,April2014 Time Low High Low High Low High Low High Low High Low High Low High Low High Low Tide Low High Low High Low High 5 MLLW) Height (ft) 2 2 2 2 0.0 3.7 0.2 3.4 0.0 3.8 0.2 3.3 0.0 4.0 0.1 3.3 0.1 4.2 0.1 3.4 0.2 0.0 3.7 0.1 3.7 0.1 3.5

Height 113 113 107 113 104 116 101 122 101 128 104 2 2 2 2 (cm) 3 3 3 6 0 3 3 0 6 0 6 0 (page 4of6) 12:18 a.m. Moonrise 3:21 a.m. 2:41 a.m. 1:58 a.m. 1:11 a.m. Time 12:54 p.m. 10:45 a.m. 11:48 a.m. 3:07 p.m. 2:01 p.m. Moonset 9:45 a.m. Time Lesson 3 / Pulling Water: Gravity andTides Percentage of Moon Visible 69 79 24 35 50 58 (continued) Lunar Phase

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration Source: NOAA(http://tidesandcurrents.noaa.gov/noaatidepredictions/NOAATidesFacade.jsp?Stationid=8639168) andUNSO(http://aa.usno.navy.mil/data/docs/RS_OneDay.php) Student Sheet3.1a: Analyzing Tidal Data Student’s Name______Date______Class______30 W 29 Tu 28 M 27 Su 26 Sa 25 F Day Table A. 12:10 p.m. 12:57 a.m. 12:01 a.m. 11:17 a.m. 9:30 p.m. 3:13 p.m. 8:48 p.m. 2:30 p.m. 8:04 p.m. 1:46 p.m. 7:18 p.m. 1:00 p.m. 6:29 p.m. 5:35 p.m. 9:13 a.m. 3:21 a.m. 8:29 a.m. 2:36 a.m. 7:44 a.m. 1:48 a.m. 6:54 a.m. 6:01 a.m. 5:02 a.m. (Tidal Datum Predicted TidesandLunarCyclesforVirginiaBeach,Virginia,April2014 Time High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Tide 5 MLLW) Height (ft) 2 2 2 2 2 2 2 2 2 2 2 3.6 0.4 4.5 0.4 4.4 0.4 4.4 0.4 3.7 0.3 4.2 0.3 3.7 0.2 4.0 0.2 3.7 4.3 0.2 3.5 0.4 4.4 0.3

Height 2 2 2 2 2 131 107 134 110 137 134 134 113 128 113 122 113 (cm) 2 2 2 2 2 2 12 12 12 12 12 9 6 6 6 9 9 (page 5of6) Moonrise 4:35 a.m. 5:58 a.m. 7:12 a.m. 6:29 a.m. 5:49 a.m. 5:11 a.m. Time 5:19 p.m. 4:13 p.m. 9:28 p.m. 8:29 p.m. 7:27 p.m. 6:23 p.m. Moonset Time Lesson 3 Percentage / of Moon Pulling Water: Gravity andTides Visible 15 8 2 0 0 3 (continued) Lunar Phase

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration 7. 6. 5. 4. 3. 2. 1. Student Sheet3.1a: Analyzing Tidal Data Student’s Name______Date______Class______occur? Whatexplanationcanyougiveforthese patterns? During whichphasesdothelowesthightides occur?Duringwhichphasesdothehighesthightides the right-handcolumn.Comparephasesof theMoontoheightsofhighandlowtides. Examine thedatashowinghowmuchofMoon isvisible.Addthenamesoflunarphasesin ______tide andlowtide.Whatpatternsdoyouobserve?explanationcangiveforthese patterns? Examine thedatashowingmoonriseandmoonsettimes.Comparethesetimestotiming ofhigh ______observe? Explainwhyyouthinkthishappens. Compare thetimesthathighandlowtidesoccureachdayovera2-weekperiod.Whatdo you ______high tidechangefromtotide? Examine theheightofhightidesfromApril5ththrough7th.Howdoes ofthe ______Why doyouthinkthispatterninhighandlowtidesexists? normally occuralongVirginiaBeachin24hours? A lowtideoccurswhenthereachesitsminimumheightoneachfall.Howmanytides ______normally occuralongVirginiaBeachin24hours? A hightideoccurswhenthereachesitsmaximumheightoneachrise.Howmanytides ______(page 6of6) ______Lesson 3 / Pulling Water: Gravity andTides _ © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Student Sheet3.1b: Student’s Name______Date______Class______Graphing Tidal Data Graphing Tidal Lesson 3 / Pulling Water: Gravity andTides © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 5. 4. 3. 2. 1. S Student’s Name______Date______Class______tudent Sheet3.1c

Set thescaleforeachaxiswithevendivisions,lettinghighestmeasuredvalueindata Plot theindependentvariable(inthiscasetimeindaysorhours)onhorizontal,xaxis. Label horizontalandverticalaxeswithadescriptionoftheplotteddataunits Cover asmuchspaceonthegraphpossiblewithplotteddata.Leaveenoughalong Give eachgraphatitlethatdescribesthedisplayeddata. fit ontheaxis.Labeleachaxis,includingunitsshown. Plot thedependentvariable(forexample,tideheightincm)onvertical,oryaxis. of measure. the axesforlabels,evenscaledivisions,andunitsofmeasure. : SuggestionsforMakingaGraph of Tidal Data Lesson 3 / Pulling Water: Gravity andTides © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Directions: Student Sheet4.2: Analyzing theGeometryofEclipses Student’s Name______Date______Class______KEY:  7 8 Fullmoon F = N =Newmoon 6 UsethissheettorecordandanalyzeyourobservationsfromusingtheSun-Earth-MoonBoard.

5 B 1 Months 4

2

Months 3 73 7 8 8 6 6 A S C 5 5 1 1 4 4 2 2 (page 1of2) 3 Lesson 4 / 7

Blackout: SolarandLunar Eclipses Months 8 6 Months D 5 1 4 2 3 © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 11. 10. 9. 8. 7. 6. 5. 4. 3. 2. 1. Student Sheet4.2: Analyzing theGeometryofEclipses Student’s Name______Date______Class______Can youcreatealunareclipse(castshadow on yourfullmoon)? ______Can youcreateasolareclipse(castshadowon Earth)withyournewmoon? ______How manymonthslaterdoesdotDrepresent? ______Can youcreatealunareclipse(castshadowonyourfullmoon)? ______Can youcreateasolareclipse(castshadowonEarth)withyournewmoon? ______How manymonthslaterdoesdotCrepresent? ______Can youcreatealunareclipse(castshadowonyourfullmoon)? ______Can youcreateasolareclipse(castshadowonEarth)withyournewmoon? ______How manymonthslaterdoesdotBrepresent? ______Does Earthcastashadowonthefullmoon? ______Does thenewmooncastashadowonEarth? ______(page 2of2) Lesson 4 ______/ Blackout: SolarandLunar Eclipses ______© Smithsonian Institution STC My Generation™: SpaceSystems Exploration Student Sheet5.1: PlanningSheet Student’s Name______Date______Class______What Iwillmeasure: What Iwilllookfor: What Iwillkeepthesame: What Iwillchange: Materials Iwilluse: What Ithinkwillhappen: How does Natural phenomenonIamtryingtounderstand Procedures Iwillfollow: : affect Lesson 5 / Reasons forSeasons:Why Earth’s Tilt Matters ? © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 4. 3. 2. 1. Table Notes Source: NASAPlanetaryFactSheet–Metric(nssdc.gsfc.nasa.gov/planetary/factsheet/) the tableandreadTable Notes.Thencompletethestudentsheet. Directions: Student Sheet6.1: ScalingtheSolarSystem Student’s Name______Date______Class______planets Outer planets Inner Table A.PlanetaryData

The orbitalinclinationofeachplanetistheangle betweenthatplanet’s orbitalplaneandEarth’s You havelearnedthatEarth’s axisisnotperpendicular toitsorbitalplane.Itistilted.Thisalsotrue It isalsoimportanttonotethatthedistances are roundedtothenearest100,000km.Mercury’s Distances fromtheSunaregivenin10 other planesaremeasured. orbital plane.ThatiswhyEarth’s orbital inclinationis0.0.Itthereferenceplanefromwhichall to thatplanet’s orbitalplane. for alloftheotherplanets.InTable A,theaxialtilt ofeachplanetisrelativetoalineperpendicular actual distancefromtheSunatperihelion is46,001,009km. 46 kilometers. Forexample,Mercury’s distancefromtheSunatperihelionis46.0 multiplied by10sixtimes(or1million).Therefore,thedistancesshownareinmillionsof million Table Alistsinformationforeachoftheeightplanetsinoursolarsystem. Review Neptune Uranus Saturn Jupiter Mars Earth Venus Mercury Planet km. the Perihelion Distance from the Sunat (10 4,444.5 2,741.3 1,352.6 740.5 206.6 147.1 107.5 6 km) 46.0 Aphelion (10 Sun atthe from the Distance 4,545.7 3,003.6 1,514.5 km) 6 816.6 249.2 152.1 108.9 km.Here,10 69.8 6

(page 1of6) Semi-minor Length of (10 4,495.1 2,872.5 1,433.6 Axis 226.9 149.6 108.2 778.6 6 6 simplymeansthatthevalueshownis 56.7 km) Lesson 6

/ Diameter Stellar Proportions: Modeling theSolar System 120,536 142,984 Planet 12,756 12,104 49,528 51,118 (km) 6,792 4,879 (degrees) Axial Tilt 177.4 25.2 23.4 0.01 28.3 97.8 26.7 3.1 3 10 6 km,or Inclination

(degrees) Orbital 1.8 0.8 2.5 1.3 1.9 0.0 3.4 7.0 © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 3. 2. 1. Choosing aScaleFactor Student Sheet6.1: ScalingtheSolarSystem Student’s Name______Date______Class______and recordit. number ofsquaresyoucount.You willalsoneedtomeasurethesizeofonesquareinmillimeters of kilometerseachsquarecanrepresent. squares itisacross.Leavealittlespaceoneachendforborder. Nowfigureouthowmanymillions Take yourpieceofgraphpaperandholditlengthwise(inlandscapeview).Counthowmany your modelofthesolarsystemtocoveratleastthisdistance(roundup). perihelion of theoutermostplanet—Neptune.LookatNeptune’s distancefromtheSunataphelionand view. You willneedto Your scalemodelwillconsistoftwoscaleddrawingsongraphpaper:oneplanviewandside ______the innerplanetsandlastfourarecalledouterplanets?Explainyourideas. Look atthedistancesfromSunfordifferent planets.Canyouseewhythefirstfourarecalled (Table A) Showyourworkhere: . Addthesetwodistancestogether calculate ascalefactorfordistancethatwillletyoushowthecompleteorbit To dothis,takeyouranswer from#2anddividebythe (page 2of6) Lesson 6 in thespaceprovidedbelow. / Stellar Proportions: Modeling theSolar System You will want © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 5. 4. Student Sheet6.1: ScalingtheSolarSystem Student’s Name______Date______Class______reasonable scalesfortheinnerplanetsandJu your scaleforNeptune,whichyoucanusetheplanetsthathaveverylargevalues,come upwith kilometers. that thedistancesareshowninmillionsofkilometers,whileplanetdiameters in Look atTable AandcomparetheplanetdiameterswiththeirdistancesfromSun.Donotforget more orlessdetailthantheprimarydrawing. mechanical drawings.Thesemodelsoftenshowaninsetmapordrawingatadifferent scaletoshow part isclearlystated.Usingmorethanonescaleinamodelparticularlycommonmaps and in Many modelsincludedifferent scalestoshowdifferent parts.Thisworksaslongthescaleforeach ( you needtoconvertthenumberofkilometerspersquaremillimetersandshowyourwork. Using youranswersfrom#2and#3,calculatethescalefactoryouwilluseforNeptune.To dothis, Hint: 1 millionmm Explain whymorethanonescaleisnecessaryforsomeplanetsinthismodel.Basedon = 1km. )

piter (page 3of6) . ( Hint: Lesson 6 Theinnerplanetscanhavethesamescale.) / Stellar Proportions: Modeling theSolar System

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration 6. Calculating ScaledValues Student Sheet6.1: ScalingtheSolarSystem Student’s Name______Date______Class______Semi-minor axis Aphelion distance Perihelion distance Mars Semi-minor axis Aphelion distance Perihelion distance Earth Semi-minor axis Aphelion distance Perihelion distance Venus Semi-minor axis Aphelion distance Perihelion distance Mercury Table B.ScaledValue ofPlanetaryData

Now thatyouhavedecidedonyourscalefactors,mustconverttheperiheliondistances, your scaled valuesinTable B. aphelion distances, ( Original 10 Value 6 and km) semi-minor axesinTable Atoscaledvalues.Showyourworkandrecord (10 Factor Scale 12 mm) (page 4of6) Lesson 6 Calculations / Stellar Proportions: Modeling theSolar System Value (mm) Scaled © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Student Sheet6.1: ScalingtheSolarSystem Student’s Name______Date______Class______Semi-minor axis Aphelion distance Perihelion distance Neptune Semi-minor axis Aphelion distance Perihelion distance Uranus Semi-minor axis Aphelion distance Perihelion distance Saturn Semi-minor axis Aphelion distance Perihelion distance Jupiter Table B.ScaledValue ofPlanetaryData ( Original 10 Value 6 km) (10 Factor Scale 12 mm)

(continued) (page 5of6) Lesson 6 Calculations / Stellar Proportions: Modeling theSolar System Scaled Value (mm) © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Student Sheet6.1: ScalingtheSolarSystem Student’s Name______Date______Class______7.

in Table C. Convert theplanetdiametersfromTable Atoscaledvalues.Showyour workandrecordyourvalues Table C.ScaledDiameter Planet Value (km) Original

Scale Factor (page 6of6) Lesson 6 / Stellar Proportions: Modeling theSolar System Calculations Value (mm) Scaled

Student’s Name ______Date ______Class ______

Student Sheet 6.2: Graph Paper © Smithsonian Institution © Smithsonian

STC My Generation™: Space Systems Exploration Lesson 6 / Stellar Proportions: Modeling the Solar System © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Student SheetEA.1: Graph Paper Student’s Name______Date______Class______Exploration Activity / Jupiter and ItsMoons © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 3. 2. 1. Look atthesurfacegravityfactorslistedinTable A,andanswerthefollowing questions: Part 1. planet, justmultiplyitsmassbythesurfacegravityfactorofthatplanet. Earth willhaveasurfacegravityfactorgreaterthan1.0.To findthe weight ofanobjectonaspecific gravity thanEarthwillhaveasurfacefactorless1.0.Anyplanetwithmore the fourouterplanets.)TheyassignEarthasurfacegravityfactorof1.0.Anyplanet(ormoon)withless planets withtheforceofgravityonEarth.( To makethingssimpler, scientistsuseasurfacegravityfactortocomparetheforceofon other and theforceofgravityisdifferent oneachplanet. have thesameweight.Thatisbecauseweightofanobjectameasureforcegravityonit, If youtakeanobjecttotheMoonorMars,itwillhavesamemassthathadonEarth.Butnot same, evenatdifferent locations. object takesup.Aslongasyoudonotaddortakeawayanymatterfromanobject,itsmassstaysthe Mass isrelatedtotheamountofmatter(or“stuff”) inanobject,regardlessofhowmuchspacethe Many peoplethinkthatthereisnodifference betweentheterms“weight”and“mass.”Butthereis! Student Sheet7.1a: Weight inSpace Student’s Name______Date______Class______attractive. Note thatallgravityfactors arepositive.This On whichplanetwould yourweightbemostsimilartowhatitison Earth? Would youweigh more,less,orthesameonMercuryasyouwould onMars? Would youweighmore Source: solarsystem.nasa.gov Neptune Uranus Saturn Jupiter Mars Earth Venus Mercury Planet Table A. Mass, Radius,andSurfaceGravityofEachPlanet , less,orthesame Surface Gravity Factor 1.12 0.89 0.92 2.36 0.38 1.0 0.91 0.38 (page 1of4) Note: onJupiterthanyoudoEarth? is because Thereisnoactualsurfacetostandoninthecaseof Mass (10 theforceofgravity, evenifsmall,isalways 189,813 10,241 56,832 8,681 597 487 64 33 22 kg) Lesson 7 Radius (km) ______24,622 25,362 58,232 69,911 / ______3,390 6,371 6,052 2,440 Gravity: BendingSpace-Time © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 7. 6. create asimplescientificexplanationusingtheoptionsbelow. The graphshowstherelationshipbetweenplanetmassandsurfacegravity. Lookitovercarefully. Then 5. 4. 3. 2. 1. Follow thesesteps: use apen! of planetmassversussurfacegravityfactor. To dothis,youneedapencil,aneraser, andaruler. Donot Let’s explorethisrelationshipmoreclosely. UseStudentSheet7.1b:“GraphPaper”tocreateagraph Part 2. 5. 4. Look atthesurfacegravityandmasscolumnsinTable Atogether. Student Sheet7.1a: Weight inSpace Student’s Name______Date______Class______

Erase thelinesandleavedots.Makesureeachdotislabeledwithplanetname. Use arulertodrawverticallineattheapproximatemassvaluesforeachplanet.Draw lineup Use arulertodrawhorizontallineacrossthegraphatlevelofeachsurfacegravityfactor Put SurfaceGravityFactoralongtheyaxis.Makescalefrom0to3. Put PlanetMassalongthexaxis.Makescalefrom0to200,000 Select yourevidencefromthefollowingchoices: (Circleone.) Select oneclaimfromthefollowingpossibilities:(Circleone.) until youreachthesurfacegravitylineforthatplanetandmakeadotatintersection. value. Labelwhichplaneteachlineisfor, asyoudrawthem,onthefar-right sideofthegraph. Which planethasthehighestsurfacegravityfactor? Which planethasthegreatestmass? D. C. B. A. D. C. B. A.

The pointsonthegraph showageneralpositivetrend. The pointsonthegraphareinaperfectlystraight line. Planets withgreatermasstendtohavehigher surfacegravity. Planet massalonedeterminesaplanet’s surfacegravity. The poi The Planets withgre Planet pointsonthegrapharerandomlydistributed. mass andsurfacegravityarenotrelated. nts onthegraphshow a generalnegativetrend. ater masstendtohavelowersurfacegravity. ______(page 2of4) ______3 10 Lesson 7 22 kg. / Gravity: BendingSpace-Time © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 5. 4. 3. 2. 1. Now wewilllookatplanetradius.Thisisthedistancefromaplanet’s centertoitssurface. Part 3. 8. Student Sheet7.1a: Weight inSpace Student’s Name______Date______Class______

Create anothergraphon Create anothergraphon Compare MercuryandMars.Theyhavethesamesurfacegravity, eventhoughMarshasalmost Compare UranusandNeptune.Theyhaveasimilarradius,butNeptunehasgreatermass higher It isalwaysimportanttousereasoningexplainwhyyourevidencesupportsclaim.Select each pointwith theplanetname. planet massand radius.PutPlanetMassonthexaxisand Radiusontheyaxis.Label surface gravity. Draw anapproximatelineofbestfittohelpyou visualizetherelationshipbetweenradiusand point withthecorrespondingplanet’s name. did before,butputPlanetRadiusonthex between planetradiusandsurfacegravity. Thistime,putSurfaceGravityFactor ontheyaxisasyou than Mercury’s. twice as muchmassasMercury. ButMarsisalsoalargerplanet.Notethatitsradiusmuchgreater surface gravity. reasoning fromthefollowingchoices:(Circleone.) D. C. B. A.

bodies inthespace-t correlation. Therefore,planetswithgreatermassexertaweakergravitationalforceonother factors arealsoinvolved. mass exertastrongergravitationalforceonotherbodiesinthespace-timecontinuum,but other Therefore, asonevariableincreases,theothergenerallyalsoincreases.Planetswithgreater mass aloneandnootherfactorsareinvolved. variables plotted.Thissuggeststhataplanet’s surfacegravitycanbedirectlypredictedfromits for differences intheplanets’surfacegravities. predictable effects onotherobjectsinthespace-timecontinuum.Otherfactorsareresponsible two variablesplotted.Thissuggeststhatobjectsofdifferent massdonothavedifferent and Points onagrapharenotperfectlyalignedbuttheirarrangementsuggestspositivecorrelation. Points onagrapharrangedinstraightlineindicatestrongcorrelationbetweenthetwo Points onagrapharenotperfectlyalignedbuttheirarrangementsuggestsnegative Ran domly distributedpointsonagraphindicatethatthereisnocorrelationbetweenthe Describe the ime continuum,anditislikelythatotherfactorsareinvolved. a newcopyof a newcopyof relationship (page 3of4) youseebetweenplanetradius(orsize)andsurface gravity. StudentSheet7.1bto explore therelationshipbetween StudentSheet7.1btofurtherexploretherelationship

axis. Makethexaxisscalefrom0to80,000km. Labeleach Lesson 7 / Gravity: BendingSpace-Time © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 9. 8. 7. 6. Student Sheet7.1a: Weight inSpace Student’s Name______Date______Class______

Now explainyourreasoninginthespacebelow. ______Next, provideatleastfourpiecesofevidencefromyourgraphstosupportclaim. ______between planetmass,radius,andsurfacegravity. Now useallthreegraphstoreviseyourexplanation.First,makeaclaimabouttherelationship ______Describe the relationship youseebetweenplanetmassandradius. (page 4of4) ______Lesson 7 ______/ Gravity: BendingSpace-Time © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Student Sheet7.1b: Graph Paper Student’s Name______Date______Class______Lesson 7 / Gravity: BendingSpace-Time © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 2. 1. Directions: Student Sheet8.1: OrbitingBodies Student’s Name______Date______Class______Source: solarsystem.nasa.gov Moon Io Earth Jupiter Body Solar System Table B.PlanetandMoonData 25 washers 5 washers 0 washers Trial Table A.Investigation8.1Results ______Compare themassofJupiterwith Earth.Whichplanethasmoremass? ______How doesthemassofcylinderaffect howfastorslowthesphereorbitsyourhand? UsethissheettorecordyourdatafromInvestigation8.1. 189,813 (10 Time for10Revolutions(secs) Mass 22 597 kg) 7 9

Diameter 139,822 (page 1of2) 12,742 (km) 3,475 3,643

Distance from Lesson 8 Planet (km) 384,400 421,800 / Keeping ItTogether: Gravity’s Roleinthe Universe Orbital Speed Orbital Period(secs) (km/sec) 17 1

Orbital Period (days) 27 2 © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 6. 5. 4. 3. Student Sheet8.1: OrbitingBodies Student’s Name______Date______Class______Explain. Can youthinkofawaythat ______speed andorbitalperiod? Which planetarysatellitehasashorterorbitalperiod?Whatistherelationshipbetween ______results fromtheinvestigation,whydoyouthinkthisis? Which planetarysatellite ______How areEarth ______’ s MoonandJupiter (Io ortheMoon) ______scientists ’ s moon,Io,alike? (page 2of2) could travelsfaster(hasagreaterorbitalspeed)?Givenyour determine themassofanewlydiscoveredplanet? Lesson 8 Howaretheydifferent? ______/ Keeping ItTogether: Gravity’s Roleinthe Universe ______© Smithsonian Institution STC My Generation™: SpaceSystems Exploration 2. 1. Directions: Student Sheet8.2a: DistanceandSpeedofanOrbitingBody Student’s Name______Date______Class______Trial LengthofLine(cm) Table A.Investigation8.2Results ______the samebody. Describe therelationshipbetweendistancefrom theplanetandorbitalperiodofmoonsorbiting ______How doestheorbitalperiodchangeassphere’s distancefromthehandledecreases? UsethissheettorecordyourdatafromInvestigation8.2. Source: solarsystem.nasa.gov Calisto Ganymede Europa Io Name Table B.DataforJupiter’s Moons ______Time for10Revolutions(secs) Distance from Jupiter(km) 1,882,700 1,070,400 671,100 421,800 Lesson 8 / Keeping ItTogether: Gravity’s Roleinthe Universe Orbital Period(days) Orbital Period(secs) 17 7 4 2

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration Student Sheet8.2b: Graph Paper Student’s Name______Date______Class______Lesson 8 / Keeping ItTogether: Gravity’s Roleinthe Universe © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 8. 7. 6. 5. Channels intheApsusVallis region 4. 3. 2. 1. Valles Marineris:AMartianCanyon Directions: Student Sheet9.1: MartianGeology Student’s Name______Date______Class______a. Average Scale oftheMississippiRiverDeltaimage(km/mm): Average channelwidth(km): Calculate theimagescale(km/mm): Actual averagewidthofcanyon(km): ______Image scale(km/mm): Image height(mm): b. a. c. b. Average widthof canyon inphotograph(mm): DescribetheValles MarinerisCanyon:

Widthofcanyoninthreelocations(mm): Side channels(km): Main channel(km): Usethissheettorecordyourdatafrominvestigations. widths oftheMississippiRiverDeltachannels:

(page 1of2) Lesson 9 / Geologists inSpace:Searching forWater onMars © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 16. 15. 14. 13. Gullies onMars 12. 11. 10. 9. Sediment FansinMelasChasma Student Sheet9.1: MartianGeology Student’s Name______Date______Class______Length of Scale oftheMountSt.Helensinset( Mars gullydimensions: Calculate thescaleofMarsimage(m/mm): Length andwidthofMississippiRiverDelta Width ofthebluefan(km): Length ofthebluefan(km): Calculate theimagescale(km/mm): c. b. a.

Length oftheleft-handalcove(m): Width oftheleft-handapron(m): Length oftheleft-handchannel(m): MountSt.Helensgully alcove (m): cm/mm (page 2of2) first (upper) ):

Lesson 9 fan to the right of the main channel (km): fantotherightofmainchannel(km): / Geologists inSpace:Searching forWater onMars © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Student Sheet10.2: DesignPlanningSheet Student’s Name______Date______Class______1. Criterion Table A.Criteria,Constraints,andDesignSolutionIdeasforaHumanHabitationonMars

human habitationonMars. Use informationfromthereadingstoidentify Constraints criteria,constraints,anddesignsolutionideasfora Lesson 10 Design SolutionIdeas / The Challenges ofSpace Exploration © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 3. 2. 1. Project/Group Members: Student Sheet10.3: DesignFeedback Form Student’s Name______Date______Class______Describe suggestionsforimprovement. What doyouthinkarethegreateststrengths oftheoveralldesign? Providing protection Providing foodandwater Keeping oxygenlevelssufficient forhumanneeds Keeping temperaturesinalivablerange Describe howthedesignmeetsfollowinghabitabilityconditions:

Lesson 10 / The Challenges ofSpace Exploration © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 6. 5. 4. 3. 2. 1. Student Sheet Student’s Name______Date______Class______How couldpeoplemeettheneedforwaterin ahabitationonMars? ______Which locationsonMarsmighthavemorecomfortabletemperaturesforhumanhabitationand why? ______Would youweighmoreorlessonMars? Explainwhy ______How aretheseasonsanddaylengthonEarthMarsdifferent? Howaretheysimilar? ______What temperatureswillexplorersencounteronMars? ______How istheMartianatmospheresimilar 10.GS: Mars andEarth to and/or different fromEarth . ______Lesson 10 ______’ / s? The Challenges ofSpace Exploration ______

_ © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 4. 3. 2. 1. Other ImportantFacts Student Sheet A.1: ModelingtheUranus-Moons System Student’s Name______Date______Class______Source: http://en.wikipedia.org/wiki/Moons_of_Uranus Oberon Titania Umbriel Ariel Miranda Name Moon Table A. Earth’s Moonhasaradiusof1,737km,mass Each ofUranus’fivelargestmoonshasanalmostcircularorbit. The surfacegravityfactorofUranusis0.89. The diameterofUranusis The FiveLargestMoonsofUranus Diameter 1,522 1,577 1,169 1,158 (km) 472 51,118 (10 km. Mass 3,014 3,527 1,172 1,353 18 66 kg)

Radius (km) 73,420 Orbital 583,520 435,910 266,300 191,020 129,390 3 10 (page 1of5) 18 kg,andanorbitalperiodof27.3days. Assessment /HowDoes theUniverse Work? Period (days) Orbital 13.46 8.71 4.14 2.52 1.41 Inclination ( degrees Orbital 0.10º 0.34º 0.36º 0.31º 4.23º ) © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Student Sheet A.1: ModelingtheUranus-Moons System Student’s Name______Date______Class______Oberon Titania Umbriel Ariel Miranda Moon Table B. Scale FactorCalculations 583,520 435,910 266,300 191,020 129,390 Orbital Radius (km)

Scale Factor Calculations (page 2of5) Assessment /HowDoes theUniverse Work? Scaled Value (mm) © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Student Sheet A.1: ModelingtheUranus-Moons System Student’s Name______Date______Class______Oberon Titania Umbriel Ariel Miranda Moon Diameter 1,522 1,577 1,169 1,158 472 (km)

Scale Factor Calculations (page 3of5) Assessment /HowDoes theUniverse Work? Scaled Value (mm) © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 2. 1. Making theModel Student Sheet A.1: ModelingtheUranus-Moons System Student’s Name______Date______Class______Describe howyoucouldimproveyourmodel. following aspectsoftheUranus-moonssystem. Write oneortwo sentencesabouthowwellyourmodel h. g. f. e. d. c. b. a.

______Orbital periodsofthemoons: Seasons experiencedonthemoon: Orbital inclinationsofthemoons: Relative sizeofUranusanditsmoons: Phases ofthemoons: Orbital pathsofthemoons: Axial tiltofUranusanditsmoons: Relative distancesbetweenUranusanditsmoons: ______can (page 4of5) help youunderstand Assessment /HowDoes theUniverse Work? eachofthe © Smithsonian Institution STC My Generation™: SpaceSystems Exploration column. Then,inthesecondcolumn,provideevidencefromyourmodelthatsupportspredictions. Use yourmodeltomakeapredictionanswereachquestionbelow. Recordyourpredictioninthefirst Using theModel Student Sheet A.1: ModelingtheUranus-Moons System Student’s Name______Date______Class______5. 4. 3. 2. 1. Question Table C.Predictions andEvidence  Whichmooniseclipsedmost? Whichmooniseclipsedleast? Whichmoontravelsfastest? gravity? most often? Which mooneclipsestheSun Which moonhasthemost Prediction andEvidence (page 5of5) Assessment /HowDoes theUniverse Work? © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 3. 2. 1. to support theclaim. Select oneclaimforeachquestion.Thendescribetheevidencefrommodelsyouusedinthisunit Think abouttheSun-Earth-MoonBoardmodelyouworkedwithinthisunit. Part 1:MultipleChoice Sheet A.2: Student Student’s Name______Date______Class______Evidence thatsupportstheclaim: D C B A What istheprimarycauseofEarth’s seasons? Evidence thatsupportstheclaim: D C B A Why aretotalsolareclipsesrareevents? Evidence thatsupportstheclaim: D C B A What causesacrescentmoon? ......

Changes insolarenergy Earth’s elliptical orbit The Moon’s orbitisinclinedwithrespecttoEarth’s orbit. Earth’s shadowrarelyfallsontheSun. The MoonisalignedwithEarthandtheSun. The Moonchangesshapeasitgoesfromonephasetoanother. Earth’s rotation Earth’s axialtilt Most eclipsescannotbeseenfromEarth. The MoonistooclosetoblocktheSun. We canonlyseeasmallportionofthelitsideMoon. Earth’s shadowcoverspartoftheMoon,makingitdark. Written Assessment ______

(page 1of6) Assessment /HowDoes theUniverse Work? © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 7. 6. 5. 4. Circle True orFalseforeachstatement. Think aboutthemodelyoumadeofsolarsystem. Part 2:True/False Sheet A.2: Student Student’s Name______Date______Class______Provide evidencetosupportyouranswer#5. ______Provide evidencetosupportyouranswer#4. on theplanet’s distancefromtheSun. The amountofsurfacegravityaplanethasdependsmostly surface gravity. The Sun,planets,andmoonsinoursolarsystemallhave Written Assessment

(page 2of6) ______Assessment /HowDoes theUniverse Work? True True False False

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration volcano thatislarger. volcanoes discoveredontheimaginaryplanetsZoloandArturus.Foreachpair, circlethenameof Think abouttheimagesfromMarsthatyouanalyzedinLesson9.Thenlookatpaireddiagramsof Part 3:Circle One Sheet A.2: Student Student’s Name______Date______Class______10. 9. 8. Comparison2 Comparison1 Comparison3

Written Assessment Volcano “Zolo3.” Scaleis48m/mm. 2.5 km Image covers4kmacross. Volcano “Zolo2” Volcano “Zolo1” Zolo

(page 3of6) Volcano “Arturus 3.”Scaleis8m/mm. 0.5 km Assessment /HowDoes theUniverse Work? Image covers7kmacross. Volcano “Arturus1” Volcano “Arturus1” Arturus © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 11. Study thetablebelowshowingTomas’s weightondifferent planetsandotherplanetcharacteristics. Part 4:ShortAnswer Sheet A.2: Student Student’s Name______Date______Class______Provide State your Make a

Which factorismostimportantindeterminingaplanet’s surfacegravity?Constructascientific explanation toanswerthisquestionthatincludesallthreeparts(claim,evidence,andreasoning): Source: solarsystem.nasa.gov Neptune Uranus Saturn Jupiter Mars Venus Mercury Earth Planet Table A.Weight onDifferent PlanetsandPlanetData claim reasoning evidence toanswerthequestion: tosupportyourclaim: foryouranswer: Written Assessment Weight (lbs)

Tomas’s 114 106 253 100 90 38 90 38 Planet Mass 189,813 (10 10,241 56,832

(page 4of6) 8681 22 Explanation 487 597 kg) 64 33

Planet Radius 69,911 24,622 25,362 58,232 (km) 3,390 6,052 2,440 6,371 Assessment /HowDoes theUniverse Work? Planet Distancefrom Sun (10 4,500 2,900 1,400 778 228 108 150 58 6 km) © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 12. Sheet A.2: Student Student’s Name______Date______Class______Component Table B.SpacesuitComponentsandCriteria

You arepartofanengineeringdesignteamdevelopinganewspacesuit.Astronautswillusethe need toknowbetterdefinethecriteriaforeach. In thetablebelow, choosefourcomponentsyouthinkareimportantandrecordwhatspecifics • • • • • • • • These include: The teamhassuggestedeightcomponentsthatshouldbeconsideredwhendesigningthespacesuit. command whiletheyaremakingtherepairs. usually madewithhandtools.Astronautsmustfollowinstructionsandreportinformationtospace spacesuits duringspacewalkstorepairthespacecraft.Spacewalkscanlastup10hours.Repairsare Helmet lamp Insulated boots Oxygen pack Lightweight fabric White fabric Articulated gloves Drinking waterdispenser Two-way radio Specific InformationNeededtoDefineComponentCriteria Written Assessment

(page 5of6) Assessment /HowDoes theUniverse Work? © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 15. 14. 13. Sheet A.2: Student Student’s Name______Date______Class______

Spacesuit fabricismadeupofmanylayersmaterial.Eachlayerhasadistinctpurpose.Three ______How wouldyoutesttheimprovements?List stepsinyourtestingprocess. ______your claim. How shouldthefabricyouselectedbeimproved?Provideevidencefromtestdatatosupport ______to supportyourclaim. Which fabricisthebestoveralldesignsolutionachievedsofar?Provideevidencefrom test data in the tablebelow. samples offabrichavebeentestedforperformanceinmeetingsixcriteria.Theresultsareshown *Note: Waterproofing Flexibility Tear resistance Fire resistance Insulating ability resistance Puncture Criterion* Table C.PerformanceRatingsofSampleFabricsforSixCriteria Criterion ______isthesingularof Written Assessment ______Silver Fabric criteria Excellent Excellent Good Good Good Poor . Forexample,onecriterion,manycriteria.

(page 6of6) Puffy Fabric Excellent Good Good Good Fair Fair Assessment /HowDoes theUniverse Work? Neon Green Fabric ______Excellent Excellent Good Fair Fair Fair

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master The modelingessayincludes: • • • • • • • Edition tocheckformisconceptionsofmodeling. Refer toMisconceptionsinthePre-AssessmentofTeacher misconceptions. The explanationincludesnoirrelevantinformationor Student writes Student showscreativity. Student Student showsunderstandingofprocesses. Student ’ ’ s conclusionsaresupportablebyevidence. s thoughtsanddescriptionsareclearcomplete. PA.R: CriteriaforEvaluatingthe in clearand complete sentences. ModelingEssay Pre-Assessment / Our Amazing Universe © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 3. 2. 1. Investigation PA.2: 6. 5. 4. 3. 2. 1. Investigation PA.1: Lesson MasterPAa: Answer Key toStudentSheetPA 4.

Think aboutthefactorsyouconsideredasconstructedyourmodel.Describehowgravity holds What factorsdidyouconsiderindecidingwhichbodieswouldbetheSun,planets,andmoons? Where istheMoonlocatedwithrespecttoEarthandSunduringfullmoon? Where istheMoonlocatedwithrespecttoEarthandSunduringnewmoon? Why isaportionoftheMoonlightandotherdarkinsomeimages? What otherpatterns,ifany, canyouseeinthemonthofpictures? How oftendoesanewmoonappear? How oftendoesafullmoonappear? What factors did you consider when deciding how far apart the bodies in your solar system should be? What factorsdidyouconsiderwhendecidinghowfarapartthebodiesinyoursolarsystemshould be? bodies orbitlargerbodies. Students mayknowthatplanetsorbittheSunand moonsorbitplanets.Studentsmayknowthatsmaller What doyouknowaboutpatternsinsolarsystemsthatmayhaveinfluencedyourmodel? together. gravitational forceonalloftheplanets,keepingtheminorbitarounditandholdingsolarsystem The forceofgravitydependsonthemassbody. TheSunhasthelargestmassandexertsa the solarsystemtogether. the bodiestheyorbit. Again, moststudentswilllookatsize,ratherthanmass.Theymayplacesmallerbodiesfartheraway from the correctanswer. Some studentswillusesizetodecidewhichbodiesbetheSun,planets,andmoons.Masswould be The MoonisontheoppositesideofEarthasSun. The MoonisbetweentheSunandEarth. Light portionsshowreflectedsunlight.Darkareinashadow. A quartermoonoccursbetweenthefullandnewmoons. About onceamonth About onceamonth PhasesoftheMoon Gravity (page 1of4) Pre-Assessment / Our Amazing Universe

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration 2. 1. Directions: Investigation PA.4: 5. 4. 3. 2. 1. Investigation PA.3: Lesson MasterPAa: Answer Key toStudentSheetPA

Does aplanet’s surfacegravitydependonitsmass? What istheradiusofEuropa’s orbitaroundJupiter?Showyourwork. What isthedistanceofEuropa’s orbitaroundJupiter?Showyourwork. What isthediameter(in Which craterdoyouthinkislarger, AorB?Explain. Which moondoyouthinkislarger, AorB?Explain. c. b. a. Does aplanet c. b. a. The radiusis680,090.6km.Students’abilitytodobasicalgebraassessedhere. distance is4,273,689.6km. Students mustconvertdaystosecondsandmultiplybythevelocitydeterminethatorbital 20 mm Crater B 280 km Image width Crater Bislarger that photographBwastakenfrommuchfartheraway, soitisactuallylarger. Students maythinkthatAislargerbecauseitinthephotograph.Otherstudentswillrealize

Make aclaim.(Statewhetherornotyouthink Make aclaim.(Statewhetherornotyouthinkplanet’s surfacegravitydependsonitsmass.) State yourreasoning.(Explain howyourevidencesupportsclaim.) State yourevidence.(Select datafromthetablethatsupportsyourclaim.) State yourreasoning.(Explainhowevidence supportsyourclaim.) State yourevidence.(Selectdatafromthetablethatsupportsclaim.) the planetto completeoneorbitaround theSun. The Orbital Yes, from theSun moreastheytravel. influence, causingotherobjectstocurve More massiveobjectsbendspace-timemorethan lessmassiveobjectsandthushaveagreater surface gravity. has thegreatestsurfacegravity. andMarsaretheleastmassiveplanetshaveweakest Mercury In general,themoremassiveplanetshavehighergravityvalues.Jupiterismostplanetand Yes, aplanet’s gravitydependsonitsmass. 3 values inthetableshow that thefartherawayaplanetisfromSun, longeritwilltakefor 4 a planet

5 For eachquestion,constructyourexplanationusingaclaim,evidence,andreasoning. 3.5km/mm 80mm 20mm periods ofplanetsincrease asdistancefromtheSunincreases. 5 ’ 280km s orbitalperiodrelatetoitsdistancefromthe Sun , basedontheimagesizeandrelativesizesofcraters. ’ s orbitalperiodrelatestoitsdistancefromtheSun. .) ScaleProperties ScientificExplanation 5 3.5km/mm 5 5 70kmwide 80mm kilometers ) ofcraterB? Show yourwork. a planet (page 2of4) ’ s orbitalperiodrelatestoitsdistance ?

Pre-Assessment / Our Amazing Universe

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration 1. Investigation PA.5: Lesson MasterPAa: Answer Key toStudentSheetPA Maximum weight dimensions (cm) Maximum Table A.CameraContainerDesignCriteria Power schedule Power mode Power range(mW) (kg)

Specify designcriteriaforyourcontainerin Explain howyoudecidedonyourdesign,includinganycalculationsmade,inthespaceprovided. overall requirements.Useappropriateunitsandsufficient precisiontoensureasuccessfulsolution. Criterion

Camera 7 p.m.–1a.m. 1 p.m.–7 7 a.m.–1p.m. 1 a.m.–7p.m. On 24-hours: Criterion Specification ContainerDesignCriteria 40 10 3 2.1636 kg 2 40 Phased 208mW 3 5 5 5 5 41cm 178mW. 208mW; 40mW; 10mW; Table A . UsetheinformationinyourStudentGuideon Subtract otherpowerdrawnduringeach6-hour 12 determine theleftoverspace. can fittheir Students willneedtodrawboxesseehowthey Calculate poweravailableduringeachinterval. 6hours. The poweravailablechangesevery period fromthemaximumof230mW.

2 (page 3of4)

4.0605 container onthesatellite

2 Design Explanation

2.7709 Pre-Assessment

2

3.005 /

Our Amazing Universe 5

2.1636 kg andthen © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 1. Investigation PA.7: Investigation PA.6: Lesson MasterPAa: Answer Key toStudentSheetPA 2. 2. 1.

I wouldseeifcouldcombinethebeneficialaspects ofeachtesttocreateonedesignwithbothbenefits. different benefits?Describeyourthinkingandanystepsyouwouldtake. What wouldyoudoifyourtestresultsshowedthattwodifferent combinationsoflayershad combinations shouldthenbetestedinthefield. the sametestagainusingC2,andC3,foratotalof27tests.Full-scalemodelsbest combination oftheothertwooptions(F1,F2,F3,G1,G2,G3).Thiswouldbeninetests.Thenconduct The planshouldincludeholdingonelayeroptionconstant(e.g.,C1)andtestingpanelswithevery Describe yourplanforgeneratingdatatodeterminethebestcombinationofdesignoptions. e. d. c. b. a. For eachcamera,summarizehowwellitmeetsthedesignspecifications. h. g. f. e. d. c. b. a. For eachcriterion,listanycamerasthatdonotmeetthespecificationandwhy.

Exposure time: Green: Blue: Frame transferrate: Hyperfocal distance: Resolution: Orange: Red: Yellow: Compression rate: Depth offield: Field ofview: Focal length: Resolution andframetransferrateweretoolow;FOV, DOF, andexposuretimeweretoohigh. Values weretoohighforfieldofview, depthoffield,andexposuretime. All targetspecificationsweremet. Values weretoolowforfocallengthandhighdepth offield. Frame transferratewastoolow. Redistoolow. CameraDesignEvaluation

Yellow istoolow. Testing Blue andredaretoohigh. Blue, yellow, andredaretoohigh. Blue andredaretoohigh. All valuesarecorrect. Red andorangearetoolow. All valuesarecorrect. SolarPanelPerformance (page 4of4) Pre-Assessment / Our Amazing Universe Lesson Master PAb: Solar System Disks

Directions: Print this page and cut out the circles for use at Investigation PA.2 station. You may want to trace the circles onto cardboard and cut them out to make sturdier disks. Then glue the paper disks onto the cardboard disks or rewrite the mass of each body on the cardboard.

1030 kg

1027 kg

1026 kg 1028 kg 25 10 kg 1024 kg

22 10 kg 21 10 kg 20 10 kg 23 18 10 kg 10 kg 1016kg © Smithsonian Institution

STC My Generation™: Space Systems Exploration Pre-Assessment / Our Amazing Universe © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master1 Lesson Master1.Ra: The paragraphincludes: Total PointsPossible Step • • • • • 6 5 4 3 2 1 Student writesinclearandcompletesentences. takes fortheEarthtomakeonecompleteorbitaroundSun. necessary inordertobasetheyearonnumberofdaysit and calendarmonthsaverage30.4days.Thedifference is Student recognizesthattheMoon’ Student connectstheMoon’ Student connectsEarth’ Student connectsEarth’ Add monthsfortotal5ageinmoons Convert #yearsoldtomonths(#312) Add kmperyearandmonthtogether5agein month, thenmultiply#months378,000,000km/month) Convert monthstokm(940,000,000km/year412months/year578,000,000km/ Convert yearstokm(#3940,000,000km/year) Convert birthdatetoageinyearsandmonths Elements ofCalculation .Rb : Score Sheetfor Age Calculations Criteria forEvaluating s orbittoayear. s rotationtoaday. s orbittoamonth. s orbittakesonly27.3days CalendarParagraph Lesson 1 / Calendar intheSky Points 6 1 1 1 1 1 1 © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Moon: Sun: Number ofEarthsAway: Moon: Sun: Number ofEarthsAcross: Lesson Master1.1: Answer Key toStudentSheet1.1a Moon Sun Earth Body Name Table A.Measurements fortheSun-Earth-MoonSystem 149,600,000 1,391,016 384,400 3,475 4 12,742 4 4

12,742 4 12,742 12,742 5 Diameter (km) 0.27 5 5 109.17 1,391,016 30 5 11,740 12,742 3,475 Earths Across Number of 109.00 1.00 0.27 149,600,000 from Earth Distance 384,400 N/A

Lesson 1 / Earths Away Number of Calendar intheSky 11,740 N/A 30 © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 7. 6. 5. 4. 3. 2. Lesson Master2: Answer Key toStudentSheet2 1.

Is thetiltofMoon’s orbitalplaneexaggeratedinthemodel? Why doestherodgothroughglobeatanangle? Why aretherodsdifferent heights? What doyouthinktherodsonyourboardrepresent? In whichdirectiondoEarthandtheMoonrotatearoundtheiraxes,clockwiseorcounterclockwise? Will theMoonusuallybehigherorlowerthanEarth,levelwithit,asEarthorbitsSun? Yes, itshouldonlybeabout5degreesbutismoreinthemodel. Earth’s axisistilted. The Moon’s orbitisatanangletoEarth’s orbit. The rodsrepresenttheMoon’s orbitaroundEarth. Both movecounterclockwise. The MoonwillusuallybehigherorlowerthanEarth. No, theyareabout5degreesapart. Do EarthandtheMoonrevolveonsameplane? the from Earthat eachphase.Because this drawingistwo Moon atanytime.Ifyou cutalongtheline,youareleftwithportion oftheMoonvisible Note: SUN’S RA underside of eachcircleisilluminated. Students shouldshade half ofeachcirclebecausetheSuncanonlyilluminate halfofthe YS Wa W 1 axing crescent New moon ning crescent 2 86 Last quarter First quarter EART 7 3 H W Wa aning gibbous Full moon xing gibbous Lesson 2 4 - dimensional, youhavetovisualize that 5 / Howling attheMoon: Investigating LunarPhases by theSunoveralunarcycle How theMoonisilluminated Figure A © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master Improvements andexecution: Limitations studentsidentify: The paragraphincludes: • • • • • • • • Student writesinclearandcompletesentences. related tothelimitationslisted. Student suggestsatleasttwoimprovementsthataredirectly The appearanceoftheMoonfromEarthhadtobeinferred. The Moon’ Earth’ was exaggerated. The difference betweenEarth’ The tiltofEarth’ The modelwasnottoscale. s rotationwasnotshown. s rotationwasnotshown. 2.R: CriteriaforEvaluatingModelLimitationsParagraph s axiswasexaggerated. s andtheMoon’ s orbitalplanes Lesson 2 / Howling attheMoon: Investigating LunarPhases © Smithsonian Institution STC My Generation™: SpaceSystems Exploration C. B. A. All sketchesshouldbeproperly labeled. Lesson Master3.2: SampleSketches ofModelConfigurations

someone elseexperiencesahightide. This showshow A neaptide A springtide Sun Sun Sun occursduringquartermoons. occurs duringanewmoonorfullmoon. onepersoncanexperiencealowtideatexactlythesameinstantas bulge T idal bulge T idal Moon Moon Earth Earth a lowtide Person experiencing a hightide experiencing Person Lesson 3 (page 1of2) Moon Earth / Pulling Water: Gravity andTides

bulge T idal © Smithsonian Institution STC My Generation™: SpaceSystems Exploration F. E. D. Lesson Master3.2: SampleSketches ofModelConfigurations

Earth’s tidesiftheSunandMoonweremuchcloser Earth’s tidesiftherewerenoMoon The tidalbulgeislesspronounced The Moon’s ellipticalorbitaroundEarthaffecting thetides when theMoonisfartheraway Sun Sun Earth bulge T idal . Moon Moon Moon’ s orbit to Earth bulge T idal bulge T idal Moon The tidalbulgeismorepronounced when theMoonisclosertoEarth. Lesson 3 (page 2of2) Earth Earth Earth / Pulling Water: Gravity andTides small tidalbulge. The Sunalone only causesa bulge T idal Lesson Master 3.1: Answer Key to Student Sheet 3.1a

1. A high tide occurs when the tide reaches its maximum height on each rise. How many high tides normally occur along Virginia Beach in 24 hours? Two

2. A low tide occurs when the tide reaches its minimum height on each fall. How many low tides normally occur along Virginia Beach in 24 hours? Two

3. Why do you think this pattern in high and low tides exists? Students may suggest Earth’s rotation, the Moon’s position, or both.

4. Examine the height of the high tides from April 5th through April 7th. How does the height of the high tide change from tide to tide? The high tides alternate with every other tide being higher than the one preceding or following it.

5. Compare the times that high and low tides occur each day over a 2-week period. What do you observe? Explain why you think this happens. High tides occur more than 12 hours apart, while low tides alternate between more than 12 hours apart and less than 12 hours apart. The shorter intervals between low tides surround a smaller high tide. It takes longer for the water to recede from a higher tide.

6. Examine the data showing moonrise and moonset times. Compare these times to the timing of high tide and low tide. What patterns do you observe? What explanation can you give for these patterns? The Moon rises and sets near the high tide time. Thus it is highest in the sky during the low tide. Students will likely expect the opposite to be true.

7. Examine the data showing how much of the Moon is visible. Add the names of the lunar phases in the right-hand column. Compare the phases of the Moon to the heights of the high and low tides. During which phases do the lowest high tides occur? During which phases do the highest high tides occur? What explanation can you give for these patterns? The lowest high tides and highest low tides occur during the first quarter moon. The highest high tides occur during the new moon. During the first quarter moon, the Sun and Moon are at right angles to Earth so their gravitational influences balance out. During a new moon, the Sun and Moon are aligned to one side of Earth and their gravitational forces are additive. © Smithsonian Institution

STC My Generation™: Space Systems Exploration Lesson 3 / Pulling Water: Gravity and Tides © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master3 Reasoning: Observations: The paragraphincludes: • • • • • • • • • • • Student writesinclearandcompletesentences. misconceptions. The explanationincludesnoirrelevantinformationor temporarily affect tidalrange. Changes inatmosphericpressureduringstormeventscan in moreshallowareas. Ocean depthisvariableandwatermovementcanberestricted If waterbecomesrestricted,thetidalrangeismagnified. by continents. of theMoon’ When waterisattractedtoonesideoftheplanetbyforce South America. as betweenAfricaandMadagascarCentral The highestrangesoccurinareasofrestrictedwaterflow, such Areas closertothecontinentstendhavehigherranges. Some areasofopenoceanhavemediumranges. Areas ofopenoceantendtohavesmallerranges. Tidal rangeworldwidevariesfrom0to140cm. .R s gravity, itcannotmovefreelybecauseisblocked : CriteriaforEvaluating Tidal RangeParagraphs Lesson 3 / Pulling Water: Gravity andTides © Smithsonian Institution STC My Generation™: SpaceSystems Exploration The MooncastsashadowonEarth.Ifyouare undertheumbra,youwillseeatotaleclipseofSun. Total solareclipse The MoonisinthepenumbrapartofEarth’s shadow. Partial lunareclipse Earth iscastingashadowontheMoon.TheMooninumbrapartofEarth’s shadow cone. Total lunareclipse Lesson Master4.1: SampleEclipseSketches Sun Sun Sun Moon Earth Earth Umbra (page 1of2) Penumbra Umbra Umbra Penumbra Penumbra Moon Moon Lesson 4 Earth / Blackout: SolarandLunar Eclipses © Smithsonian Institution STC My Generation™: SpaceSystems Exploration penumbra falls. The Moon’s shadowfallsonEarthandyoucanseethepartialeclipsefromareaswhere Partial solareclipse the antumbrapartofshadowcone. Only thepenumbrapartofMoon’s shadowfallsonEarth.You seetheannulareclipsefrom Annular eclipse Lesson Master4.1: SampleEclipseSketches Sun Sun Umbra Moon Moon Umbra (page 2of2) Penumbra Antumbra Penumbra Lesson 4 Earth Earth / Blackout: SolarandLunar Eclipses

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master 1. 2. Seasonal changeatthepoles: How seasonalchangeoccurs: Reasoning includes: Observations include: Reasoning includes: Observations include: • • • • • • • • • • • • • • • • • • • • • During the During the During the Earth turns, During the Six monthslater, theseconditionsreverse. At theSouthPoleduring At theSouthPoleduring At theNorth At theNorthPoleduring Student writesinclearandcompletesentences. The explanationincludesnoirrelevantinformationormisconceptions. The equatorialregionsreceivethemostsolarradiationaroundequinoxes. The SouthernHemispherereceivesthemostsolarradiationaroundDecembersolstice. The NorthernHemispherereceivesthemostsolarradiationaroundJunesolstice. The angleoftheSuncontrolsamountradiationreceivedandlengthday. The amountofsolarradiationreceivedperunitareadeterminesseasons. sunlight strikesagivenarea. The amountofsolarradiationreachingEarth In theNorthernHemisphere,shadowsarelongerinwinterthansummer. The NorthernHemispherefacestowardtheSuninsummerandawayfromwinter. The directionofEarth Earth ’ s axistilts. 5.R: CriteriaforEvaluatingSeasonalChang December December June June

the NorthPolealwaysreceiveslight. P ole solstice,theSouthPolereceivesnolight. solstice,Earth duringthe solstice,sunlightneverreachestheNorthPole. solstice,theSouthPolefacesSunalldayand night. ’ s tiltstaysthesameasEarthorbitsSun. June June June June ’ s axistiltstheNorthernHemisphere solstice,theSunstaysoverheadalldayandnight. solstice,itisthewarmesttimeofyear solstice,theSunisneverinsky. solstice,itisthecoldesttimeofyear. ’ s surfacedependsontheangleatwhich Lesson 5 e / Paragraphs Reasons forSeasons:Why Earth’s Tilt Matters

t oward theSun .

. Asthe © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master4.2: Answer Key toStudentSheet4.2 F 7 8 KEY:  6 Fullmoon F = N =Newmoon

5 B 1

3 Months 4 3 2

N Months 3 73 7 8 8 6 6 A N N S C 5 5 F F 1 1 4 4 (page 1of2) 2 2 3

Lesson 4 3 N / 7

Blackout: SolarandLunar Eclipses Months

3 8 6 Months D 5 1 4 2 F 3 © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 11. 10. 9. 8. 7. 6. 5. 4. 3. 2. 1. Lesson Master4.2: Answer Key toStudentSheet4.2 Yes Can youcreatealunareclipse(castshadowonyourfullmoon)? Yes Can youcreateasolareclipse(castshadowonEarth)withyournewmoon? 3 monthslater How manymonthslaterdoesdotDrepresent? No Can youcreatealunareclipse(castshadowonyourfullmoon)? No Can youcreateasolareclipse(castshadowonEarth)withyournewmoon? 3 monthslater How manymonthslaterdoesdotCrepresent? Yes, studentsshouldbeabletocreatealunareclipse. Can youcreatealunareclipse(castshadowonyourfullmoon)? Yes, studentsshouldbeabletocreateasolareclipse. Can youcreateasolareclipse(castshadowonEarth)withyournewmoon? 3 monthslater How manymonthslaterdoesdotBrepresent? No, studentsshouldnotseeEarth’s shadowontheMoon. Does Earthcastashadowonthefullmoon? No, studentsshouldnotseeashadowonEarth. Does thenewmooncastashadowonEarth? (page 2of2) Lesson 4 / Blackout: SolarandLunar Eclipses © Smithsonian Institution 4. 3. 2. 1. Table Notes Source: NASAPlanetaryFactSheet—Metric(nssdc.gsfc.nasa.gov/planetary/factsheet/) STC My Generation™: SpaceSystems Exploration and readtheTable Notes.Thencompletethe Directions: Lesson Master6.1: Answer Key toStudentSheet6.1 planets Inner planets Outer Table A.PlanetaryData

The orbitalinclinationofeachplanetistheangle betweenthatplanet’s orbitalplaneandEarth’s You havelearnedthatEarth’s axisisnotperpendicular toitsorbitalplane.Itistilted.Thisalsotrue It isalsoimportanttonotethatthedistancesareroundednearest100,000km.Mercury’s Distances fromtheSunaregivenin10 other planesaremeasured. orbital plane.ThatiswhyEarth’s orbital inclinationis0.0.Itthereferenceplanefromwhichall to thatplanet’s orbitalplane. for alloftheotherplanets.InTable 1,theaxialtilt ofeachplanetisrelativetoalineperpendicular actual distancefromtheSunatperihelion is46,001,009km. or kilometers. Forexample,Mercury’s distancefromtheSunatperihelionis46.0 multiplied by10sixtimes(or 46

million Table Alistsinformationforeachoftheeightplanetsinoursolarsystem. Reviewthetable Neptune Uranus Saturn Jupiter Mars Earth Venus Mercury Planet km. Sun atthe Perihelion from the Distance (10 4,444.5 2,741.3 1,352.6 740.5 206.6 147.1 107.5 6 46.0 km) 1 million Sun atthe Aphelion from the Distance (10 4,545.7 3,003.6 1,514.5 816.6 249.2 152.1 108.9 6 6 km.Here,10 69.8 km) ). Therefore,thedistancesshownareinmillionsof student sheet of Semi- (10 Length 4,495.1 2,872.5 1,433.6 minor Axis 778.6 226.9 149.6 108.2 6 6 56.7 simplymeansthatthevalueshownis km) Lesson 6 . (page 1of5)

/ Diameter Stellar Proportions: Modeling theSolar System 142,984 120,536 Planet 12,756 12,104 49,528 51,118 (km) 6,792 4,879 (degrees) Axial Tilt 177.4 25.2 23.4 0.01 28.3 97.8 26.7 3.1 3 10 6 km, Inclination (degrees) Orbital 1.8 0.8 2.5 1.3 1.9 0.0 3.4 7.0 © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 5. 4. 3. 2. 1. Choosing aScaleFactor Lesson Master6.1: Answer

Many modelsincludedifferent scalestoshowdifferent parts.Thisworksaslongthescaleforeach Take yourpieceofgraphpaperandholditlengthwise(inlandscape view). Counthowmany Your scalemodelwillconsistoftwoscaleddrawingsongraphpaper:oneplanviewandsideview. Look atthedistancesfromSunfordifferent planets.Canyouseewhythefirstfourarecalled them thinkabout howtheycouldcome upwiththreescalefactors bydividing35three times. numbers slightlydifferent than10and20.Iftheyneedmorehelptocome upwiththescalefactors,have scaled at1 distances totheouterplanets arescaledat1 distancesandsizesoftheplanets are toodifferenttousethesamescalefactorforboth. If The planetary reasonable scalesforthe innerplanetsandJupiter. ( your scaleforNeptune,whichyoucanuse the planetsthathaveverylargevalues,comeupwith kilometers. that thedistancesareshowninmillionsofkilometers, whiletheplanetdiametersareshownin Look atTable Aandcompare theplanetdiameterswiththeirdistancesfromSun.Donotforget more orlessdetailthantheprimarydrawing. mechanical drawings.Thesemodelsoftenshow aninsetmapordrawingatadifferent scaletoshow part isclearlystated.Usingmorethanonescale inamodelisparticularlycommonmapsand The scalefactoris1 1 mmonthepaper 180 180 multiply by10 to 12accountforthelargernumberofmm.To convertkilometerstomillimeters ( The scaleis180 ( you needtoconvertthenumberofkilometerspersquaremillimetersandshowyourwork. Using youranswersfrom#2and#3,calculatethescalefactoryouwilluseforNeptune.To dothis, (9,000 Number ofsquares and recordit. number ofsquaresyoucount.You willalsoneedtomeasure the sizeofonesquareinmillimeters of kilometerseachsquarecanrepresent. squares itisacross.Leavealittlespaceoneachendforborder. Nowfigureouthowmanymillions Distance tocover (4,444.5 the solarsystemtocoveratleastthisdistance(roundup). (Table A) outermost planet—Neptune.LookatNeptune’s distancefromtheSunataphelionandperihelion You willneedto farther awaythanthelastinnerplanet(Mars). The firstfourplanetsaremuchclosertotheSun.outerplanet,Jupiter, ismorethanthreetimes the innerplanetsandlastfourarecalledouterplanets?Explainyourideas. Note: Hint: 3 3 1millionmm 1km 10 10 3 10 3 . Addthesetwodistancestogether 12 12 : 10 4 distance mmofplanetary 6 Explain why more than one scale is necessary for some planets in this model. Based on Explain whymorethanonescaleisnecessaryfor someplanetsinthismodel.Basedon 10 5 km) 6 5 6 Showyourworkhere: . Whentheymultiplyvariableswithexponents 1millionmmor10 km)+(4,545.7 5 3 3 5 4 calculate 10 36 10 5 5 : 9,000 50 36 12

3 6 5 50 kmpersquareandoneis5mmwide. . ThedistancetoJupitercould bescaledat1 36 5 3 1km. 10 3

180 10 3 12 a scale factor for distance that will let you show the complete orbit of the ascalefactorfordistancethatwillletyoushowthecompleteorbitof 10

12 10 Key toStudentSheet6.1 ) 3 (tosimplify, use1 12

3 6 mm of planetary distance mmofplanetary km 10 10 6 mm.Theoriginalvaluesareinmillionsofkm 6 6 kmpersquare 5 km) 5 mmonthepaper 5 : 8,990.2 To dothis,takeyouranswerfrom#2anddividebythe 35 in thespaceprovidedbelow : 3 35 10 3 3 12 Hint: 10 10 , thedistancestoinner planetscouldbesafely 12 6 Lesson 6 km )

Theinnerplanetscanhave thesamescale.) , (page 2of5)

they addtheexponent : / 20 Stellar Proportions: Modeling theSolar System 3 10 12 . You willwantyourmodelof . Studentsmaycomeup with ,

so theexponentdoubles , studentsneedto s . )

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration 6. Lesson Master6.1: Answer Aphelion distance distance Perihelion Venus Semi-minor axis Semi-minor axis Aphelion distance distance Perihelion Mars Semi-minor axis Aphelion distance distance Perihelion Earth Semi-minor axis Aphelion distance distance Perihelion Mercury Table B.ScaledValue ofPlanetaryData

Now thatyouhavedecidedonyourscalefactors,mustconverttheperiheliondistances, your scaledvaluesinTable B. aphelion distances,andsemi-minoraxes,inTable Atoscaledvalues.Showyourworkandrecord Planet Original Value 108 .9 226.9 249.2 206.6 149.6 152.1 147.1 108.2 107.5 56.7 69.8 46.0 (1 0 3 3 3 6 3 3 3 3 3 3 3 3 3 km) 10 10 10 Key toStudentSheet6.1 10 10 10 10 10 10 10 10 10 6 6 6 6 6 6 6 6 6 6 6

6

Scale Factor 1 1 1 1 :10 1 :10 1 :10 1 :10 1 :10 1 :10 1 1 1 (1 : : : : : : 0 10 10 10 10 10 10 12 3 3 3 3 3 3 3 3 3 3 3 3 mm) 10 10 10 10 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12 12 12 12 12 46.0 Lesson 6

(page 3of5) 3 10 / Calculations 6 Round to23 Round to25 Round to21 Round to15 Round to15 Round to11 Round to11 Round to11 226.9 249.2 206.6 149.6 152.1 147.1 108.2 108.9 107.5 km Round to6 Round to7 Round to5 Stellar Proportions: Modeling theSolar System 56.7 69.8 46.0 x x x x x x x x x x x x 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 22.7 24.9 20.7 15.0 15.2 14.7 10.8 10.9 10.8 5.7 6.9 4.6 46.0 10x 10x 10x 10 10 10 10 10 10 10x 10x 10x

x x x x x x 3

10 12 mm

Value (mm) Scaled 23 25 21 15 15 15 11 11 11 6 7 5 © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master6.1: Answer Semi-minor axis Aphelion distance distance Perihelion Neptune Semi-minor axis Aphelion distance distance Perihelion Uranus Semi-minor axis Aphelion distance distance Perihelion Saturn Semi-minor axis Aphelion distance distance Perihelion Jupiter Table B.ScaledValue ofPlanetaryData Planet Original Value 4,444.5 2 1,003.6 2,741.3 1 1,514.5 1,352.6 4 4,545.7 778.6 816.6 740.5 , , , 872.5 433.6 495.1 (1 0 6 3 3 3 km) 3 3 3 3 3 3 3 3 3 Key toStudentSheet6.1 10 10 10 10 10 10 10 10 10 10 10 10 6 6 6 6 6 6 6 6 6 6 6 6

Scale Factor 1 1 1 1 1 1 1 1 1 1 1 1 (1 : : : : : : : : : : : : 0 35 35 20 20 20 35 35 35 35 35 35 35 12 3 3 3 3 3 3 3 3 3 3 3 3 mm) 10 10 10 10 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12 12 12 12 12 Lesson 6

(page 4of5) / Calculations 1 1 4 4 4 2 1 2 1 Round to128 Round to130 Round to127 Round to39 Round to39 Round to41 Round to37 Round to82 Round to29 Round to78 Round to43 778.6 816.6 740.5 , , , , , , , , , Stellar Proportions: Modeling theSolar System 514.6 352.6 495.1 545.7 444.5 872.5 003.6 741.3 433.6 x x x x x x x x x x x x 5 5 5 5 5 5 5 5 5 5 5 5 128.4 129.9 127.0 5 5 5 43.3 38.6 38.9 40.8 37.0 82.1 28.7 78.3 41.0 5 5 5 5 5 5 5 5 5 20 20 20 35 35 35 35 35 35 35 35 35

x x x x x x x x x x x x

Value (mm) Scaled 128 130 127 82 29 78 41 43 39 39 41 37 © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master6.1: Answer 7. Mars Earth Venus Mercury Planet Table Neptune Uranus Saturn Jupiter

in Table C. Convert theplanetdiametersfromTable Atoscaledvalues.Showyourworkandrecordvalues C . Scaled Diameter Original Value (10 120,536 142,984 12,756 12,104 51,118 49,528 6,792 4,879 6 km) Key toStudentSheet6.1

Scale Factor (1 1 :1,000 1 :1,000 1 :1,000 1 :1,000 1 :3,000 1 :3,000 1 :3,000 1 :3,000 0 12 mm) Lesson 6

(page 5of5) 142,984 =1,429.84×10 120,536 =1,205.36×10 12,756 =127.56×10 12,104 =121.04×10 49,528 =495.28×10 51,118 =511.18×10 4,879 =48.79×10 6,792 =67.92×10 1,205.36 =30x 1,429.84 =30x / Calculations 127.56 =10x 121.04 =10x 495.28 =30x 511.18 =30x Round to12 Round to17 Round to17 Round to40 Round to48 Round to13 48.79 =10x 67.92 =10x Round to5 Round to7 Stellar Proportions: Modeling theSolar System x =12.76 x =12.10 x =16.51 x =17.04 x =40.18 x =47.66 x =4.88 x =6.79

2 2

2 2 2 2

2 2

Value (mm) Scaled 13 12 17 17 40 48 5 7 © Smithsonian Institution STC My Generation™: SpaceSystems Exploration ILLUSTRATION BASEDON: Side ILLUSTRATION BASEDON: Plan ViewSample: Lesson Master6.2a: V Jupiter iew Sun Earth S ample: V

http://www.derbyastronomy.org/AriesJanApr06HistorySolarSystem.htm http://www.science-story.com/images/outline-printable-solar-system-labeled.jpg enus Neptune Mars Neptune Eachplanetshouldbelabeledanddrawntoscale. Tilt shouldbeindicatedoneachplanet. Sample Sketches ofPlan View andSide View Models V enus Sun Mercury Lesson 6 Jupiter / Stellar Proportions: Modeling theSolar System Mars Uranus Saturn Mercury Uranus Earth Saturn © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Planetary ClimateParagraph M Lesson Master Paragraph includes: Paragraph includes: odeling Paragraph • • • • • • • • • Student writesinclearandcompletesentences. seasonality isprobablymoreEarth-like. Neptune, Saturn,Mars,andEarthhavesimilartilts pronounced seasons. Venus andUranushavethemosttilts andthemost experience seasons. Mercury andJupiterhaveverylittletiltslikelydonot Student writesinclearandcompletesentences. mechanical modelbasedonthediagrams. Student suggestsanimprovementsuchascreatinga3-D movement oftheplanetswithrespecttooneanother. Student describesalimitationsuchasthemodeldoesnotshow flux orestimatingseasonalityoneachplanet. Student describesauseforthemodelsuchascalculatingsolar were applied. Student describesthescalesusedinmodelandwherethey 6.R: CriteriaforEvaluatingModelingandClimat Lesson 6 / Stellar Proportions: Modeling theSolar System e Paragraphs © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master The modelincludesthefollowingcomponents: • • • • • • • • check formisconceptionsinthemodels. Refer toMisconceptionsinLesson6oftheTeacher Editionto All scalesusedarenoted. All planetslabeledneatlyandcorrectly. All orbitaltiltsatthecorrectangle. All orbitalplanesatthecorrectangle. All orbitsatthestatedscaledsize. All planetsatthestatedscaledsize. All planetsattheproperstatedscaleddistancefromSun. 6.2b: CriteriaforEvaluatingtheSolarSystemModel Lesson 6 / Stellar Proportions: Modeling theSolar System © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Part 3 9 Part 2 Part 1 Lesson Master7.1: 8. 7. 5. 4. 3. 2. 1. 9. 8. 7. 6. 4. .

tends toincreasewithplanetsizebecauselargerplanetstendhavemass. if itislargerinsizebecausetheplanet’s surfaceisfartherfromitscenterofgravity. Overall,surfacegravity However, amoremassiveplanet(Mars)canhavethesamesurfacegravityasless(Mercury) For planetsofsimilarsize,likeUranusandNeptune,theonewithgreatermasshashighersurfacegravity. The gravitationalforcefeltataplanet’s surfacedecreaseswithdistancefromtheplanet’s centerofgravity. almost twiceasmassiveandismuchlargerthanMercury. andMarshavethesamesurfacegravity.mass andgreatersurfacegravitythanUranus.Mercury Marsis planet massincreases,radiusincreases.UranusandNeptunearesimilarinsize.has greater As surfacemassincreases,gravityincreases.planetradius As Both planetmassandsizeaffectaplanet’s surfacegravity. They arepositivelycorrelated. Surface gravityispositivelycorrelatedtoplanetradiusorsize. C C C Jupiter Jupiter Saturn The same More

Answer Key toStudentSheet7.1a Lesson 7 / Gravity: BendingSpace-Time © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master7.2: b. a. c.

it. Ifthesmallerbodylosesspeed,itwillbedrawnintolargerbody. Reasoning: toward thewaterballoon.Itmovedfasterasitgotcloseruntilfinallyhit Evidence: Claim: How doesamassivebodyinthecontinuumaffect asmallerbodytravelingpast it? continuum moresothatthesmallermass“falls”orisattractedbyitsgravitationforce,towardit. Reasoning: moved towardthelargermass. Evidence: Claim: Do bodiesoflargermassorsmallerhaveagreaterattractiveforce? Reasoning: Evidence: Claim: Do bodiesoflargermassdeformthespace-timecontinuummoreorlessthansmallermass? A largerbodyattractsasmallersothatitcirclesthebody. Larger masseshaveagreaterattractiveforce. Larger massesdeformthecontinuummorethansmallermasses. In Test 5,themarblerolledalongoutsideedgeofcontinuumbutthenbegantospiralin In Test 3,thelargemassdidnotmovetowardsmallermass,butinTest 4,thesmallmass The largermassinTest 1deformedthecontinuummorethansmallermassinTest 2. This meansthatamoremassivebodyforcewilllessintoanorbitaround This meansthatthelargermasshasgreaterattractiveforce.Itdeformsspace-time This meansthatthegreatermass,moreobjectcandeformmaterialitisin. Sample Answers forInvestigation7.2

(Step 5) Lesson 7

/ Gravity: BendingSpace-Time

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master8.1: 4. 3. 2. 1. 6. 5.

and itsdistancefromtheplanet,arealsotakenintoconsideration. speed, themoremassiveplanetitisorbiting.Otherfactors,suchasmassoforbitingsatellite theorbitalperiodofanartificialorbiter.scientists mayobserve Thefasterthesatelliteororbiter’s orbital orbital periodsoftheplanet’s moonormoons.Forplanetswithoutnaturalsatellites,suchasMercury, This questionisaconceptualleapformanystudents.To determineaplanet’s the mass,scientistsobserve Explain. Can youthinkofawaythatscientistscould else approximately 27daystoorbitEarth.Thegreatertheorbitalspeed,shorterperiod,if all Io’s orbitalperiodisshorter. ItonlytakesabouttwodaysforIotoorbitJupiter. IttakestheMoon speed andorbitalperiod? Which planetarysatellitehasashorterorbitalperiod?Whatistherelationshipbetween center, thefasterobjectorbitscentralmass. Io’s orbitalspeedisfasterthantheMoon’s. Jupiterismoremassive.Likethecylinder, themoremassive results fromtheinvestigation,whydoyouthinkthisis? Which planetarysatellite(IoortheMoon) similar. Theirorbitalspeedsandperiods,however, different. arevery Io andEarth’s How areEarth Jupiter hasmoremassthanEarth. Compare themassofJupiterwithEarth.Whichplanethasmoremass? in As themassofcylinderincreases,speedorbitingspheremustincreaseinordertostay How doesthemassofcylinderaffect howfastorslowthesphereorbitsyourhand?

orbit.

is heldcontent. M ’ s MoonandJupiter oon haveasimilardiameterandmass,theirdistancesfromhostplanetsare Answer Key toStudentSheet8.1 ’ s moon,Io,alike?Howaretheydifferent?

travels faster(hasagreaterorbitalspeed)?Givenyour

determine themassofanewlydiscoveredplanet? Lesson 8 / Keeping ItTogether: Gravity’s Roleinthe Universe

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration Graph C Graph B Graph A Lesson Master Variable 1 Variable 1 Variable 1 LOW HIGH LOW HIGH LOW HIGH Graph A Graph C Graph B LOW LOW LOW V Va V ariable 2 ariable 2 7.GS: riable 2 SampleGraphs HIGH HIGH HIGH Graph E Graph D Variable 1 Variable 1 LOW HIGH LOW HIGH Graph D Graph E LOW LOW Va Va riable 2 riable 2 Lesson 7 / Gravity: BendingSpace-Time HIGH HIGH © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master8.2: Answer Key toStudentSheet8.2a 2. 1.

The orbitalperiodincreasesas the samebody. Describe therelationshipbetweendistancefromplanetandorbitalperiodofmoonsorbiting greater distancebetweenthesphereandhandle. Orbital periodisshorterwhenthesphereclosertohandle.slowerthere How doestheorbitalperiodchangeassphere the moons ’ distancefromJupiterincreases. ’ s distancefromthehandledecreases? Lesson 8 / Keeping ItTogether: Gravity’s Roleinthe Universe

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration 1. Lesson Master that arefartherawaybecausetheforceofgravityisdirectlyrelatedtodistancefrommassivebody. in orbitaroundmoremassivebodies.Orbitingbodiesthatareclosermustmovefasterthanorbiting Reasoning: I 2. 1. Evidence: Claim: Does gravityaffect theorbitalpropertiesofplanetsandtheirmoons? moon increased. In Investigation8.1,asthe“planet”massincreased,speedoforbitingmoonincreased. n Investigation8.2,asthedistancebetween“planet”and“moon”decreased,orbitalspeedof Yes, gravityaffectstheorbitalpropertiesofplanetsandtheirmoons.

Gravity isanattractiveforcethatdependsonmass.Orbitingbodiesmustmovefastertostay 8.R: Sample Answers toGravity Explanation Lesson 8 / Keeping ItTogether: Gravity’s Roleinthe Universe © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master10.2: Sample Answers forDesignPlanning 1.

human habitationonMars Use informationfromthereadingstoidentify and animals Food tosustainpeople plants Water tosustainpeople, Atmosphere 21%O Temperature Criterion , andanimals 2 . Water andsoilarelimited. sedimentary layers. Water isinsubsurfaceiceand Oxygen isintheformofCO – Outdoor tempswouldbefrom Constraints 176°C ( – 284°F) to30°C(86°F).

criteria, constraints,anddesignsolutionideasfora 2 . Lesson 10

and othergrowingmediums. habitation andusehydroponics Mine nitrogenfromthesoilnear below habitation. Drill andmelticelayersfrom Use plantstoconvertCO for wallinsulation. Use highlyinsulatingmaterial Design SolutionIdeas / The Challenges ofSpace Exploration 2 toO 2 . Lesson Master 9.1: Answer Key to Student Sheet 9.1 (page 1 of 2)

Valles Marineris: A Martian Canyon 1. Image height (mm): Image height 5 about 5 in 5 100 mm

2. Image scale (m/mm): Scale 5 2,000 km 4 100 mm 5 20 km/mm 5 20,000 m/mm

3. a. Appearance of wall: The wall appears that it was deposited in layers, similar in appearance to canyons on Earth, such as the Grand Canyon.

b. Width of canyon in three locations (mm): Answers will vary.

c. Average width of canyon in photograph (mm): Answers will vary. Example: 5 mm

4. Actual average width of canyon (km): Answers will vary. Example: 5 3 20 km/mm 5 100 km wide

Channels in the Apsus Vallis region 5. Calculate the image scale (km/mm): Image width 5 3 km 5 57 mm 3 km 4 57 mm 5 0.05 km/mm

6. Average channel width: Average channel width 5 1.5 mm 1.5 3 0.05 km 5 0.075 km (75 m)

7. Scale of the Mississippi River Delta image: Answers will vary. 54 km across photo 5 185 mm 54 km/185 mm 5 0.3 km/mm 5 300 m/mm

8. Average widths of the Mississippi River Delta channels (km): Answers will vary. a. Main channel 5 3 mm 3 mm 3 0.3 km/mm 5 0.9 km wide (900 m wide) b. Side channels 5 1 mm 3 0.3 km/mm 5 0.3 km wide (300 m wide) © Smithsonian Institution

STC My Generation™: Space Systems Exploration Lesson 9 / Geologists in Space: Searching for Water on Mars Lesson Master 9.1: Answer Key to Student Sheet 9.1 (page 2 of 2)

Fossil Fans in Melas Chasma 9. Calculate the image scale (km/mm): Scale bar width 5 11 mm 500 4 11 5 45.5 m/mm 5 0.05 km/mm

10. Length of the blue fan (km): Fan length 5 50 mm 0.05 km/mm 3 50 5 2.5 km

11. Width of the blue fan (km): Fan width 5 35 mm 0.05 km/mm 3 35 5 1.75 km

12. Length and width of Mississippi River Delta first (upper) fan to the right of the main channel (km): Length 5 30 mm 30 3 0.3 km/mm 5 9 km Width 5 25 mm 25 3 0.3 km/mm 5 7.5 km

Gullies on Mars 13. Calculate the scale of the Mars image (m/mm): Image covers 1.3 km across 5 90 mm 1.3 km 4 90 mm 5 0.014 km/m 5 1.4 m/mm

14. Mars gully dimensions: a. Length of the left-hand alcove: 45 mm 3 1.4 m/mm 5 60 m b. Length of the left-hand channel: 35 mm 3 1.4 m/mm 5 49 m c. Width of the left-hand apron: 25 mm 3 1.4 m/mm 5 35 m

15. Scale of the Mount St. Helens inset (cm/mm): 30 cm 5 15 mm 15 mm 5 2 cm/mm

16. Length of Mount St. Helens gully alcove (m): 18 mm (in inset) 3 2 cm/mm 5 36 cm 5 0.36 m © Smithsonian Institution

STC My Generation™: Space Systems Exploration Lesson 9 / Geologists in Space: Searching for Water on Mars © Smithsonian Institution STC My Generation™: SpaceSystems Exploration 6 2 1 Project/Group Members: Lesson Master10.GS: 3. 5. 4. . . .

Would youweighmoreorlessonMars?Explainwhy How aretheseasonsanddaylengthonEarthMarsdifferent? Howaretheysimilar? What temperatureswillexplorersencounteronMars? How istheMartianatmospheresimilar near People couldtaptheice-richlayer, whichcontains20to50%icebymass,andliesbelowthesurface How couldpeoplemeettheneedforwaterinahabitationonMars? because comfortable forhumans.TheNorthernHemisphereisalsoagoodlocationhumanhabitation, The temperaturesattheequatorwouldchangelessandbeclosertothataremost and Which locationsonMarsmighthavemorecomfortabletemperaturesforhumanhabitation Mars The gravityonMarsis3.7m/sec²,whileEarth season length The daylengthonMars(24hours,37minutes)andEarth(2356 Temperatures rangefrom much thinnerthanEarth’s. Earth The Martianatmosphereis96%carbondioxide,<

why?

the SouthPole. ’ than onEarth. s atmosphereis78%nitrogen,21%oxygen,and0.04%carbondioxide.Mars’also s of wouldbeabouttwiceaslongonMars.

it haslongerspringandsummerseasonsthanotherpartsoftheplanet. a yearonMars(687days)isabouttwiceaslongEarth(365days).Thismeansthatthe Answer Key toStudentSheet10.

– 176°C ( – 284°F) to30°C(86°F),andaverage to ’ s is9.8m/sec².Objectsandpeoplewouldweighlesson and/or different fromEarth

2% argon,< .

2% nitrogen,and< GS Lesson 10 – 63°C ( ’ / s? The Challenges ofSpace Exploration – 81°F). is

similar. 1% othergases.

However the

© Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master The essayshouldnotinclude: The essayincludes: • • • • • • • • Incorrect inferencesorconclusions Incorrect orincompleteanalysis Misused scientificterms Creativity Conclusions supportablebyevidence Understanding ofprocesses Clear andcompletethoughts An establishedclaim 10.R: CriteriaforEvaluating Technologies Essay Lesson 10 / The Challenges ofSpace Exploration © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master A.1b: Answer Key forStudentSheet A.1 Oberon Titania Umbriel Ariel Miranda Moon Table B. Scale FactorCalculations 583,520 435,910 266,300 191,020 129,390 Orbital Radius (km)

Scale Factor 1 1 1 1 1 : : : : : 10 10 10 10 10 3 3 3 3 3 10 10 10 10 10 9 9 9 9 9 191,020 km 583,520 km 435,910 km 266,300 km 129,390 km Calculations 191.02 129.39 583.52 435.91 266.30

5 5 5 5 x

(page 1of2) x x x x 5 5 5 5 5 5 191.020 583.520 435.910 266.300 129.39 12.94 19.1 58.3 43.6 26.6 5 5 5 5 5 10 10 10 10 10 Assessment /HowDoes theUniverse Work? 3 x x x x x 3 3 3 3

10 10 10 10 10 9 9 9 9 9 mm mm mm mm mm

Scaled Value (mm) 58 44 27 19 13 © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master A.1b: Answer Key forStudentSheet A.1 Oberon Titania Umbriel Ariel Miranda Moon Table B. Scale FactorCalculations Diameter 1,522 1,577 1,169 1,158 472 (km)

Scale Factor 1 1 1 1 1 : : : : : 2 2 2 2 2 3 3 3 3 3 10 10 10 10 10 8 8 8 8 8 1,158 km 1,522 km 1,577 km 1,169 km 472 km Calculations 11.58 15.22 15.77 11.69 5

5 5 5 5 4.72 x x (page 2of2) x x x 5 5 5 5 5 4.72 11.58 15.22 15.77 11.69 7.885 5.845 5 5.79 7.61 2.36 5 5 5 5 3 2 2 2 2 2 3 3 3 3 x Assessment /HowDoes theUniverse Work? x x x x

10

10 10 10 10 8 mm 8 8 8 8 mm mm mm mm

Scaled Value (mm) 8 8 6 6 2 Lesson Master A.1a: Criteria for Evaluating Uranus-Moons Models

The model includes: • Student uses an appropriate scale and accurate conversions. • Student constructs a complete and accurate model. • Student uses the model properly and explains the use completely. © Smithsonian Institution

STC My Generation™: Space Systems Exploration Assessment / How Does the Universe Work? © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master A.2: Answer Key toStudentSheet A.2 Part 3:Circle One Part 2:True/False and lesssunlightduringthewinterwhenitispointedawayfromSun. Northern Hemispheretoreceivemoresunlightduringthesummerwhenitispointedtoward theSun, Evidence: TheSun-Earth-MoonBoardmodelshowedthatEarth’s axisistilted.Thiscausesthe intersection “nodes”rotatearoundEarthandonlyrarelyaligncompletelywiththeSun. orbital planearedifferent byabout5degrees.Therefore,theyonlyintersectattwopoints.These Evidence: TheSun-Earth-MoonBoardmodelshowedthatEarth’s orbitalplaneandtheMoon’s portion ofthelitsidemoon. after anewmoon,whentheMoonisbetweenSunandEarth.FromEarthwecanseeonly Evidence: TheSun-Earth-MoonBoard™modelshowedhowcrescentmoonsoccurjustbeforeand Part 1:MultipleChoice Item 10. 9. 8. 7. 6. 5. 4. 3. 2. 1. solar system The Sun,planets,andmoonsinour seasons? What istheprimarycauseofEarth’s events? Why aretotalsolareclipsesrare What causesacrescentmoon? Question Comparison 3 Comparison 2 Comparison 1 Mars nexttotheSunitwouldstillhaveexact samesurfacegravity. radius hasnoeffect. Forexample,MarshaslesssurfacegravitythanEarth.Ifyoumoved Evidence: Aplanet’s surfacegravitydepends onitsmassandtheplanet’s radius.Orbital the solarsystemhavepositivesurfacegravityfactors. and, therefore,gravity. Studentscancitedatapresentedinearlierlessonsthatallplanets Evidence: Massiveobjects,suchastheSun,planets,andmoons,createcurvesinspace-time, planet’s distancefromtheSun. planet hasdependsmostlyonthe The amountofsurfacegravitya all havesurfacegravity. Zolo 3 Zolo 2 Zolo 1 (page 1of2) Assessment /HowDoes theUniverse Work? Answer FALSE TRUE A D C Lesson Master A.2: Answer Key to Student Sheet A.2 (page 2 of 2)

Item Question Answer

Part 4: Short Answer

11. Claim: Planet mass is the most important factor in determining a planet’s surface gravity. Evidence: • Tomas weighs the most on the most massive planet, Jupiter. • Tomas weighs the least on the least massive planets, Mercury and Mars. • Jupiter is neither the closest nor the farthest planet from the Sun. Reasoning: Weight is the mass of an object times the acceleration of gravity, or the mass of an object interacting with a planet’s surface gravity. If an object weighs more on another planet, the object’s mass has not changed, but it weighs more because there is more surface gravity. Tomas’s weight is directly and positively correlated to planet mass. It is negatively correlated with planetary radius and is not correlated with planetary distance from the sun. This means that planet mass is the most important factor in determining a planet’s surface gravity.

12. Answers will vary. Acceptable answers include: Two-way communication: What frequency? Does it go through the spacecraft and then to space command? What are the optimal volume settings, etc.? Drinking-water dispenser: How much do people drink in 10 hours? Does being in space change hydration needs, etc.? Articulated gloves: What hand sizes are needed? Which fingers do the most work, etc.? Oxygen pack: How much oxygen is needed for 10 hours? What volume will the oxygen occupy, etc.?

13. Which fabric should be used in the The silver fabric has the best overall performance. It next spacesuit design? received two “excellent,” three “good,” and only one “poor” rating.

14. What aspects of the material should Insulating ability is the top priority for improvement be improved? based on the silver fabric’s ratings. The fabric’s performance in meeting this criterion was poor.

15. What steps would you use to test the Students should outline a series of steps. For example, improvements? replace the insulating layer with several other options. Then subject each fabric to the insulation test. It would also be good to test the other characteristics again to be sure the insulating layer does not compromise the other layers. Conduct several tests for each combination. Analyze the data to select the best combination. © Smithsonian Institution

STC My Generation™: Space Systems Exploration Assessment / How Does the Universe Work? © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson Master The modelandpresentation meetthefollowingconditions: • • • • • answer anyquestionseffectively. Students presentacompleteexplanationoftheirmodeland The modeliswellconstructed. Scale(s), ifused,areclearlylabeled. The componentsareclearlylabeled. relationship. The modeleffectively demonstratesastructure,process,or EA.1: CriteriaforEvaluatingModelandPresentation Exploration Activity / Jupiter and ItsMoons © Smithsonian Institution STC My Generation™: SpaceSystems Exploration Lesson MasterEA.GS: around Jupiter? arrangement ofJupiter’s moons What patternexistsinthe and/or its What seasonalcyclesexistonJupiter solar eclipsesonJupiter? What arethecyclesoflunarand/or moons? What tidalcyclesoccuronJupiter’s the moons)? of Jupiter’s fourmoons(oroneof What arethecyclesoflunarphases calendar? compare withEarth’s Gregorian How doestheJoviancalendar Jupiter toorbittheSun)? 1 “Jovianyear”(thetimeittakes Jupiter-moons systemchangeover How doesthegeometryof Research Question

moons? Ideas forResearch QuestionsandModels Model orbital speed,withscatterplotstohelpvisualizerelationships Data tablecomparingmoonmass,distancefromJupiter, and in solarradiationthroughaJovianyear and sideviewdiagramshowingaxialtiltstoexaminechanges Plan viewdiagramofJupiter-moons systemshowing orbits system topredictfrequencyofeclipsesforeachmoon inclinations ofthemoons,incomparisontoSun-Earth-Moon Chart showingfrequenciesofnewandfullmoons,orbital related tovolcanismonthemoons Sun-Jupiter-moons system affecting “tides”inmoltenrock Styrene spheremodelshowingchangingpositionsofthe its orbit illuminated side,andviewfromJupiterofamoonthrough Circles onpapermodelshowingchangesinlocation, into lunarmonths the lengthofJoviandayandyeardivide chart showingrotationalandorbitalperiodstodetermine Diagram oftheSun-Jupiter-moons systemshowingorbitsand points inJupiter’s orbit each ofthefourmoonswithrespecttoSunatspecific Styrene spheremodelusedtoshowpositionsofJupiterand Exploration Activity / Jupiter and ItsMoons