Efficiency of Starfish Mopping in Reducing Predation on Cultivated Benthic Mussels (Mytilus Edulis Linnaeus)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Star Asterias Rubens
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425292; this version posted January 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. How to build a sea star V9 The development and neuronal complexity of bipinnaria larvae of the sea star Asterias rubens Hugh F. Carter*, †, Jeffrey R. Thompson*, ‡, Maurice R. Elphick§, Paola Oliveri*, ‡, 1 The first two authors contributed equally to this work *Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom †Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, United Kingdom ‡UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom §School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom 1Corresponding Author: [email protected], Office: (+44) 020-767 93719, Fax: (+44) 020 7679 7193 Keywords: indirect development, neuropeptides, muscle, echinoderms, neurogenesis 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425292; this version posted January 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. How to build a sea star V9 Abstract Free-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes. -
BIOLOGY and METHODS of CONTROLLING the STARFISH, Asterias Forbesi {DESOR}
BIOLOGY AND METHODS OF CONTROLLING THE STARFISH, Asterias forbesi {DESOR} By Victor L. Loosanoff Biological Laboratory Bureau of Commercial Fisheries U. S. Fish and Wildlife Service Milford, Connecticut CONTENTS Page Introduction. .. .. ... .. .. .. .. ... .. .. .. ... 1 Distribution and occurrence....................................................... 2 Food and feeding ...................................................................... 3 Methods of controL........................................ ........................... 5 Mechanical methods : Starfish mop...................................................... .................. 5 Oyster dredge... ........................ ............. ..... ... ...................... 5 Suction dredge..................................................................... 5 Underwater plow ..... ............................................................. 6 Chemical methods .................................................................. 6 Quicklime............................. ........................... ................... 7 Salt solution......... ........................................ ......... ............. 8 Organic chemicals....... ..... ... .... .................. ........ ............. ...... 9 Utilization of starfish................................................................ 11 References..... ............................................................... ........ 11 INTRODUCTION Even in the old days, when the purchas ing power of the dollar was much higher, The starfish has long -
The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates. -
Atlantic Seabirds
Atlantic Seabirds Vol. t. 110 . 2 ( / 999) Quarter ly journ al ofThe Seabird Group and the Dutch Seab ird Group Atlantic Seabirds Edited by Cl. Camphuysen & J.B. Reid ATLANTIC SEABIRDS is the quarterly journal of the SEABIRD GROUP and the DUTCH SEABIRD GROUP (Nederlandse Zeevogelgroep, NZG), and is the continuance of their respective journals, SEABIRD (following no. 20, 1998) and SULA (following vol. 12 no. 4, 1998). ATLANTIC SEABIRDS will publish papers and short communications on any aspect of seabird biology and these will be peer-reviewed. The geographical focus of the journal is the Atlantic Ocean and adjacent seas at all latitudes, but contributions are also welcome from other parts of the world provided they are of general interest. ATLANTIC SEABIRDS is indexed in the Aquatic Sciences and Fisheries abstracts, Ecology Abstracts and Animal Behaviour Abstracts of Cambridge Scientific databases and journals. The SEABIRD GROUP and the DUTCH SEABIRD GROUP retain copyright and written permission must be sought from the editors before any figure, table or plate, or extensive part of the text is reproduced. Such permission will not be denied unreasonably, but will be granted only after consultation with the relevant authons), Editors: c.r. Camphuysen (N~G), Ankerstraat 20, 1794 BJ Oosterend, Texel, The Netherlands, tel/fax + 31222318744, e-mail [email protected] Dr J.B. Reid (Seabird Group), clo Joint Nature Conservation Committee (JNCC), Dunnet House, 7 Thistle Place, Aberdeen AB10 1UZ, Scotland, Ll.K, e-mail [email protected]. Offers of papers should be addressed to either editor. Editorial board: Dr S. -
Seashore Pocket Guide
. y a B e e L d n a n i t r a M e b m o C , h t u o m n y L ) e v o b a ( . e m i t m e h t e v i g u o y f i e c i v e r c n e d d i h a m o r f t u o . a n i l l a r o c d n a e s l u d s a h c u s s d e e w a e s b a r C e l b i d E k u . v o g . k r a p l a n o i t a n - r o o m x e . w w w e r a t s a o c s ’ r o o m x E n o e f i l d l i w e r o h s a e s k c a b e v o m n e t f o l l i w s b a r c d n a h s i F . l l i t s y r e v g n i p e e k d e r r e v o c s i d n a c u o y s l o o p k c o r r o f k o o l o t s e c a l p e t i r u o v a f r u o f o e m o S , g n i h c t a w e m i t d n e p S . -
Injury Affects Coelomic Fluid Proteome of the Common Starfish, Asterias Rubens Sergey V
© 2019. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2019) 222, jeb198556. doi:10.1242/jeb.198556 RESEARCH ARTICLE Injury affects coelomic fluid proteome of the common starfish, Asterias rubens Sergey V. Shabelnikov1,*, Danila E. Bobkov2, Natalia S. Sharlaimova2 and Olga A. Petukhova2 ABSTRACT and exceeding 40% in sea urchins (Giese, 1966). Cellular elements 5– 6 −1 Echinoderms, possessing outstanding regenerative capabilities, found in CF at concentrations of 10 10 cells ml are collectively provide a unique model system for the study of response to injury. referred to as coelomocytes (Chia and Xing, 1996). Their However, little is known about the proteomic composition of coelomic morphology in starfish is well described (Kanungo, 1984; fluid, an important biofluid circulating throughout the animal’s body Sharlaimova et al., 2014). Coelomocytes are not only mediators of and reflecting the overall biological status of the organism. In this innate immune responses (Smith et al., 2010), but are also actively study, we used LC-MALDI tandem mass spectrometry to characterize involved in the early repair phase of starfish arm regeneration (Ben the proteome of the cell-free coelomic fluid of the starfish Asterias Khadra et al., 2017; Ferrario et al., 2018), providing wound closure ‘ ’ rubens and to follow the changes occurring in response to puncture and hemostatic activity. The number of circulating coelomocytes in wound and blood loss. In total, 91 proteins were identified, of which starfish rapidly increases in the first hours after arm tip amputation 61 were extracellular soluble and 16 were bound to the plasma (Pinsino et al., 2007) or an immune challenge (Coteur et al., 2002; membrane. -
Marine Ecology Progress Series 351:163
Vol. 351: 163–175, 2007 MARINE ECOLOGY PROGRESS SERIES Published December 6 doi: 10.3354/meps07033 Mar Ecol Prog Ser Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning Pia Norling*, Nils Kautsky Department of Systems Ecology, Stockholm University, 106 91 Stockholm, Sweden ABSTRACT: Habitat-modifying species such as Mytilus edulis strongly impact both community struc- ture and ecosystem functioning through positive or negative interactions with other species and by changing physical and biological conditions. A study of natural patches of mussels showed that C and N content of sediment was higher in mussel patches compared to the surrounding sand community. Species richness and biomass of associated macrofauna and -flora was enhanced even by the pres- ence of single mussels and increased rapidly with patch size up to about 150 cm2, while no change in sediment meiofauna was found. In order to separate the effects of structure and function of M. edulis, a manipulative field experiment was performed with constructed patches of cleaned live mussels or intact empty shells. After 3 mo colonisation, the number of associated species in both treatments approached those in natural mussel patches, indicating that species richness was mainly due to phys- ical structure. Abundance and biomass of associated flora and fauna were higher if live mussels were present because mussel biodeposition and nutrient regeneration supplied limiting resources and increased carrying capacity. Species composition was also affected. Complexity and biodiversity increased with time, especially if Fucus vesiculosus plants established themselves. Measurements of community metabolism showed that the associated community found in mussel patches depends on mussel biodeposition for 24 to 31% of its energy demand. -
Genus Mytilus (Moflusca: Bivalvia)
Heredity74 (1995)369—375 Received26 May 1994 Chromosomal markers in three species of the genus Mytilus (Moflusca: Bivalvia) A. MARTINEZ-LAGE, A. GONZALEZ-TIZON & J. MENDEZ Departamento de Bio/ogia Ce/u/ar y Molecular, Areade Genética,Universidad de La Coruña, 15071 La Coruña, Spain Theanalysis of C-banding, NOR and fluorochrome staining was carried out in three species of European mussel, Mytilus edulis, M. galloprovincialis and M. trossulus. The results obtained allow us to detect changes in the constitutive heterochromatin within the genus Mytilus. The existence of chromosomal markers permit us to identify and distinguish, at the cytogenetical level, these three types of mussel. Keywords:C-bands,chromosome markers, CMA3 bands, heterochromatin, Mytilus, NORs. along various coastal regions of the British Isles. Subse- Introduction quently, in France, Britain and Ireland, M. galloprovin- Thegenus Mytilus is the subject of an important cialis has been found to be intermixed with M. edulis, controversy about the systematic status of the different producing hybrid forms (Skibinski & Beardmore, forms within it. In this genus, taxonomic studies were 1979). M. trossulus is distributed in the Baltic Sea. In initially developed in order to establish a systematic the Danish straits, M. trossulus is intermixed with M. relationship between M edulis and M. gaioprovincialis edulis (Váinölä & Hvilsom, 1991). and, later, among other forms of mussels. At first, the On the other hand, studies using Mytilus cyto- studies were focused on morphological criteria and genetics have shown that the diploid number is 28 morphometric parameters (internal and external shell chromosomes (Ahmed & Sparks, 1970; Ieyama & characteristics, the anterior adductor muscle features, Inaba, 1974; Thiriot-Quiévreux & Ayraud, 1982; etc.). -
First Record of the Mediterranean Mussel Mytilus Galloprovincialis (Bivalvia, Mytilidae) in Brazil
ARTICLE First record of the Mediterranean mussel Mytilus galloprovincialis (Bivalvia, Mytilidae) in Brazil Carlos Eduardo Belz¹⁵; Luiz Ricardo L. Simone²; Nelson Silveira Júnior³; Rafael Antunes Baggio⁴; Marcos de Vasconcellos Gernet¹⁶ & Carlos João Birckolz¹⁷ ¹ Universidade Federal do Paraná (UFPR), Centro de Estudos do Mar (CEM), Laboratório de Ecologia Aplicada e Bioinvasões (LEBIO). Pontal do Paraná, PR, Brasil. ² Universidade de São Paulo (USP), Museu de Zoologia (MZUSP). São Paulo, SP, Brasil. ORCID: http://orcid.org/0000-0002-1397-9823. E-mail: [email protected] ³ Nixxen Comercio de Frutos do Mar LTDA. Florianópolis, SC, Brasil. ORCID: http://orcid.org/0000-0001-8037-5141. E-mail: [email protected] ⁴ Universidade Federal do Paraná (UFPR), Departamento de Zoologia (DZOO), Laboratório de Ecologia Molecular e Parasitologia Evolutiva (LEMPE). Curitiba, PR, Brasil. ORCID: http://orcid.org/0000-0001-8307-1426. E-mail: [email protected] ⁵ ORCID: http://orcid.org/0000-0002-2381-8185. E-mail: [email protected] (corresponding author) ⁶ ORCID: http://orcid.org/0000-0001-5116-5719. E-mail: [email protected] ⁷ ORCID: http://orcid.org/0000-0002-7896-1018. E-mail: [email protected] Abstract. The genus Mytilus comprises a large number of bivalve mollusk species distributed throughout the world and many of these species are considered invasive. In South America, many introductions of species of this genus have already taken place, including reports of hybridization between them. Now, the occurrence of the Mediterranean mussel Mytilus galloprovincialis is reported for the first time from the Brazilian coast. Several specimens of this mytilid were found in a shellfish growing areas in Florianópolis and Palhoça, Santa Catarina State, Brazil. -
A Review of California Mussel (Mytilus Californianus) Fisheries Biology and Fisheries Programs
Fisheries and Oceans Pêches et Océans Canada Canada Canadian Stock Assessment Secretariat Secrétariat canadien pour l’évaluation des stocks Research Document 99/187 Document de recherche 99/187 Not to be cited without Ne pas citer sans permission of the authors1 autorisation des auteurs1 A Review of California Mussel (Mytilus californianus) Fisheries Biology and Fisheries Programs D. Schmidt North Island Biological Consultants Ltd. 5088A Beaver Harbour Road Box 2437 Port Hardy, BC V0N 2P0 1 This series documents the scientific basis for the 1 La présente série documente les bases scientifiques evaluation of fisheries resources in Canada. As des évaluations des ressources halieutiques du such, it addresses the issues of the day in the time Canada. Elle traite des problèmes courants selon les frames required and the documents it contains are échéanciers dictés. Les documents qu’elle contient not intended as definitive statements on the subjects ne doivent pas être considérés comme des énoncés addressed but rather as progress reports on ongoing définitifs sur les sujets traités, mais plutôt comme investigations. des rapports d’étape sur les études en cours. Research documents are produced in the official Les documents de recherche sont publiés dans la language in which they are provided to the langue officielle utilisée dans le manuscrit envoyé Secretariat. au secrétariat. ISSN 1480-4883 Ottawa, 1999 1.0 Abstract This paper is a literature review of all available and relevant information on past and present data concerning the California mussel (Mytilus californianus) for the purposes of establishing a fishery on M. californianus. A group located on North Vancouver Island, British Columbia (BC), the Vancouver Island Shellfish Cooperative (VISCO), has expressed an interest in starting a commercial harvest on California mussels for the purpose of creating jobs in the winter months (G. -
Asterias Rubens)
View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Apr 01, 2019 brought to you by CORE provided by Online Research Database In Technology Annual variation in the composition of major nutrients of the common starfish (Asterias Rubens) van der Heide, Marleen Elise; Møller, Lene Friis; Petersen, Jens Kjerulf; Nørgaard, Jan Værum Published in: Animal Feed Science and Technology Link to article, DOI: 10.1016/j.anifeedsci.2018.02.007 Publication date: 2018 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): van der Heide, M. E., Møller, L. F., Petersen, J. K., & Nørgaard, J. V. (2018). Annual variation in the composition of major nutrients of the common starfish (Asterias Rubens). Animal Feed Science and Technology, 238, 91-97. DOI: 10.1016/j.anifeedsci.2018.02.007 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
The Book of the Sea the Realms of the Baltic Sea
The Book of the Sea The realms of the Baltic Sea BALTIC ENVIRONMENTAL FORUM 1 THE REALMS OF THE BALTIC SEA 4 THE BOOK OF THE SEA 5 THE REALMS OF THE BALTIC SEA The Book of the Sea. The realms of the Baltic Sea 2 THE BOOK OF THE SEA 3 THE REALMS OF THE BALTIC SEA The Book of the Sea The realms of the Baltic Sea Gulf of Bothnia Åland Islands Helsinki Oslo Gulf of Finland A compilation by Žymantas Morkvėnas and Darius Daunys Stockholm Tallinn Hiiumaa Skagerrak Saaremaa Gulf of Riga Gotland Kattegat Öland Riga Copenhagen Baltic Sea Klaipėda Bornholm Bay of Gdańsk Rügen Baltic Environmental Forum 2015 2 THE BOOK OF THE SEA 3 THE REALMS OF THE BALTIC SEA Table of Contents Published in the framework of the Project partners: Authors of compilation Žymantas Morkvėnas and Darius Daunys 7 Preface 54 Brown shrimp project „Inventory of marine species Marine Science and Technology 54 Relict amphipod Texts provided by Darius Daunys, Žymantas Morkvėnas, Mindaugas Dagys, 9 Ecosystem of the Baltic Sea and habitats for development of Centre (MarsTec) at Klaipėda 55 Relict isopod crustacean Linas Ložys, Jūratė Lesutienė, Albertas Bitinas, Martynas Bučas, 11 Geological development Natura 2000 network in the offshore University, 57 Small sandeel Loreta Kelpšaitė-Rimkienė, Dalia Čebatariūnaitė, Nerijus Žitkevičius, of the Baltic Sea waters of Lithuania (DENOFLIT)“ Institute of Ecology of the Nature 58 Turbot Greta Gyraitė, Arūnas Grušas, Erlandas Paplauskis, Radvilė Jankevičienė, 14 The coasts of the Baltic Sea (LIFE09 NAT/LT/000234), Research Centre, 59 European flounder Rita Norvaišaitė 18 Water balance financed by the European Union The Fisheries Service under the 60 Velvet scoter 21 Salinity LIFE+ programme, the Republic Ministry of Agriculture of the Illustrations by Saulius Karalius 60 Common scoter 24 Food chain of Lithuania and project partners.