Metalloendopeptidases (Insulin Degrading Enzyme/Nitochondrial Processing Protease) ANDREW B

Total Page:16

File Type:pdf, Size:1020Kb

Metalloendopeptidases (Insulin Degrading Enzyme/Nitochondrial Processing Protease) ANDREW B Proc. NatI. Acad. Sci. USA Vol. 89, pp. 3835-3839, May 1992 Biochemistry An unusual active site identified in a family of zinc metalloendopeptidases (insulin degrading enzyme/nitochondrial processing protease) ANDREW B. BECKER AND RICHARD A. ROTH Department of Pharmacology, Stanford University School of Medicine, Stanford, CA 94305 Communicated by Brian W. Matthews, January 13, 1992 (received for review December 6, 1991) ABSTRACT An unusual active site has been identified in dopeptidases, many of which show little overall sequence a family of zinc metalloendopeptidases that includes bacterial identity to thermolysin outside of this domain (4, 5). Re- protease M and the human and Drosophila insidn-degrading cently, through mutagenesis studies, the sequence HEXXH enzymes. All of these enzymes have been characterized as has been confirmed to be at the active site of several ofthese metalloendopeptidases and purified protease HI has been zinc-dependent proteases, including neutral endopeptidase shown to contain stoichiometric levels of zinc. However, all and angiotensin-converting enzyme (6-8). Moreover, this three proteases lack the consensus sequence (EIEXXH) de- consensus sequence has even been used to predict the scribed in the active site of other zinc metalloendopeptidases. peptidase activity ofproteins not previously considered to be Instead, these proteases contain an inversion of this motif, proteases, such as leukotriene A4 hydrolase (9). HXXEH. To determine whether this region could represent the However, some proteases, based on their amino acid active site in these proteins, the two histidines in protease m sequence, do not fit into the currently recognized classifica- were individually mutated to arginine and the glutamate was tion system. One example is the carboxypeptidases, zinc- mutated to glutamine. All three mutants were devoid of dependent metalloexopeptidases, in which the metal binding proteolytic activity toward an exogenous substrate, insulin, as domain consists of the motif HXXE(X)123H (4) as opposed to compared to the wild-type protease. Three lines of evidence the more common active site seen in thermolysin. Another indicate that this loss of activity in the mutants is not due to example is the bacterial enzyme protease III, or pi, from distortion of the three-dimensional structure of the protein: (i) Escherichia coli (10-13). This periplasmic enzyme shows the mutants are secreted into the periplasmic space and chro- 27% overall sequence identity with a human enzyme, called matograph normally; (ia) all three mutants are expressed at insulin-degrading enzyme (14), and 28% identity with a levels nearly identical to wild-type protein and do not appear homologous enzyme from Drosophila melanogaster (15). In to have an increased susceptibility to proteolysis in the bacteria; addition, three regions in these enzymes show >50% se- and (iii) the mutants compete equally with wild-type protein in quence identity (10, 14, 15). Although the physiological roles a radioimmunoassay. The purified wild-type and glutamate of these three enzymes are not known, they all degrade mutants were found to contain stoichiometric amounts of zinc insulin (10-17). All three proteases also have molecular by atomic absorption spectrophotometry, whereas both histi- masses of "100 kDa and, based on their requirement for dine mutants had negligible zinc signals. These findings are divalent cations, have been classified as metalloendopepti- consistent with this region being the active site in this protein, dases. Moreover, protease III has recently been shown to with the contain zinc at stoichiometric levels (18). However, none of histidine residues coordinating the essential zinc atom these enzymes contains the consensus active site sequence and the glutamate involved in catalysis. HEXXH described above for zinc metalloendopeptidases. A careful alignment of the sequences of these three pro- Proteases play a variety of roles in many physiological teases reveals the conservation of 12 histidines and gluta- processes, including fibrinolysis, blood homeostasis, com- mates, which could function in zinc binding (10, 14, 15). In plement activation, digestion, and hormone processing (1). fact, a number of motifs resembling that of the carboxypep- Based on common active sites and mechanisms of action as tidases can be identified in all three enzymes, including determined by primary amino acid sequence, inhibitor and HXXE(X)138H. In addition, all three enzymes contain a substrate profiles, and x-ray crystallographic analyses (2), sequence, HXXEH, which could be considered an inversion these proteins are generally classified into one of four fam- ofthe active site consensus sequence seen in thermolysin and ilies. Representative members of each protease class (i.e., other metalloendopeptidases (10, 14, 15). This sequence is cysteine, serine, aspartyl, and metallo-) have been crystal- found in one of the three highly conserved regions present in lized and their active sites elucidated (2). For example, the these enzymes. The surrounding residues of this sequence bacterial enzyme thermolysin is the prototypic zinc metal- also appear to be inverted in comparison to other zinc loendopeptidase. X-ray crystallographic studies have shown metalloendopeptidases (Table 1). The spacing of the two that this enzyme contains two histidines (His-142 and His- histidines and the first histidine to the glutamate in this region 146) and a glutamic acid (Glu-143) at its active site, with the are consistent with the one to three amino acids separating histidines coordinating the binding of a zinc atom and the the zinc binding residues in more than a dozen zinc enzymes glutamate acting as a general base in catalysis (3). Based on whose structures have been analyzed (4) and are the only two studies in thermolysin, it has been proposed that the active histidines and/or glutamates conserved among all three pro- site sequence in metalloendopeptidases is HEXXH (where X teases that exhibit the requisite spacing. is any amino acid, H is histidine, and E is glutamate). This To test whether the residues in the apparently inverted sequence has been identified in well over 15 zinc-dependent sequence HXXEH comprise the active site of protease III, metalloproteases, including aminopeptidases and metalloen- the two histidine residues were individually mutated to arginine and the glutamate was changed to glutamine by The publication costs ofthis article were defrayed in part by page charge site-directed mutagenesis. (The mutants were named by payment. This article must therefore be hereby marked "advertisement" using the single-letter amino acid code and indicating the in accordance with 18 U.S.C. §1734 solely to indicate this fact. number of the residue that was mutated-H88R, histidine-88 3835 Downloaded by guest on September 24, 2021 3836 Biochemistry: Becker and Roth Proc. Natl. Acad. Sci. USA 89 (1992) Table 1. Comparison of the proposed active site residues in Coomassie blue-stained gels, were pooled. The protease peak bacterial protease III, the human (hIDE) and Drosophila was concentrated to 1 ml in an Amicon chamber with a (dIDE) insulin-degrading enzymes, and several other YM-30 membrane (Amicon) and then applied to an Ultrogel zinc metalloendopeptidases AcA34 column (1.5 x 90 cm) equilibrated with a buffer Enzyme Sequence Residues Ref(s). containing 10 mM Hepes (pH 7.6) and 0.02% sodium azide. Again, the peak fractions as determined by Coomassie blue- . * ** Protease III GLA H YL ER MSL 85-95 10 stained gels were pooled and then concentrated in a Centri- hIDE GLS H FC EH MLF 106-116 14 con 30 (Amicon) to 1-1.5 ml. dIDE GLA H FC ER MLF 78-88 15 Insulin-Degradation Assays. The indicated amounts of pro- ** * . tein relative to wild-type protease III (determined by radio- Thermolysin VVA HE LT H AVT 139-149 3 immunoassays and Coomassie blue-stained gels) were incu- Collagenase VAA HE LG H SLG 215-225 19, 20 bated in microtiter wells previously coated with an antibody Serratia protease TFT HE IG H ALG 89-99 21 directed against protease III (18). The wells were washed and Endopeptidase 24.11 VIG HE IT H GFD 580-590 22,23 the immunocaptured enzyme was tested for its ability to Leukotriene A4 degrade 125I-labeled insulin (1251-insulin). Degradation of in- hydrolase VIA HE IS H SWT 292-302 9 sulin was assessed by its loss of ability to bind to the insulin The three active site residues, two histidines and a glutamate, in receptor as described (18). All assays were performed in a number of proteases are marked with an asterisk. Underlined triplicate using 40,000 cpm of 1251-insulin in a final vol of 35 residues indicate residues adjacent to the active site that are inverted p.l for 30 min at 370C. The assays were terminated by addition in the insulin-degrading enzymes and protease III relative to other of bacitracin to a final concentration of 1 mg/ml, and the metalloproteases. The diamond is used to mark residues that are extent of degradation was assessed in a receptor binding invariably hydrophobic in the different metalloendopeptidases. assay (18). Radioimmunoassay of Wild-Type and Mutant Protease III to arginine; H92R, histidine-92 to arginine; E91Q, gluta- Proteins. The indicated amounts of each protein were incu- mate-91 to glutamine.) The mutant proteins were then com- bated with 50,000 cpm of 251I-protease III on microtiter wells pared to wild-type protein in terms of activity and zinc previously coated with an antibody directed against protease content to ascertain whether this region is the active site in III (18). The binding was performed overnight at 40C and the this protein family. decrease in binding of iodinated protein to the antibody relative to a control with no competitor was calculated as the MATERIALS AND METHODS percent inhibition of binding. All assays were performed in triplicate. Materials. The following were purchased: standard SDS Metal Determinations. The amount of zinc in each purified molecular weight markers from Bio-Rad, bacitracin from protein preparation was determined by atomic absorption Sigma, phenyl-Sepharose from Pharmacia, Ultrogel AcA-34 spectrophotometry (Perkin-Elmer, model 2380).
Recommended publications
  • Discovery and Optimization of Selective Inhibitors of Meprin Α (Part II)
    pharmaceuticals Article Discovery and Optimization of Selective Inhibitors of Meprin α (Part II) Chao Wang 1,2, Juan Diez 3, Hajeung Park 1, Christoph Becker-Pauly 4 , Gregg B. Fields 5 , Timothy P. Spicer 1,6, Louis D. Scampavia 1,6, Dmitriy Minond 2,7 and Thomas D. Bannister 1,2,* 1 Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA; [email protected] (C.W.); [email protected] (H.P.); [email protected] (T.P.S.); [email protected] (L.D.S.) 2 Department of Chemistry, Scripps Research, Jupiter, FL 33458, USA; [email protected] 3 Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Avenue, CCR r.605, Fort Lauderdale, FL 33314, USA; [email protected] 4 The Scripps Research Molecular Screening Center, Scripps Research, Jupiter, FL 33458, USA; [email protected] 5 Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Rudolf-Höber-Str.1, 24118 Kiel, Germany; fi[email protected] 6 Department of Chemistry & Biochemistry and I-HEALTH, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA 7 Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA * Correspondence: [email protected] Abstract: Meprin α is a zinc metalloproteinase (metzincin) that has been implicated in multiple diseases, including fibrosis and cancers. It has proven difficult to find small molecules that are capable Citation: Wang, C.; Diez, J.; Park, H.; of selectively inhibiting meprin α, or its close relative meprin β, over numerous other metzincins Becker-Pauly, C.; Fields, G.B.; Spicer, which, if inhibited, would elicit unwanted effects.
    [Show full text]
  • Structural Basis for the Sheddase Function of Human Meprin Β Metalloproteinase at the Plasma Membrane
    Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane Joan L. Arolasa, Claudia Broderb, Tamara Jeffersonb, Tibisay Guevaraa, Erwin E. Sterchic, Wolfram Boded, Walter Stöckere, Christoph Becker-Paulyb, and F. Xavier Gomis-Rütha,1 aProteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Cientificas, Barcelona Science Park, E-08028 Barcelona, Spain; bInstitute of Biochemistry, Unit for Degradomics of the Protease Web, University of Kiel, D-24118 Kiel, Germany; cInstitute of Biochemistry and Molecular Medicine, University of Berne, CH-3012 Berne, Switzerland; dArbeitsgruppe Proteinaseforschung, Max-Planck-Institute für Biochemie, D-82152 Planegg-Martinsried, Germany; and eInstitute of Zoology, Cell and Matrix Biology, Johannes Gutenberg-University, D-55128 Mainz, Germany Edited by Brian W. Matthews, University of Oregon, Eugene, OR, and approved August 22, 2012 (received for review June 29, 2012) Ectodomain shedding at the cell surface is a major mechanism to proteolysis” step within the membrane (1). This is the case for the regulate the extracellular and circulatory concentration or the processing of Notch ligand Delta1 and of APP, both carried out by activities of signaling proteins at the plasma membrane. Human γ-secretase after action of an α/β-secretase (11), and for signal- meprin β is a 145-kDa disulfide-linked homodimeric multidomain peptide peptidase, which removes remnants of the secretory pro- type-I membrane metallopeptidase that sheds membrane-bound tein translocation from the endoplasmic membrane (13). cytokines and growth factors, thereby contributing to inflammatory Recently, human meprin β (Mβ) was found to specifically pro- diseases, angiogenesis, and tumor progression.
    [Show full text]
  • Mediate Immune Evasion Aureolysin Cleaves Complement C3 To
    Staphylococcus aureus Metalloprotease Aureolysin Cleaves Complement C3 To Mediate Immune Evasion This information is current as Alexander J. Laarman, Maartje Ruyken, Cheryl L. Malone, of September 29, 2021. Jos A. G. van Strijp, Alexander R. Horswill and Suzan H. M. Rooijakkers J Immunol 2011; 186:6445-6453; Prepublished online 18 April 2011; doi: 10.4049/jimmunol.1002948 Downloaded from http://www.jimmunol.org/content/186/11/6445 Supplementary http://www.jimmunol.org/content/suppl/2011/04/18/jimmunol.100294 Material 8.DC1 http://www.jimmunol.org/ References This article cites 56 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/186/11/6445.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Staphylococcus aureus Metalloprotease Aureolysin Cleaves Complement C3 To Mediate Immune Evasion Alexander J.
    [Show full text]
  • Metalloproteases Meprin Α and Meprin Β Are C- and N-Procollagen Proteinases Important for Collagen Assembly and Tensile Strength
    Metalloproteases meprin α and meprin β are C- and N-procollagen proteinases important for collagen assembly and tensile strength Claudia Brodera, Philipp Arnoldb, Sandrine Vadon-Le Goffc, Moritz A. Konerdingd, Kerstin Bahrd, Stefan Müllere, Christopher M. Overallf, Judith S. Bondg, Tomas Koudelkah, Andreas Tholeyh, David J. S. Hulmesc, Catherine Moalic, and Christoph Becker-Paulya,1 aUnit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, 24118 Kiel, Germany; bInstitute of Zoology, Johannes Gutenberg University, 55128 Mainz, Germany; cTissue Biology and Therapeutic Engineering Unit, Centre National de la Recherche Scientifique/University of Lyon, Unité Mixte de Recherche 5305, Unité Mixte de Service 3444 Biosciences Gerland-Lyon Sud, 69367 Lyon Cedex 7, France; dInstitute of Functional and Clinical Anatomy, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany; eDepartment of Gastroenterology, University of Bern, CH-3010 Bern, Switzerland; fCentre for Blood Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; gDepartment of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033; and hInstitute of Experimental Medicine, University of Kiel, 24118 Kiel, Germany Edited by Robert Huber, Max Planck Institute of Biochemistry, Planegg-Martinsried, Germany, and approved July 9, 2013 (received for review March 22, 2013) Type I fibrillar collagen is the most abundant protein in the human formation (22). A tight balance between synthesis and break- body, crucial for the formation and strength of bones, skin, and down of ECM is required for the function of all tissues, and tendon. Proteolytic enzymes are essential for initiation of the dysregulation leads to pathophysiological events, such as arthri- assembly of collagen fibrils by cleaving off the propeptides.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Signal Transduction, Quorum-Sensing, and Extracellular Protease Activity in Enterococcus Faecalis Biofilm Formation
    Signal Transduction, Quorum-Sensing, and Extracellular Protease Activity in Enterococcus faecalis Biofilm Formation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Carniol, K., and M. S. Gilmore. 2004. Signal Transduction, Quorum- Sensing, and Extracellular Protease Activity in Enterococcus Faecalis Biofilm Formation. Journal of Bacteriology 186, no. 24: 8161–8163. doi:10.1128/jb.186.24.8161-8163.2004. Published Version doi:10.1128/JB.186.24.8161-8163.2004 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33867369 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA JOURNAL OF BACTERIOLOGY, Dec. 2004, p. 8161–8163 Vol. 186, No. 24 0021-9193/04/$08.00ϩ0 DOI: 10.1128/JB.186.24.8161–8163.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved. GUEST COMMENTARY Signal Transduction, Quorum-Sensing, and Extracellular Protease Activity in Enterococcus faecalis Biofilm Formation Karen Carniol1,2 and Michael S. Gilmore1,2* Department of Ophthalmology, Harvard Medical School,1 and The Schepens Eye Research Institute,2 Boston, Massachusetts Biofilms are surface-attached communities of bacteria, en- sponse regulator proteins (10). Only one of the mutants gen- cased in an extracellular matrix of secreted proteins, carbohy- erated, fsrA, impaired the ability of E. faecalis strain V583A to drates, and/or DNA, that assume phenotypes distinct from form biofilms in vitro.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown Et Al
    US 20030082511A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown et al. (43) Pub. Date: May 1, 2003 (54) IDENTIFICATION OF MODULATORY Publication Classification MOLECULES USING INDUCIBLE PROMOTERS (51) Int. Cl." ............................... C12O 1/00; C12O 1/68 (52) U.S. Cl. ..................................................... 435/4; 435/6 (76) Inventors: Steven J. Brown, San Diego, CA (US); Damien J. Dunnington, San Diego, CA (US); Imran Clark, San Diego, CA (57) ABSTRACT (US) Correspondence Address: Methods for identifying an ion channel modulator, a target David B. Waller & Associates membrane receptor modulator molecule, and other modula 5677 Oberlin Drive tory molecules are disclosed, as well as cells and vectors for Suit 214 use in those methods. A polynucleotide encoding target is San Diego, CA 92121 (US) provided in a cell under control of an inducible promoter, and candidate modulatory molecules are contacted with the (21) Appl. No.: 09/965,201 cell after induction of the promoter to ascertain whether a change in a measurable physiological parameter occurs as a (22) Filed: Sep. 25, 2001 result of the candidate modulatory molecule. Patent Application Publication May 1, 2003 Sheet 1 of 8 US 2003/0082511 A1 KCNC1 cDNA F.G. 1 Patent Application Publication May 1, 2003 Sheet 2 of 8 US 2003/0082511 A1 49 - -9 G C EH H EH N t R M h so as se W M M MP N FIG.2 Patent Application Publication May 1, 2003 Sheet 3 of 8 US 2003/0082511 A1 FG. 3 Patent Application Publication May 1, 2003 Sheet 4 of 8 US 2003/0082511 A1 KCNC1 ITREXCHO KC 150 mM KC 2000000 so 100 mM induced Uninduced Steady state O 100 200 300 400 500 600 700 Time (seconds) FIG.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • Proteolytic Enzymes in Grass Pollen and Their Relationship to Allergenic Proteins
    Proteolytic Enzymes in Grass Pollen and their Relationship to Allergenic Proteins By Rohit G. Saldanha A thesis submitted in fulfilment of the requirements for the degree of Masters by Research Faculty of Medicine The University of New South Wales March 2005 TABLE OF CONTENTS TABLE OF CONTENTS 1 LIST OF FIGURES 6 LIST OF TABLES 8 LIST OF TABLES 8 ABBREVIATIONS 8 ACKNOWLEDGEMENTS 11 PUBLISHED WORK FROM THIS THESIS 12 ABSTRACT 13 1. ASTHMA AND SENSITISATION IN ALLERGIC DISEASES 14 1.1 Defining Asthma and its Clinical Presentation 14 1.2 Inflammatory Responses in Asthma 15 1.2.1 The Early Phase Response 15 1.2.2 The Late Phase Reaction 16 1.3 Effects of Airway Inflammation 16 1.3.1 Respiratory Epithelium 16 1.3.2 Airway Remodelling 17 1.4 Classification of Asthma 18 1.4.1 Extrinsic Asthma 19 1.4.2 Intrinsic Asthma 19 1.5 Prevalence of Asthma 20 1.6 Immunological Sensitisation 22 1.7 Antigen Presentation and development of T cell Responses. 22 1.8 Factors Influencing T cell Activation Responses 25 1.8.1 Co-Stimulatory Interactions 25 1.8.2 Cognate Cellular Interactions 26 1.8.3 Soluble Pro-inflammatory Factors 26 1.9 Intracellular Signalling Mechanisms Regulating T cell Differentiation 30 2 POLLEN ALLERGENS AND THEIR RELATIONSHIP TO PROTEOLYTIC ENZYMES 33 1 2.1 The Role of Pollen Allergens in Asthma 33 2.2 Environmental Factors influencing Pollen Exposure 33 2.3 Classification of Pollen Sources 35 2.3.1 Taxonomy of Pollen Sources 35 2.3.2 Cross-Reactivity between different Pollen Allergens 40 2.4 Classification of Pollen Allergens 41 2.4.1
    [Show full text]
  • Structure of Neurolysin Reveals a Deep Channel That Limits Substrate Access
    Structure of neurolysin reveals a deep channel that limits substrate access C. Kent Brown*†, Kevin Madauss*, Wei Lian‡, Moriah R. Beck§, W. David Tolbert¶, and David W. Rodgersʈ Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536 Communicated by Stephen C. Harrison, Harvard University, Cambridge, MA, December 29, 2000 (received for review November 14, 2000) The zinc metallopeptidase neurolysin is shown by x-ray crystallog- cytosolic, but it also can be secreted or associated with the raphy to have large structural elements erected over the active site plasma membrane (11), and some of the enzyme is made with a region that allow substrate access only through a deep narrow mitochondrial targeting sequence by initiation at an alternative channel. This architecture accounts for specialization of this neu- transcription start site (12). ropeptidase to small bioactive peptide substrates without bulky Although neurolysin cleaves a number of neuropeptides in secondary and tertiary structures. In addition, modeling studies vitro, its most established (5, 13, 14) role in vivo (along with indicate that the length of a substrate N-terminal to the site of thimet oligopeptidase) is in metabolism of neurotensin, a 13- hydrolysis is restricted to approximately 10 residues by the limited residue neuropeptide. It hydrolyzes this peptide between resi- size of the active site cavity. Some structural elements of neuro- dues 10 and 11, creating shorter fragments that are believed to ␤ lysin, including a five-stranded -sheet and the two active site be inactive. helices, are conserved with other metallopeptidases. The connect- Neurotensin (pGlu-Leu-Tyr-Gln-Asn-Lys-Pro-Arg-Arg- ing loop regions of these elements, however, are much extended Pro s Tyr-Ile-Leu) is found in a variety of peripheral and in neurolysin, and they, together with other open coil elements, central tissues where it is involved in a number of effects, line the active site cavity.
    [Show full text]
  • Differential Regulation of Metzincins in Experimental Chronic Renal Allograft
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector original article http://www.kidney-international.org & 2006 International Society of Nephrology Differential regulation of metzincins in experimental chronic renal allograft rejection: Potential markers and novel therapeutic targets CC Berthier1,2,8, N Lods1,8, SA Joosten3, C van Kooten3, D Leppert4, RLP Lindberg4, A Kappeler5, F Raulf6, EE Sterchi7, D Lottaz7 and H-P Marti1 1Division of Nephrology/Hypertension, Inselspital, University of Bern, Bern, Switzerland; 2Division of Nephrology, University Hospital of Zu¨rich, Zu¨rich, Switzerland; 3Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; 4Department of Neurology, University of Basel, Basel, Switzerland; 5Institute of Pathology, University of Bern, Bern, Switzerland; 6Department of Transplantation, Novartis Institutes of BioMedical Research, Basel, Switzerland and 7Institute of Biochemistry and Molecular Biology, University of Bern, Bern, Switzerland Chronic renal allograft rejection is characterized by chronic renal allograft rejection. Thus, an altered pattern of alterations in the extracellular matrix compartment and in metzincins may represent novel diagnostic markers and the proliferation of various cell types. These features are possibly may provide novel targets for future therapeutic controlled, in part by the metzincin superfamily of interventions. metallo-endopeptidases, including matrix metalloproteinases Kidney International
    [Show full text]