Higher Orbifolds and Deligne-Mumford Stacks As
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Simplicial Sets, Nerves of Categories, Kan Complexes, Etc
SIMPLICIAL SETS, NERVES OF CATEGORIES, KAN COMPLEXES, ETC FOLING ZOU These notes are taken from Peter May's classes in REU 2018. Some notations may be changed to the note taker's preference and some detailed definitions may be skipped and can be found in other good notes such as [2] or [3]. The note taker is responsible for any mistakes. 1. simplicial approach to defining homology Defnition 1. A simplical set/group/object K is a sequence of sets/groups/objects Kn for each n ≥ 0 with face maps: di : Kn ! Kn−1; 0 ≤ i ≤ n and degeneracy maps: si : Kn ! Kn+1; 0 ≤ i ≤ n satisfying certain commutation equalities. Images of degeneracy maps are said to be degenerate. We can define a functor: ordered abstract simplicial complex ! sSet; K 7! Ks; where s Kn = fv0 ≤ · · · ≤ vnjfv0; ··· ; vng (may have repetition) is a simplex in Kg: s s Face maps: di : Kn ! Kn−1; 0 ≤ i ≤ n is by deleting vi; s s Degeneracy maps: si : Kn ! Kn+1; 0 ≤ i ≤ n is by repeating vi: In this way it is very straightforward to remember the equalities that face maps and degeneracy maps have to satisfy. The simplical viewpoint is helpful in establishing invariants and comparing different categories. For example, we are going to define the integral homology of a simplicial set, which will agree with the simplicial homology on a simplical complex, but have the virtue of avoiding the barycentric subdivision in showing functoriality and homotopy invariance of homology. This is an observation made by Samuel Eilenberg. To start, we construct functors: F C sSet sAb ChZ: The functor F is the free abelian group functor applied levelwise to a simplical set. -
Elements of -Category Theory Joint with Dominic Verity
Emily Riehl Johns Hopkins University Elements of ∞-Category Theory joint with Dominic Verity MATRIX seminar ∞-categories in the wild A recent phenomenon in certain areas of mathematics is the use of ∞-categories to state and prove theorems: • 푛-jets correspond to 푛-excisive functors in the Goodwillie tangent structure on the ∞-category of differentiable ∞-categories — Bauer–Burke–Ching, “Tangent ∞-categories and Goodwillie calculus” • 푆1-equivariant quasicoherent sheaves on the loop space of a smooth scheme correspond to sheaves with a flat connection as an equivalence of ∞-categories — Ben-Zvi–Nadler, “Loop spaces and connections” • the factorization homology of an 푛-cobordism with coefficients in an 푛-disk algebra is linearly dual to the factorization homology valued in the formal moduli functor as a natural equivalence between functors between ∞-categories — Ayala–Francis, “Poincaré/Koszul duality” Here “∞-category” is a nickname for (∞, 1)-category, a special case of an (∞, 푛)-category, a weak infinite dimensional category in which all morphisms above dimension 푛 are invertible (for fixed 0 ≤ 푛 ≤ ∞). What are ∞-categories and what are they for? It frames a possible template for any mathematical theory: the theory should have nouns and verbs, i.e., objects, and morphisms, and there should be an explicit notion of composition related to the morphisms; the theory should, in brief, be packaged by a category. —Barry Mazur, “When is one thing equal to some other thing?” An ∞-category frames a template with nouns, verbs, adjectives, adverbs, pronouns, prepositions, conjunctions, interjections,… which has: • objects • and 1-morphisms between them • • • • composition witnessed by invertible 2-morphisms 푓 푔 훼≃ ℎ∘푔∘푓 • • • • 푔∘푓 푓 ℎ∘푔 훾≃ witnessed by • associativity • ≃ 푔∘푓 훼≃ 훽 ℎ invertible 3-morphisms 푔 • with these witnesses coherent up to invertible morphisms all the way up. -
Diagrammatics in Categorification and Compositionality
Diagrammatics in Categorification and Compositionality by Dmitry Vagner Department of Mathematics Duke University Date: Approved: Ezra Miller, Supervisor Lenhard Ng Sayan Mukherjee Paul Bendich Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the Graduate School of Duke University 2019 ABSTRACT Diagrammatics in Categorification and Compositionality by Dmitry Vagner Department of Mathematics Duke University Date: Approved: Ezra Miller, Supervisor Lenhard Ng Sayan Mukherjee Paul Bendich An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the Graduate School of Duke University 2019 Copyright c 2019 by Dmitry Vagner All rights reserved Abstract In the present work, I explore the theme of diagrammatics and their capacity to shed insight on two trends|categorification and compositionality|in and around contemporary category theory. The work begins with an introduction of these meta- phenomena in the context of elementary sets and maps. Towards generalizing their study to more complicated domains, we provide a self-contained treatment|from a pedagogically novel perspective that introduces almost all concepts via diagrammatic language|of the categorical machinery with which we may express the broader no- tions found in the sequel. The work then branches into two seemingly unrelated disciplines: dynamical systems and knot theory. In particular, the former research defines what it means to compose dynamical systems in a manner analogous to how one composes simple maps. The latter work concerns the categorification of the slN link invariant. In particular, we use a virtual filtration to give a more diagrammatic reconstruction of Khovanov-Rozansky homology via a smooth TQFT. -
Homotopical Categories: from Model Categories to ( ,)-Categories ∞
HOMOTOPICAL CATEGORIES: FROM MODEL CATEGORIES TO ( ;1)-CATEGORIES 1 EMILY RIEHL Abstract. This chapter, written for Stable categories and structured ring spectra, edited by Andrew J. Blumberg, Teena Gerhardt, and Michael A. Hill, surveys the history of homotopical categories, from Gabriel and Zisman’s categories of frac- tions to Quillen’s model categories, through Dwyer and Kan’s simplicial localiza- tions and culminating in ( ;1)-categories, first introduced through concrete mod- 1 els and later re-conceptualized in a model-independent framework. This reader is not presumed to have prior acquaintance with any of these concepts. Suggested exercises are included to fertilize intuitions and copious references point to exter- nal sources with more details. A running theme of homotopy limits and colimits is included to explain the kinds of problems homotopical categories are designed to solve as well as technical approaches to these problems. Contents 1. The history of homotopical categories 2 2. Categories of fractions and localization 5 2.1. The Gabriel–Zisman category of fractions 5 3. Model category presentations of homotopical categories 7 3.1. Model category structures via weak factorization systems 8 3.2. On functoriality of factorizations 12 3.3. The homotopy relation on arrows 13 3.4. The homotopy category of a model category 17 3.5. Quillen’s model structure on simplicial sets 19 4. Derived functors between model categories 20 4.1. Derived functors and equivalence of homotopy theories 21 4.2. Quillen functors 24 4.3. Derived composites and derived adjunctions 25 4.4. Monoidal and enriched model categories 27 4.5. -
The Hecke Bicategory
Axioms 2012, 1, 291-323; doi:10.3390/axioms1030291 OPEN ACCESS axioms ISSN 2075-1680 www.mdpi.com/journal/axioms Communication The Hecke Bicategory Alexander E. Hoffnung Department of Mathematics, Temple University, 1805 N. Broad Street, Philadelphia, PA 19122, USA; E-Mail: [email protected]; Tel.: +215-204-7841; Fax: +215-204-6433 Received: 19 July 2012; in revised form: 4 September 2012 / Accepted: 5 September 2012 / Published: 9 October 2012 Abstract: We present an application of the program of groupoidification leading up to a sketch of a categorification of the Hecke algebroid—the category of permutation representations of a finite group. As an immediate consequence, we obtain a categorification of the Hecke algebra. We suggest an explicit connection to new higher isomorphisms arising from incidence geometries, which are solutions of the Zamolodchikov tetrahedron equation. This paper is expository in style and is meant as a companion to Higher Dimensional Algebra VII: Groupoidification and an exploration of structures arising in the work in progress, Higher Dimensional Algebra VIII: The Hecke Bicategory, which introduces the Hecke bicategory in detail. Keywords: Hecke algebras; categorification; groupoidification; Yang–Baxter equations; Zamalodchikov tetrahedron equations; spans; enriched bicategories; buildings; incidence geometries 1. Introduction Categorification is, in part, the attempt to shed new light on familiar mathematical notions by replacing a set-theoretic interpretation with a category-theoretic analogue. Loosely speaking, categorification replaces sets, or more generally n-categories, with categories, or more generally (n + 1)-categories, and functions with functors. By replacing interesting equations by isomorphisms, or more generally equivalences, this process often brings to light a new layer of structure previously hidden from view. -
Yoneda's Lemma for Internal Higher Categories
YONEDA'S LEMMA FOR INTERNAL HIGHER CATEGORIES LOUIS MARTINI Abstract. We develop some basic concepts in the theory of higher categories internal to an arbitrary 1- topos. We define internal left and right fibrations and prove a version of the Grothendieck construction and of Yoneda's lemma for internal categories. Contents 1. Introduction 2 Motivation 2 Main results 3 Related work 4 Acknowledgment 4 2. Preliminaries 4 2.1. General conventions and notation4 2.2. Set theoretical foundations5 2.3. 1-topoi 5 2.4. Universe enlargement 5 2.5. Factorisation systems 8 3. Categories in an 1-topos 10 3.1. Simplicial objects in an 1-topos 10 3.2. Categories in an 1-topos 12 3.3. Functoriality and base change 16 3.4. The (1; 2)-categorical structure of Cat(B) 18 3.5. Cat(S)-valued sheaves on an 1-topos 19 3.6. Objects and morphisms 21 3.7. The universe for groupoids 23 3.8. Fully faithful and essentially surjective functors 26 arXiv:2103.17141v2 [math.CT] 2 May 2021 3.9. Subcategories 31 4. Groupoidal fibrations and Yoneda's lemma 36 4.1. Left fibrations 36 4.2. Slice categories 38 4.3. Initial functors 42 4.4. Covariant equivalences 49 4.5. The Grothendieck construction 54 4.6. Yoneda's lemma 61 References 71 Date: May 4, 2021. 1 2 LOUIS MARTINI 1. Introduction Motivation. In various areas of geometry, one of the principal strategies is to study geometric objects by means of algebraic invariants such as cohomology, K-theory and (stable or unstable) homotopy groups. -
Cubical Sets and the Topological Topos Arxiv:1610.05270V1 [Cs.LO]
Cubical sets and the topological topos Bas Spitters Aarhus University October 18, 2016 Abstract Coquand's cubical set model for homotopy type theory provides the basis for a com- putational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. This paper contributes to the understand- ing of this model. We make three contributions: 1. Johnstone's topological topos was created to present the geometric realization of simplicial sets as a geometric morphism between toposes. Johnstone shows that simplicial sets classify strict linear orders with disjoint endpoints and that (classically) the unit interval is such an order. Here we show that it can also be a target for cubical realization by showing that Coquand's cubical sets classify the geometric theory of flat distributive lattices. As a side result, we obtain a simplicial realization of a cubical set. 2. Using the internal `interval' in the topos of cubical sets, we construct a Moore path model of identity types. 3. We construct a premodel structure internally in the cubical type theory and hence on the fibrant objects in cubical sets. 1 Introduction Simplicial sets from a standard framework for homotopy theory. The topos of simplicial sets is the classifying topos of the theory of strict linear orders with endpoints. Cubical arXiv:1610.05270v1 [cs.LO] 17 Oct 2016 sets turn out to be more amenable to a constructive treatment of homotopy type theory. We consider the cubical set model in [CCHM15]. This consists of symmetric cubical sets with connections (^; _), reversions ( ) and diagonals. In fact, to present the geometric realization clearly, we will leave out the reversions. -
INTRODUCTION to TEST CATEGORIES These Notes Were
INTRODUCTION TO TEST CATEGORIES TALK BY MAREK ZAWADOWSKI; NOTES BY CHRIS KAPULKIN These notes were taken and LATEX'd by Chris Kapulkin, from Marek Za- wadowski's lecture that was an introduction to the theory of test categories. In modern homotopy theory it is common to work with the category op Sets∆ of simplicial sets instead of the category category Top of topo- logical spaces. These categories are Quillen equivalent, however the former enjoys many good properties that the latter lacks and which make it a good framework to address many homotopy-theoretic questions. It is natural to ask: what is so special about the category ∆? In these notes we will try to characterize categories that can equally well as ∆ serve as an environ- ment for homotopy theory. The examples of such categories include, among others, the cube category and Joyal's Θ. These notes are organized as follows. In sections1 and2 we review some standard results about the nerve functor(s) and the homotopy category, re- spectively. In section3 we introduce test categories, provide their character- ization, and give some examples. In section4 we define test functors and as in the previous section: provide their characterization and some examples. 1. Background on Nerve Functors op The nerve functor N : Cat / Sets∆ is given by: N (C)n = Cat(j[n];C); where j : ∆ ,−! Cat is the obvious inclusion. It has a left adjoint given by the left Kan extension: C:=Lanyj op ? ) Sets∆ o Cat c N = y j ∆ Note that this basic setup depends only on Cat being cocomplete and j being an arbitrary covariant functor. -
Why Category Theory?
The beginning of topology Categorification of the concepts Category theory as a research field Grothendieck's n-categories Why category theory? Daniel Tubbenhauer - 02.04.2012 Georg-August-Universit¨at G¨ottingen Gr G ACT Cat C Hom(-,O) GRP Free - / [-,-] Forget (-) ι (-) Δ SET n=1 -x- Forget Free K(-,n) CxC n>1 AB π (-) n TOP Hom(-,-) * Drop (-) Forget * Hn Free op TOP Join AB * K-VS V - Hom(-,V) The beginning of topology Categorification of the concepts Category theory as a research field Grothendieck's n-categories A generalisation of well-known notions Closed Total Associative Unit Inverses Group Yes Yes Yes Yes Yes Monoid Yes Yes Yes Yes No Semigroup Yes Yes Yes No No Magma Yes Yes No No No Groupoid Yes No Yes Yes Yes Category No No Yes Yes No Semicategory No No Yes No No Precategory No No No No No The beginning of topology Categorification of the concepts Category theory as a research field Grothendieck's n-categories Leonard Euler and convex polyhedron Euler's polyhedron theorem Polyhedron theorem (1736) 3 Let P ⊂ R be a convex polyhedron with V vertices, E edges and F faces. Then: χ = V − E + F = 2: Here χ denotes the Euler Leonard Euler (15.04.1707-18.09.1783) characteristic. The beginning of topology Categorification of the concepts Category theory as a research field Grothendieck's n-categories Leonard Euler and convex polyhedron Euler's polyhedron theorem Polyhedron theorem (1736) 3 Polyhedron E K F χ Let P ⊂ R be a convex polyhedron with V vertices, E Tetrahedron 4 6 4 2 edges and F faces. -
Lecture Notes on Simplicial Homotopy Theory
Lectures on Homotopy Theory The links below are to pdf files, which comprise my lecture notes for a first course on Homotopy Theory. I last gave this course at the University of Western Ontario during the Winter term of 2018. The course material is widely applicable, in fields including Topology, Geometry, Number Theory, Mathematical Pysics, and some forms of data analysis. This collection of files is the basic source material for the course, and this page is an outline of the course contents. In practice, some of this is elective - I usually don't get much beyond proving the Hurewicz Theorem in classroom lectures. Also, despite the titles, each of the files covers much more material than one can usually present in a single lecture. More detail on topics covered here can be found in the Goerss-Jardine book Simplicial Homotopy Theory, which appears in the References. It would be quite helpful for a student to have a background in basic Algebraic Topology and/or Homological Algebra prior to working through this course. J.F. Jardine Office: Middlesex College 118 Phone: 519-661-2111 x86512 E-mail: [email protected] Homotopy theories Lecture 01: Homological algebra Section 1: Chain complexes Section 2: Ordinary chain complexes Section 3: Closed model categories Lecture 02: Spaces Section 4: Spaces and homotopy groups Section 5: Serre fibrations and a model structure for spaces Lecture 03: Homotopical algebra Section 6: Example: Chain homotopy Section 7: Homotopical algebra Section 8: The homotopy category Lecture 04: Simplicial sets Section 9: -
RESEARCH STATEMENT 1. Introduction My Interests Lie
RESEARCH STATEMENT BEN ELIAS 1. Introduction My interests lie primarily in geometric representation theory, and more specifically in diagrammatic categorification. Geometric representation theory attempts to answer questions about representation theory by studying certain algebraic varieties and their categories of sheaves. Diagrammatics provide an efficient way of encoding the morphisms between sheaves and doing calculations with them, and have also been fruitful in their own right. I have been applying diagrammatic methods to the study of the Iwahori-Hecke algebra and its categorification in terms of Soergel bimodules, as well as the categorifications of quantum groups; I plan on continuing to research in these two areas. In addition, I would like to learn more about other areas in geometric representation theory, and see how understanding the morphisms between sheaves or the natural transformations between functors can help shed light on the theory. After giving a general overview of the field, I will discuss several specific projects. In the most naive sense, a categorification of an algebra (or category) A is an additive monoidal category (or 2-category) A whose Grothendieck ring is A. Relations in A such as xy = z + w will be replaced by isomorphisms X⊗Y =∼ Z⊕W . What makes A a richer structure than A is that these isomorphisms themselves will have relations; that between objects we now have morphism spaces equipped with composition maps. 2-category). In their groundbreaking paper [CR], Chuang and Rouquier made the key observation that some categorifications are better than others, and those with the \correct" morphisms will have more interesting properties. Independently, Rouquier [Ro2] and Khovanov and Lauda (see [KL1, La, KL2]) proceeded to categorify quantum groups themselves, and effectively demonstrated that categorifying an algebra will give a precise notion of just what morphisms should exist within interesting categorifications of its modules. -
CAREER: Categorical Representation Theory of Hecke Algebras
CAREER: Categorical representation theory of Hecke algebras The primary goal of this proposal is to study the categorical representation theory (or 2- representation theory) of the Iwahori-Hecke algebra H(W ) attached to a Coxeter group W . Such 2-representations (and related structures) are ubiquitous in classical representation theory, includ- ing: • the category O0(g) of representations of a complex semisimple lie algebra g, introduced by Bernstein, Gelfand, and Gelfand [9], or equivalently, the category Perv(F l) of perverse sheaves on flag varieties [75], • the category Rep(g) of finite dimensional representations of g, via the geometric Satake equivalence [44, 67], • the category Rat(G) of rational representations an algebraic group G (see [1, 78]), • and most significantly, integral forms and/or quantum deformations of the above, which can be specialized to finite characteristic or to roots of unity. Categorical representation theory is a worthy topic of study in its own right, but can be viewed as a fantastic new tool with which to approach these classical categories of interest. In §1 we define 2-representations of Hecke algebras. One of the major questions in the field is the computation of local intersection forms, and we mention some related projects. In §2 we discuss a project, joint with Geordie Williamson and Daniel Juteau, to compute local intersection forms in the antispherical module of an affine Weyl group, with applications to rational representation theory and quantum groups at roots of unity. In §3 we describe a related project, partially joint with Benjamin Young, to describe Soergel bimodules for the complex reflection groups G(m,m,n).