Oxidative Stability of Selected Edible Oils

Total Page:16

File Type:pdf, Size:1020Kb

Oxidative Stability of Selected Edible Oils molecules Article Oxidative Stability of Selected Edible Oils Magdalena Maszewska ID , Anna Florowska * ID , Elzbieta˙ Dłuzewska,˙ Małgorzata Wroniak ID , Katarzyna Marciniak-Lukasiak and Anna Zbikowska˙ Division of Fats & Oils and Food Concentrates Technology, Department of Food Technology, Warsaw University of Life Sciences—SGGW (WULS-SGGW), 02-787 Warsaw, Poland; [email protected] (M.M.); [email protected] (E.D.); [email protected] (M.W.); [email protected] (K.M.-L.); [email protected] (A.Z.)˙ * Correspondence: anna_fl[email protected]; Tel.: +48-22-593-75-49 Academic Editors: Jacek Namie´snikand Justyna Płotka-Wasylka Received: 18 June 2018; Accepted: 14 July 2018; Published: 17 July 2018 Abstract: The aim of the study was to examine and compare oxidative stability of refined (peanut, corn, rice bran, grapeseed, and rapeseed) oils. The oils were subject a Schaal Oven Test (temperature 63 ± 1 ◦C) and a Rancimat test (temperature 120 ◦C) and their stability was compared at the 1st and 12th month of storage. Changes in the peroxide (PV) and anisidine (AnV) values in the thermostat test were the fastest in rapeseed oil and grapeseed oil. The best quality was preserved by peanut and corn oils both in the first and the twelfth month of storage. The induction times for the rice bran, corn, peanut, and rapeseed oils were similar from 4.77 h to 5.02 h in the first month and from 3.22 h to 3.77 h in the twelfth month. The shortest induction times were determined for grapeseed oil: 2.4 h and 1.6 h, respectively. A decrease of oxidative stability of about 30% was found in all the oils after 12 months of storage. The PV of 10, determined in the thermostat and Rancimat tests, were achieved at the latest in corn oil and the fastest in rice bran oil. Keywords: oxidative stability; edible oil; Rancimat test; Schaal Oven Test; storage 1. Introduction Composition of fatty acids is particularly important in relation to oxidative stability of fat. The more unsaturated and less saturated a fat is, the faster the oxidation reaction proceeds [1,2]. Linolenic acid is oxidized the fastest, followed by linoleic and oleic acids [1]. That is why the fastest oxidation occurs in the grapeseed oil, which is characterized by the greatest amount of polyunsaturated fatty acids (about 68–85%), with the largest part constituted by linoleic acid (approx. 67%) [3,4]. Grapeseed, with a relatively high oil content (10–20 g/100 g seed), can also be considered as an oily raw material that is a rich source of natural antioxidants, such as vitamin E, polyphenols, and flavonoids [5–7]. Rapeseed oil, in comparison with other oils, contains the highest amount of linolenic acid (10–13%) [4,8]. In other oils, the percentage of this valuable acid is low (0–2%) [4,9–12]. In addition, it comprises about 20–26% linoleic acid in its composition [3]. The main advantage of this oil is a good ratio of n-6 to n-3 fatty acids (close to two to one), which meets optimal nutritional recommendations and a high C18:1 cis content, as well as a smaller amount of saturated fatty acids (SFA) (among popular vegetable fats) [13,14]. The peanut oil consists mainly of: Arachidonic, oleic, and stearic acids [3,15–17]. In addition, 21–35% of linoleic acid is present [15–17] and 0.1–0.4% of α-linolenic acid [15,16,18,19]. The high content of unsaturated fatty acids in peanut oil can be a problem because unsaturated fatty acids are susceptible to oxidation, which can cause changes in taste, aroma, and color [2]. Similarly, corn oil has a high nutritional value due to the high content of polyunsaturated fatty acids (PUFA), mainly linoleic acid (18:2) [19]. The acidic composition of corn oil Molecules 2018, 23, 1746; doi:10.3390/molecules23071746 www.mdpi.com/journal/molecules Molecules 2018, 23, 1746 2 of 12 is dominated by oleic acid (28%) and linoleic acid (50–58%) [4,17]. Furthermore, 0.4–2.0% of α-linolenic acid is present [4,8,17,20,21]. This oil is also rich in carotenoids and tocopherols. Carotenes have the function of provitamin A and tocopherols of vitamin E [22]. It is also one of the richest in plant sterols material. Rice bran oil attracts consumers’ interest thanks to high concentrations of health-promoting compounds, from tocopherols and tocotrienols, to phytosterols and γ-oryzanol [9]. In addition, it is one of the mostMolecules nutritious 2018, 23, ediblex FOR PEER oils REVIEW due to its balanced profile of fatty acids [23]. The acid composition2 of 12 of rice bran oilby isoleic dominated acid (28%) by:and Oleiclinoleic (40–50%), acid (50–58%) linoleic [4,17]. (28–42%),Furthermore, and 0.4–2.0% palmitic of α-linolenic (16–21%) acid acids is [24,25]. Oxidationpresent stability [4,8,17,20,21]. is oneThis oil of is the also mostrich in importantcarotenoids and quality tocopherols. parameters Carotenes ofhave edible the function vegetable oils. It determinesof provitamintheir usefulness A and tocopherols in technological of vitamin E [22]. processes It is also one as of wellthe richest as shelf in plant life. sterols In material. food chemistry, Rice bran oil attracts consumers’ interest thanks to high concentrations of health-promoting many methodscompounds, are used from to tocopherols determine and the tocotrienols, oxidative tostability phytosterols of oils.and γ The-oryzanol most [9]. reliable In addition, test isit is the storage test, but itone takes of the too most long. nutritious Therefore, edible methodsoils due to thatits balanced allow forprofile determination of fatty acids [23]. of oil The stability acid in the shortest possiblecomposition time of rice are bran valuable. oil is dominated The most by: Oleic frequently (40–50%), usedlinoleic include: (28–42%), Rancimatand palmitic test,(16–21%) Schaal Oven Test—thermostaticacids [24,25]. test and chemical determinations of peroxide value (PV), anisidine value (AnV), Oxidation stability is one of the most important quality parameters of edible vegetable oils. It and acid valuedetermines (AV). their The usefulness Rancimat in technological test determines processes the as oxidation well as shelf stability life. In food of oilschemistry, in a very many short time, ◦ however, highmethods temperatures are used to determine (50–150 the oxidativeC) and stability intensive of oils. aeration The most are reliable used, test which is the storage change test, the nature of the oxidationbut it takes process. too long. In Therefore, the thermostat methods test,that allow lower for temperaturesdetermination of (30–63oil stability◦C) in are the appliedshortest without intense aeration,possible whichtime are results valuable. in The fat oxidationmost frequently time used of upinclude: to several Rancimat weeks, test, Schaal but the Oven nature Test— of changes thermostatic test and chemical determinations of peroxide value (PV), anisidine value (AnV), and is more similaracid value to changes (AV). The in Rancimat natural test storage determines conditions the oxidation (storage stability test). of oils in a very short time, The aimhowever, of the high study temperatures was to (50–150 examine °C) and and intensiv comparee aeration oxidative are used, stability which change of refined the nature (peanut, of corn, rice bran, grapeseed,the oxidation and process. rapeseed) In the thermostat oils using test, a thermostatic lower temperatures test (temperature (30–63 °C) are 63applied± 1 ◦ C)without and Rancimat test (temperatureintense aeration, 120 ◦C) which in the results first inand fat oxidation twelfth time months of up to of several their weeks, storage. but Chemicalthe nature of quality changes of the oils is more similar to changes in natural storage conditions (storage test). was also determinedThe aim byof the determining study was to theexamine acid and value compare (AV), oxidative the peroxide stability value of refined (PV), (peanut, the anisidine corn, value (AnV), andrice the bran, fatty grapeseed, acids composition. and rapeseed) oils using a thermostatic test (temperature 63 ± 1 °C) and Rancimat test (temperature 120 °C) in the first and twelfth months of their storage. Chemical quality 2. Resultsof the oils was also determined by determining the acid value (AV), the peroxide value (PV), the anisidine value (AnV), and the fatty acids composition. 2.1. Fatty Acid Composition 2. Results Fatty acid composition of the studied oils is presented in Figures1 and2. In the tested oils, 2.1. Fatty Acid Composition unsaturated fatty acids were present in the cis configuration, while the trans isomers were in a small amount. TraceFatty amounts acid composition of trans isomers of the studied (0.1%) oils were is presented found in in Figures peanut 1 and oil, 2. the In largestthe tested amount oils, (1.8%) unsaturated fatty acids were present in the cis configuration, while the trans isomers were in a small contained grapeseedamount. Trace oil. amounts The share of trans of isomers saturated (0.1%) fatty were acids found ranged in peanut from oil, the 7.4% largest in rapeseed amount (1.8%) oil to 23.1% in rice bran oil.contained The largest grapeseed share oil. ofThe monounsaturated share of saturated fatty acids acids were ranged found from 7.4% in rapeseed in rapeseed oil oil 63.9% to 23.1% and peanut oil 55.2%.in Rice rice bran bran oil. oil The contained largest share 43.3% of monounsaturated of monoenic acids. acids Cornwere found and grapeseedin rapeseed oil oils 63.9% contained and 28.8% and 18.8%peanut of these oil 55.2%. acids, Rice respectively. bran oil contained The largest43.3% of monoenic share of acids. polyene Corn acidsand grapeseed were found oils contained in grapeseed oil 28.8% and 18.8% of these acids, respectively.
Recommended publications
  • International Journal for Scientific Research & Development| Vol. 7, Issue 03, 2019 | ISSN (Online): 2321-0613
    IJSRD - International Journal for Scientific Research & Development| Vol. 7, Issue 03, 2019 | ISSN (online): 2321-0613 Significance of Ethanol Blended Biodiesel Powered Diesel Engine Aditya Deshmukh1 Shrikrushna Dhakne2 Tohid Pathan3 Rahul Dimbar4 C. Srinidhi5 1,2,3,4UG Students 5Assistant Professor 1,2,3,4,5Department of Mechanical Engineering 1,2,3,4,5Suman Ramesh Tulsiani Tehnical Campus Faculty of Engineering Khamshet Pune, Maharashtra, India Abstract— In recent years, energy consumption is increasing engines. This chemical treatment is known as due to increase in the demand for the energy due to transesterification. Transesterification involves breaking of industrialization and increase in number of automobiles. This large triglycerides into a smaller Monoalkyl ester. The High leads to depletion of fossil fuels and hence researchers Viscosity of triglycerides can be reduced by the concentrate on alternative fuels which reduce the engine transesterification process in which triglyceride decompose emission and are environmentally friendly. This leads to into glycerol and glycerin, which is the biodiesel. The biodiesel produced from non-edible as an immediate biodiesel can be produced from a variety of edible and substitute to the fossil diesel. In this work, we used Kenaf oil nonedible oils, animal fats etc. The chosen oil will be for the production of the biodiesel as it has considerable subjected to transesterification in the existence of catalyst to potential for the production of the biodiesel. In this work, produce biodiesel. biodiesel was produced from the Kenaf oil using Indian consumption of petroleum fuels for the transesterification and we found that the properties of the period of 2008-09 was 30.50 million tons.
    [Show full text]
  • Palm Oil and Rice Bran Oil: Current Status and Future Prospects
    International Journal of Plant Physiology and Biochemistry Vol. 3(8), pp. 125-132, August 2011 Available online at http://www.academicjournals.org/ijppb ISSN-2141-2162 ©2011 Academic Journals Review Palm oil and rice bran oil: Current status and future prospects Kusum R., Bommayya H., Fayaz Pasha P. and Ramachandran H. D.* Department of Biochemistry, Dr. Ambedkar Veedhi Bangalore University, Bangalore - 560001, India. Accepted 17 June, 2011 The continued demand for edible oils by the ever increasing population makes it pertinent to explore new sources. In this direction, two new edible oils namely palm oil and rice bran oil have been subjected to nutritional and toxicological evaluations of their chemicals constituents. An attempt has been made in this article to assess the acceptability of the two oils based on the various investigations that have been carried out so far. Key words: Palm oil, rice bran oil, anti-oxidants, cholesterol fatty acids, phospholipids, tocopherols, oryzanol, cardiovascular diseases. INTRODUCTION Vegetable oils are the main source of dietary fat for Among the oils under consideration, palm oil and rice almost all sections of the Indian population and there is a bran oil offer great scope in India, as they are widely continued growing demand from both caterers and con- preferred by the vanaspathi industries and also by the sumers. Although the Indian population has a penchant Indian consumer. The oil palm gives higher yields in for a variety of deep fried products, there is also a greater comparison with other oil yielding species. Rice bran oil awareness of the problems such as atherosclerosis also offers high potential, as India has high rice caused by saturated fats.
    [Show full text]
  • Olive Oil Jars Left Behind By
    live oil jars left behind by the ancient Greeks are testament to our centuries- old use of cooking oil. Along with salt and pepper, oil Oremains one of the most important and versatile tools in your kitchen. It keeps food from sticking to pans, adds flavor and moisture, and conducts the heat that turns a humble stick of potato into a glorious french fry. Like butter and other fats, cooking oil also acts as a powerful solvent, unleashing fat-soluble nutrients and flavor compounds in everything from tomatoes and onions to spices and herbs. It’s why so many strike recipes begin with heating garlic in oil rather than, say, simmering it in water. The ancient Greeks didn’t tap many cooking oils. (Let’s see: olive oil, olive oil, or—ooh, this is exciting!—how about olive oil?) But you certainly can. From canola to safflower to grapeseed to walnut, each oil has its own unique flavor (or lack thereof), aroma, and optimal cooking temperature. Choosing the right kind for the task at hand can save you money, boost your health, and improve your cooking. OK, so you probably don’t stop to consider your cooking oil very often. But there’s a surprising amount to learn about What’s this? this liquid gold. BY VIRGINIAWILLIS Pumpkin seed oil suspended in corn oil—it looks like a homemade Lava Lamp! 84 allrecipes.com PHOTOS BY KATE SEARS WHERE TO store CANOLA OIL GRAPESEED OIL are more likely to exhibit the characteristic YOUR OIL flavor and aroma of their base nut or seed.
    [Show full text]
  • Product Japan : Food Processing Sector - Health and Functional Foods Company Profiles
    Foreign Agricultural Service GAIN Report Global Agriculture Information Network Approved by: Date: 07/23/99 Sarah D. Hanson GAIN Report #JA9087 U.S. Embassy Market Brief - Product Japan : Food Processing Sector - Health and Functional Foods Company Profiles This report was prepared by the USDA’s Foreign Agricultural Service for U.S. exporters of food and agricultural products. This information is in the public domain and may be reprinted without permission. Use of commercial or trade names does not imply approval nor constitute endorsement by USDA/FAS. Tokyo[JA1], JA GAIN Report #JA9087 Page 1 of 24 Company Name Amway Japan Product Sector(s) Health and Functional Food Address 1-8-1, Shimo-Meguro Number Of Employees 728 Meguro-ku, Tokyo 153-8686 Number of Factories Overseas Contact Phone Number 03-5434-8484 Fax Number 03-5434-4923 Email Web Page Address www.amway.co.jp/amway_japan/ Contact Person Masura Iwata Executive Driector, External Affairs and Public Relations Sales and Net Profits Main Suppliers Year Sales (Mil. \) Net Profits 1995 177,991 22,424 1996 212,195 25,130 1997 203,361 26,638 Key Products % of Total Company Profile and Strategies Home Care Products 9 Japanese corporation of nonstore sales operator Amway (US). Housewares 30 Registered sales personnel involved in direct sales of detergents, Personal Care 34 cosmetics, kitchenware and nutritional supplements. Nutritional Supplements 23 Others 4 Main Brands Triple X (vitamin and mineral supplement), Nutri Protein, Acerola C (vitamin supplement), Salmon-Omega 3, Hon-E-Cece, Ironics, Beta Carotene A, Wheat Germ E. Main Ingredients Vitamins, protein concentrates, iron concentrates, calcium concentrates, beta caroten, wheat germ.
    [Show full text]
  • Delineating Root System Architecture in Rapeseed/Canola (Brassica
    DELINEATING ROOT SYSTEM ARCHITECTURE IN RAPESEED/CANOLA (BRASSICA NAPUS L.) THROUGH MOLECULAR AND TRANSCRIPTOMIC APPROACHES A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Muhammad Arif Uz Zaman In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Department: Plant Sciences October 2018 Fargo, North Dakota North Dakota State University Graduate School Title DELINEATING ROOT SYSTEM ARCHITECTURE IN RAPESEED/CANOLA (BRASSICA NAPUS L.) THROUGH MOLECULAR AND TRANSCRIPTOMIC APPROACHES By Muhammad Arif Uz Zaman The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Dr. Mukhlesur Rahman Chair Dr. Phillip E. McClean Dr. David P. Horvath Dr. Luis del Rio-Mendoza Approved: 11/14/2018 Dr. Rich Horsley Date Department Chair ABSTRACT Root system architecture of plant plays a key role in water and nutrient uptake from the soil, provides anchorage and acts as a storage organ. In this current research, we have focused on the molecular and physiological basis of root system variation in canola (Brassica napus L.). Genome wide association mappings in a diverse canola germplasm panel with ~37,500 and ~30,200 single nucleotide polymorphism (SNP) markers were conducted under greenhouse and field conditions, respectively. A total of 52 significant SNP markers associated with different root architectural traits were identified in the greenhouse study. Majority of the markers were distributed on five chromosomes, A01, A02, A04, C03 and C06, of B. napus. Twenty-two candidate genes related to root growth and development were detected within 50 kbp upstream and downstream of the significant markers.
    [Show full text]
  • Cooking Oil Facts
    Cooking Oil Facts As you enter a department store, you behold an array of cooking oils sporting all types of jargon on the packaging -- saturated fats, unsaturated fats, refined, filtered, ricebran oil, vanaspati, etc. Confused already? With so much variety and so many brands flooding the market today, buying the right cooking oil can prove a tough task. Different oils fill different needs - for health, taste and cooking. For good health, our bodies need a variety of healthy fats that are found naturally in different oils. When cooking, it's essential to know which oils are best for baking, sautéing and frying and which are healthiest used raw. Why have Oil (fats)? Contrary to popular belief, fat is actually a valuable part of one's diet, allowing people to absorb nutrients that require fat in order to metabolize in the body. Natural fats contain varying ratios of three types of fats: saturated, monounsaturated and polyunsaturated. • Saturated fats are hard at room temperature. They're stable, resist oxidation, and are found primarily in meat, dairy, palm and coconut oil. • Polyunsaturated fats are liquid at room temperature and the least stable. They oxidize easily and are found in seafood corn, safflower, soybean, and sunflower oils. • Monounsaturated fats are more stable than polyunsaturated fats. They're found in canola, nut and olive oils. It is recommended to limit saturated fats in the diet due to their association with cardiovascular disease. Also, you should try to rely more on monounsaturated than polyunsaturated fats. What are the varieties of Oil available in the market? Choosing which oil should be used in cooking is a big issue and concern for many people because of the fat and cholesterol contents of cooking oil.
    [Show full text]
  • Natural, Vegan & Gluten-Free
    Natural, Vegan & Gluten-Free All FarmHouse Fresh® products are Paraben and Sulfate free, made with up to 99.6% natural ingredients and made in Texas. Many of our products are also Vegan and Gluten-Free! Ingredient Decks Honey Heel Glaze: Water/Eau, Glycerine, Polysorbate 20, Polyquaternium-37, Parfum, Honey, Natural Rice Bran Oil (Orza Sativa), Tocopheryl Acetate (Vitamin E),Tetrahexyldecyl Ascorbate, Panthenol, Carica Papaya (Papaya) Fruit Extract, Ananas Sativus (Pineapple) Fruit Extract, Aloe Barbadensis Leaf Juice, Lactic Acid, PEG-40 Hydrogenated Castor Oil, Potassium Sorbate, Diazolidinyl Urea, DMDM Hydantoin, Caramel, Annatto. Strawberry Smash: Aloe Barbadensis Leaf Juice, Water/Eau, Glycerin, Glycine Soja (Soybean) Oil, Polysorbate 80, Butyrospermum Parkii (Shea Butter), Cetearyl Alcohol, Ceteareth-20, Cetyl Alcohol, Stearyl Alcohol, Parfum, Fragaria Vesca (Strawberry) Fruit Extract, Oryza Sativa (Rice) Barn Oil, Ethylhexyl Palmitate, Dimethicone, Cyanocobalmin (Vitamin B12), Tocopheryl Acetate, Menthone Glycerin Acetal, Carbomer, Disodium EDTA, Tetrasodium EDTA, Sodium Hydroxymethylglycinate, Sodium Hydroxide, Phenoxyethanol, Caprylyl Glycol, Potassium Sorbate Sweet Cream Body Milk: Water/Eau, Glycine Soja (Soybean) Oil, Sorbitol, Glycerin, Glyceryl Stearate, PEG-100 Stearate, Cetyl Alcohol, Oryza Sativa (Rice) Bran Oil, Simmondsia Chinensis (Jojoba) Seed Oil, Prunus Amygdalus Dulcis (Sweet Almond) Oil, Persea Gratissima (Avocado) Oil, Sesamum Indicum (Sesame) Seed Oil, Stearyl Alcohol, Dimethicone, Polysorbate 20, Carbomer,
    [Show full text]
  • The Climate Footprint for Enriched Ambient Oat Drink, FINLAND. Oatly
    REPORT: The climate footprint for Enriched ambient oat drink, FINLAND. Oatly 2020-09-02 CarbonCloud AB CarbonCloud AB Stena Center 1 B, 412 92 Göteborg Org.nr: SE-559091-0716 carboncloud.com innehar F-skattsedel [email protected] 2020-09-02 The climate footprint of Oatly Enriched oat drink .......................................... 2 Approach ...................................................................................................................................................... 3 An attributional approach to life cycle accounting ............................................................ 3 From cradle to store .................................................................................................................................................. 3 Time horizon ........................................................................................................................................................................ 3 Unit of analysis ................................................................................................................................................................. 3 The weighting of greenhouse gases ..................................................................................................... 3 Allocation ................................................................................................................................................................................ 4 Agricultural calculation model ....................................................................................................................
    [Show full text]
  • Journal of Food Science and Technology 1978 Volume.15 No.3
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY ASSOCIATION OF FOOD SCIENTISTS & TECHNOLOGISTS, INDIA VOL 15 NO. 3 MAY-JUNE 1978 ASSOCIATION OF FOOD SCIENTISTS AND TECHNOLOGISTS (INDIA) The Association is a professional and educational organization of Food Scientists and Technologists AFFILIATED TO THE INSTITUTE OF FOOD TECHNOLOGISTS, USA Objects: 1. To stimulate research on various aspects of Food Science and Technology. 2. To provide a forum for the exchange, discussion and dissemination of current developments in the field of Food Science and Technology. 3. To promote the profession of Food Science and Technology. The ultimate object is to serve humanity through better food. Major Activities: 1. Publication of Journal of Food Science and Technology—bi-monthly. 2. Arranging lectures and seminars for the benefit of members. 3. Holding symposia on different aspects of Food Science and Technology. Membership : Membership is open to graduates and diploma holders in Food Science and Technology, and to those engaged in the profession. All the members will receive the Journal published by the Association. Regional branches of the Association have been established in Eastern, Northern, Central and Western zones of India. Membership Subscription Annual Journal Subscription Life Membership Rs 250 Inland Rs 80 Corporate Members Foreign: (for firms, etc.) (per year) Rs 250 Surface Mail $ 20 Members 55 Rs 15 Air Mail $ 28 Associate Members (for students, etc.) 55 Rs 10 Admission 55 Re 1 For membership a.id other particulars kindly address The Honorary Executive Secretary Association of Food Scientists and Technologists, India Central Food Technological Research Institute. Mysore-13, India Editor JOURNAL OF FOOD SCIENCE D.
    [Show full text]
  • Properties of Healthy Oil Formulated from Red Palm, Rice Bran and Sesame Oils
    Songklanakarin J. Sci. Technol. 41 (2), 450-458, Mar. - Apr. 2019 Original Article Properties of healthy oil formulated from red palm, rice bran and sesame oils Mayuree Chompoo1, Nanthina Damrongwattanakool2, and Patcharin Raviyan1* 1 Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Mueang, Chiang Mai, 50100 Thailand 2 Division of Food Science and Technology, Faculty of Agricultural Technology, Lampang Rajabhat University, Mueang, Lampang, 52000 Thailand Received: 19 August 2016; Revised: 17 November 2017; Accepted: 9 December 2017 Abstract A healthy edible oil was developed by blending red palm, rice bran and sesame oils at various proportions to achieve an oil blend with balanced ratio of fatty acids as recommended by the American Heart Association. The optimal blend was red palm oil 33.0: rice bran oil 35.0: sesame oil 32.0 (% by weight), which contained saturated, monounsaturated, and polyunsaturated fatty acids in the ratio 1. 00: 1. 33: 1. 02. The optimal blend was rich in natural antioxidants, including gamma-oryzanol, tocopherols, sesamin, and carotenoids at 524, 454, 362 and 254 mg/kg, respectively. The panelists were satisfied with the sensory characteristics of the oil; the quality of the oil stored at 30 °C remained acceptable by the product standard for more than 120 days. This developed oil blend offers potential as a healthy edible oil that is balanced in fatty acids and high in powerful antioxidants. Keywords: blending, healthy oil, red palm oil, rice bran oil, sesame oil 1. Introduction Red palm oil can be prepared from palm oil that is abundant in Thailand.
    [Show full text]
  • Case Study #4: Characterization of Edible Oils, Butters and Margarines by Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance
    Case Study #4: Characterization of Edible Oils, Butters and Margarines by Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance Intro We consume oil, butter and margarine on a daily basis, but do we actually know what is inside each of these products? How do they differ in terms of fat and water content? In a paper by Safar et al., the authors characterized various types of these lipid-rich foods using Fourier Transform Infrared Spectroscopy (FTIR) to determine their chemical composition. Part A Figure 1. Infrared spectra of A. caprylic acid; B. oleic acid; C. linoleic acid; D. linolelaidic acid1. Caprylic acid: Oleic acid: 1 1. Safar, M., Bertrand, D., Roberta, P., Devaux, M. F. & Genot, C. Characterization of Edible Oils, Butters and Margarines by Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance. J. Am. Oil Chem. Soc. 71, 371–377 (1994). Linoleic acid: Linoleaidic acid: Table 1. Absorption band assignments of infrared spectra Discuss with your group: 1. Look at the unit on the x-axis. That unit is used for wavenumbers. Can you convert the values to wavelength (e.g., nm)? 2. How do the nm values compare with what you saw previously in UV-vis and AA/AE spectra? 3. By comparing Figure 1 and Table 1, what do the peaks in Figure 1 correspond to? 4. What is the main difference in the peaks in Figure 1 as the degree of unsaturation of the fatty acids increase? Does this make sense? Why? Part B Figure 2. Infrared absorption spectrum of Olive Oil. Figure 3. Infrared Spectrum of Margarine.
    [Show full text]
  • How Rapeseed and Soy Biodiesel Drive Oil Palm Expansion
    www.theicct.org BRIEFING JULY 2017 How rapeseed and soy biodiesel drive oil palm expansion This briefing paper reviews a recent study by Santeramo (2017) estimating the degree of substitution between various oils and fats and explains what its results mean for the greenhouse gas performance of biodiesel. Santeramo (2017) finds that an increase in the price of rapeseed oil in the European Union (EU) and of soybean oil in the United States (U.S.) both lead to increased palm oil imports to those regions. These results are important because they indicate that rapeseed biodiesel production in the EU and soybean oil production in the U.S. will contribute to high land use change emissions associated with oil palm expansion. This effect limits – or even reverses – the climate benefits of policies supporting food-based biodiesel. BIOFUELS, LAND USE CHANGE, AND PALM OIL The role of food-based biofuels in climate mitigation policies has long been controversial because of their impact on food prices and land use. Biofuels do not categorically deliver greenhouse gas (GHG) savings compared to petroleum; the biofuel crops must be grown somewhere, and that land use is associated – directly and indirectly – with GHG emissions. If a forest is cut down so the land can be used to grow biofuel crops, the GHG savings from avoided petroleum use will not offset the amount of carbon that is released from disturbed vegetation and soils within a reasonable timeframe. That is why direct land use change on forest land to produce biofuels is prohibited in biofuel policies in the EU and the U.S.
    [Show full text]