A Review of the Current Situation of Dotterel <I>Eudromias Morinellus</I

Total Page:16

File Type:pdf, Size:1020Kb

A Review of the Current Situation of Dotterel <I>Eudromias Morinellus</I A review of the current situation of Dotterel Eudromias morinellus in the central Alps of Austria Peter Sackl Sackl, P. 1993. A review of the current situation of Dotterel Eudromias morinellusin the central Alpsof Austria. WaderStudy GroupBull. 71: 39-40. Sackl, P., Steierm•rkischesLandesmuseum Joanneum, Abteilung for Zoologie, Forschungsst•tteFurtnerteich, Raubergasse 10, A - 8010 Graz, Austria. The Palearcticbreeding range of DotterelEudromias open and unvegetatedor sparselyvegetated ground, mor/nellusis confinedto opentundra habitatsin northern regularlyintermingled with patches of grit or bare rock. Eurasiaand the arctic-alpinezone of the mountainsof The sparsevegetation cover of the alpinebreeding centralAsia, i.e. Mongolia,southern Siberia and habitatsis dominatedby Carex curvula,Loiseleuria Kazakhstan,separated from the mainarctic distribution procumbens,Cladonla rangiferina, Thamniola vermicularis area. Furthersmall, and fragmentedpopulations exist in and severalspecies of Cetraria.(Hable 1973; Hablein mountainousareas of continentaland southernEurope. Glutz von Blotzheimet al. 1975; Brunner1992). Whereasmost of these Europeanbreeding areas were usedjust erraticallyand are now abandoned,breeding of The numberof breedingpairs for the alpinepopulation is the Dotterelin the centralAlps of Austriahas been givenin Spitzenberger(1988) with 12 pairsfor the years documentedcontinuously since the second half of the 1953 - 1963, 22 in 1971 and 9 - 11 pairs in 1986. 19th century(Glutz von Blotzheimet al. 1975; Cramp Becausethe area covered by this data Esnot clearly 1983). The first breedingrecord was reportedin 1852 by definedthe best estimationfor the long-termpopulation Hanf (1884) for the SeetalerAlps near the Styrian- trend is givenprobably by Hable & Pr•sent's(1990) data Carinthian border, and since the 1880s Dotterels have for the main alpinebreeding site in the c. 25 sqkm also been found also in a few other locations in the conservationarea in the SeetalerAlps. As shownin Saualpeand GurktalAlps in northernCarinthia (Keller Figure2, the numberof breedingpairs in this area has 1890; detailsin Glutz von Blotzheimet al. 1975). declined graduallyfrom 3 - 9 in the 1970s to a lower level with a maximumof 3 pairs at the end of the 1980s. Excludingold recordsfrom the CarnicAlps in southern Carinthia not confirmedsince the 1880s, the current To obtain more detailed information on the current breeding range since the 1950s is restrictedto some 12 distribution and numbers of Dotterels in Austria in co- locationsof flat spaciousplateaux or smoothmountain operationwith G. Bierbaumer,G. Brunner,H. Brunner,I. ridgesin the centralAlps of Styria,Oarinthia and Salzburg Brunner,M. Dumpelnik,E. Hable, A. Hlebaina,I. Pr•.sent, (E. Hable pets. comm.; Figure 1). The breedinghabitats S. Presentand J. Spreitzer,seven historicallyknown in the arctic-alpinezone above the treeline between breedingsites have been surveyedannually and five (1750) 2000 - 2300 metres asl are characterizedby flat, additionalones sporadicallysince 1991 (cf. Figure1 ). Financialsupport has been grantedby the Nature Figure1• Breedingdistribution of the DotterelEudromias ConservationAuthorities of Styria in Graz. morinellusin the AustrianAlps, O = historicalbreeding sites not confirmedsince the 19thcentury; (3 = confirmedbreeding site since Althoughthe highvariability of weather and habitat 1950surveyed at leastonce during 1991-93; ß = breedingsite controlledregularly during 1991-93. conditionsat the alpinebreeding sites give riseto strong annualfluctuations of breedingnumbers and success,the resultsof our surveysfor the period1991 - 1993, summarizedin Table 1, showevidence of a significant declinein comparisonto populationnumbers given for the 1970s. Ignoringthe vague possibilityof substantial undetectedbreeding sites in remote areas of the Austrian Alpsnot visited by ornithologists,the alpinepopulation of Dotterelsseems currentlyon the brinkof extinction. Table1. Resultsof surveysof breedingDotterel in thecentral Alps, Austria, 1991-93. 1991 1992 1993 Numberof breedingplaces 10 8a 10a surveyed Numberof breedingpairs 1-2 3-4 5 a surveyedareas in Carinthia not exactly known 39 Figure2. Populationsize (broods and nests)of DotterelEudrornias collectiveinformation available concerning the numbers, morinellusinthe Seetaler Alps, Austria, 1969-93 according to Hable habitatsand conservation of Dotterelswintering in NW & Pr'•sent(1990), supplemented by recentdata. Africa. The collectionof such informatior•is of the utmost importancefor an urgentlyneeded conservation strategy in orderto savethe smallalpine population. ACKNOWLEDGEMENT 5- 4- I thankmy colleagueR. Turk(Graz) for the correctionof 3- an earlyversion of the manuscript. 2- 1- 0 REFERENCES Brunner,H. 1992.Der Mornellregenpfeifer (Eudromias morinellus) Beforeeffective conservation strategies can be imalpinen Raum. Thesis, Univ. Graz, 78 pp. establishedwe haveto findout the factors responsible for the declineof populationnumbers. Generally, these Cramp,S. (Ed.)1983. Handbookof theBirds of Europe,the Middle factorsmay originally operate either (1) at the alpine Eastand North Africa. TheBirds of the WesternPalearctic, breedingsites itself, or (2) on migrationroutes and in the Vol.3. OxfordUniversity Press, Oxford, 913 pp. winteringareas. Glu•zvon BIo•zheim,U. N., Bauer,K. M. & Bezzel,E. 1975. Handbuchder VOgel Mitteleuropas. Bd. 6. Akad.Verlagsges. Concerningthe breedingareas there is clear evidence Wiesbaden.839 pp. thatthe numberof hikersand sportsmen has increased Hable,E. 1973. DerMornellregenpfeifer (Eudromias morinellus)in dramaticallysince the 1960s. Furthermorea numberof Karnten. Carinthia II 163/83:603 - 608. breedingsites have become more accessible to peopleby Hable,E. 1980. Beringungsergebnissean der alpinen Population vehicletracks. In at leastthree areas, ski developments des Mornellregenpfeifers,Eudromias morinellus (L.). Mitt. andchair lifts have been in operationsince the 1970s. Abt. Zool. Landesmus. Joanneurn 9:81 - 85. Watson(1988) has shown that the density and breeding success of Scottish Dotterels does not correlate with Hable,E. & Pr'•sent,I. 1990. DieForschungsstatte "Pater Blasius Hanf"am Furtnerteich(Gemeinde Mariahof, Bezirk Murau). humanimpact. For the alpinepopulation it is at present SchwarzenbergischeArchive, 181 - 257, Murau. unclearwhether tourism, trekking and ski developments haveany influence on population numbers. Hypothetically Hanf,B. 1884.Die VOgel des Furtteiches und seiner Umgebung (2. humansmay have a detrimentaleffect on breeding Theil). Mitt.naturwiss. Ver. Steiermark20:3 - 94. successby disturbing birds directly on their breeding Keller,F. C. 1890. OrnisCarinthiae. Naturhist. Landesmus, groundsand making them more vulnerable to predators K•rnten,Klagenfurt, 332 pp. such as Ravens Corvus corax. Furthermore human Pulliainen,E. & Saari,L. 1992. Breedingbiology of the Dotterel impactmay influence population numbers more subtly by Eudromiasmorinellus ineastern Finnish Lapland. Ornis reducingnesting habitat and food supply through Fennica69:101 - 107. vegetationdamage, soil erosion or eutrophication.Since allbreeding sites in the Austrian Alps are managedas Spi•zenberger,F. 1988. Artenschutz in (•sterreich. Gr(•ne Reihe 8, pastures,increasing grazing pressure by domestic cattle - BMf. Umwelt,Jugend und Familie, Wien, 335 pp. or evengame like Red Deer Cervuselaphus - may Watson,A. 1988. DotterelEudromias morinellus numbers in producethe same effects. However,even the careful relationto humanimpact in Scotland.Biol. Conserv. 43:245 - guardingof breedingsites during the 1980s could not stop 256. the declineof the populationin the conservationarea of the SeetalerAlps. Thewinter quarters of European Dotterels are the stony steppes and semi-deserts of northernAfrica. Birdsfrom westernpopulations show a tendencyto winterin more westernwintering areas in Morocco,Algeria and Tunisia IREQUEST FORINFORMATION I (cf.Cramp 1983). According to Hable(1980), so far three Austrian-ringedDotterels were recovered inwintering areas north of the Atlas mountainsin Morocco and one in In view of the uncertain situation of Dotterels on their Tripolitania,Libya. Habitat destruction, the widespread wintering and migrationareas, the author would use of pesticidesfor pest controlas well as the appreciateany informationconcerning numbers, persecutionin northern Africa and the Mediterranean may behaviour,habitat and conservation of thespecies in havean important impact on all European populations• north Africa and the Mediterranean. All information Thisis indicatedby the decrease of breedingnumbers at collectedwill be acknowledgedin a future article. a Finnishstudy site (Pulliainen & Saari 1992) simultaneouslywiththe decline of the Austrian population. Contact: Peter Sackl, Stmk. Landesmuseum Accordingto ToPiersma (in litt.) at presentthere is no Joanneurn,Raubergasse 10, A - 8010Graz, Austria. 40 .
Recommended publications
  • Age and Structure of the Stolzalpe Nappe
    AgeAge andand structurestructure ofof thethe StolzalpeStolzalpe nappenappe -- EvidenceEvidence forfor VariscanVariscan metamorphism,metamorphism, EoalpineEoalpine top-to-the-WNWtop-to-the-WNW thrustingthrusting andand top-to-the-ESEtop-to-the-ESE normalnormal faultingfaulting (Gurktal(Gurktal Alps,Alps, Austria)Austria) Geological Survey of Austria C. IGLSEDER1,*) , B. HUET1,*) , G. RANTITSCH2,*), L. RATSCHBACHER3,*) & J. PFÄNDER3,*) INTRODUCTION: OVERVIEW: 17° 16° 15° 14° 10° 11° 12° 13° Tectonic map of the Alps Passau S.M. Schmid, B. Fügenschuh, E. Kissling and R. Schuster , 2004 Donau Inn In the Gurktal Alps (Austria,) the Drauzug-Gurktal nappe system represents the Graphics : S. Lauer Wien 5° 6° 48° 48° 7° München 8° 9° 5240000 Rhein Basel Zürich uppermost tectonic part of the Upper Austro-Alpine nappe stack. The Stolzalpe Nappe Besancon 47° 47° Graz Bern Maribor ± Drava (s. str.) is its uppermost unit. It consists of interbedded metasedimentary rocks of the Genève 46° 46° Rhone T Zagreb agliamento Sava 5230000 Trieste Milano Venezia Verona Padova Spielriegel Complex, overlain by metavolcanic rocks of the Kaser-Eisenhut Complex. Grenoble Torino 45° 45° Po 17° Po 16° 15° 14° 100 km 11° 12° 13° Both are covered by the Pennsylvanian clastic Stangnock Formation. In the Genova 44° Durance 5° 6° Nice 7° 8° 9° 10° investigated area, located at UTM-map sheet Radenthein (NL-33-04-06), the 5220000 Stolzalpe Nappe tectonically overlays the Stangnock Formation belonging to the Tectonic map of the investigated area Königstuhl Subnappe, also part
    [Show full text]
  • AUSTRIAN JOURNAL of EARTH SCIENCES Volume 98 2005
    © Österreichische Geologische Gesellschaft/Austria; download unter www.geol-ges.at/ und www.biologiezentrum.at AUSTRIAN JOURNAL of EARTH SCIENCES [MITTEILUNGEN der ÖSTERREICHISCHEN GEOLOGISCHEN GESELLSCHAFT] an INTERNATIONAL JOURNAL of the AUSTRIAN GEOLOGICAL SOCIETY volume 98 2005 István DUNKL, Joachim KUHLEMANN, John REINECKER & Wolfgang FRISCH: Cenozoic relief evolution of the Eastern Alps – constraints from apatite fission track age-provenance of Neogene intramontane sediments__________________________________________________________________________ www.univie.ac.at/ajes EDITING: Grasemann Bernhard, Wagreich Michael PUBLISCHER: Österreichische Geologische Gesellschaft Rasumofskygasse 23, A-1031 Wien TYPESETTER: Irnberger Norbert, www.irnberger.net Copy-Shop Urban, Bahnstraße 26a, 2130 Mistelbach PRINTER: Holzhausen Druck & Medien GmbH Holzhausenplatz 1, 1140 Wien ISSN 0251-7493 © Österreichische Geologische Gesellschaft/Austria; download unter www.geol-ges.at/ und www.biologiezentrum.at Austrian Journal of Earth Sciences Volume 98 Vienna 2005 Cenozoic relief evolution of the Eastern Alps – con- straints from apatite fission track age-provenance of Neogene intramontane sediments István DUNKL1)*), Joachim KUHLEMANN2), John REINECKER2) & Wolfgang FRISCH2) KEYWORDS paleogeography fission track provenance 1) Sedimentology, Geoscience Center, University of Göttingen exhumation 2) Institute of Geosciences, University of Tübingen sediment relief *) Corresponding author, [email protected] Alps Abstract Fission track (FT) ages
    [Show full text]
  • Late Miocene Increasing Exhumation Rates in the Eastern Part of the Alps – Implications from Low Temperature Thermochronology
    doi: 10.1111/ter.12221 Late Miocene increasing exhumation rates in the eastern part of the Alps – implications from low temperature thermochronology Andreas W€olfler,1 Walter Kurz,2 Harald Fritz,2 Christoph Glotzbach1 and Martin Danisık3 1Institut fur€ Geologie, Leibniz Universitat€ Hannover, Callinstraße 30, Hannover D-30167, Germany; 2Institut fur€ Erdwissenschaften, Karl-Franzens Universitat€ Graz, Graz A-8010, Austria; 3John de Laeter Centre for Isotope Research, Department of Applied Geology, The Institute for Geoscience Research (TIGeR), Curtin University, GPO Box U1987, Perth, WA 6845, Australia ABSTRACT A new set of apatite fission-track and apatite (U–Th)/He data operated simultaneously during lateral extrusion of the East- reveals a hitherto undated late Miocene exhumation pulse in ern Alps. As the higher late Miocene/Pliocene exhumation the eastern part of the Eastern Alps. While distinct parts of rates are restricted to a single tectonic block, namely the Nie- the study area, including the Seckauer Tauern, have been at dere Tauern, we infer a tectonic trigger that is probably near surface conditions (<100 °C) since the Eocene, the neigh- related to a change in the external stress field that affected bouring Niedere Tauern experienced enhanced cooling and the Alps during this time. exhumation in the middle Miocene and again at the late Mio- cene/Pliocene boundary. Middle Miocene exhumation is inter- Terra Nova, 00: 1–9, 2016 preted as a result of tectonic escape and convergence that thermochronological point of view, and perturbation of isotherms, which Introduction this part of the Alps is less well may result in false conclusions about The existing low-temperature ther- investigated than other areas such as exhumation rates in the upper crust mochronological datasets from the the Tauern Window or the Western (Stuwe€ et al., 1994; Braun, 2002).
    [Show full text]
  • Benedek-Et-Al-2001.Pdf
    Int J Earth Sciences Geol Rundsch) 2001) 90 : 519±533 DOI 10.1007/s005310000183 ORIGINAL PAPER K. Benedek ´ Z.R. Nagy ´ I. Dunkl ´ C. Szabó S. Józsa Petrographical, geochemical and geochronological constraints on igneous clasts and sediments hosted in the Oligo-Miocene Bakony Molasse, Hungary: evidence for a Paleo-Drava River system Received: 20 April 2000 / Accepted: 15 November 2000 / Published online: 17 March 2001 Springer-Verlag 2001 Abstract The provenance of igneous clasts and aren- FT age mean: ~34.7 Ma) were derived from the Peri- itic sediment enclosed within the Bakony Molasse was adriatic intrusives and their contact zones.On the studied using geochemical and geochronological meth- basis of the new data, we propose that the ancestor of ods.The majority of igneous clasts were eroded from the recent Drava River had already existed in Oligo- the Oligocene Periadriatic magmatic belt.A part of Miocene time and distributed eroded material of the the andesite material has Eocene formation age. southern Eastern Alps to the east. Rhyolitic pebbles originated from Permian sequences of the Greywacke zone or the Gurktal Alps.Apatite Keywords Alpine Molasse ´ Fission track dating ´ fission track FT) ages from the sandstone matrix age K/Ar dating ´ Geochemistry ´ Provenance analysis ´ clusters at ~75 and ~30 Ma) are typical for the Aus- Pannonian Basin ´ Oligocene±Miocene troalpine nappe pile and for the cooling ages of Peri- adriatic magmatic belt.Variscan detrital zircon FT ages indicate source areas that had not suffered Introduction Alpine metamorphism, such as the Bakony Mountains, Drauzug and the Southern Alps.Another group of The Alpine collision and subsequent uplift resulted in detrital zircon grains of Late Triassic±Jurassic FT age the formation of numerous alluvial systems during Oli- mean: ~183 Ma) marks source zones with Mesozoic go-Miocene time in the Alpine±Carpathian region.
    [Show full text]
  • Abstracts & Field Guides
    Berichte der Geologischen Bundesanstalt, 99 11th Workshop on Alpine Geological Studies & th 7 European Symposium on Fossil Algae Abstracts & Field Guides Schladming, Sept. 2013 Redaktion: Ralf Schuster Cover image: Sölk marble from the base of the Weiße Wand, Walchental (Styria, Austria) Impressum: ISSN 1017-8880 Alle Rechte für das In- und Ausland vorbehalten © Geologische Bundesanstalt (GBA) A-1030 Wien, Neulinggasse 38 www.geologie.ac.at Wien, September 2013 Medieninhaber, Herausgeber und Verleger: GBA, Wien Redaktion: Ralf Schuster (Geologische Bundesanstalt) Technische Redaktion; Christoph Janda (Geologische Bundesanstalt) Umschlag Monika Brüggemann-Ledolter Druck: Riegelnik, Offsetschnelldruck, Piaristengasse 19, A-1080 Wien Ziel der „Berichte der Geologischen Bundesanstalt“ ist die Verbreitung wissenschaftlicher Ergebnisse durch die Geologische Bundesanstalt. Die „Berichte der Geologischen Bundesanstalt“ sind im Handel nicht erhältlich. Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Content Organisation & Time Schedule 4 Abstracts Emile Argand Conference (11th Workshop on Alpine Geological Studies) Editorial: Ralf Schuster 9 Abstracts 7th European Symposium on Fossil Algae Editorial: Sigrid Missoni & Hans-Jürgen Gawlick 107 Field guide: General Introduction in the Geology of the Easter Alps Ralf Schuster 121 Field guide Excursion A1: Southern Alps of Slovenia in a nutshell: paleogeography, tectonics, and active deformation Bogomir Celarc, Marko Vrabec, Boštjan Rožič, Polona Kralj, Petra Jamšek Rupnik,
    [Show full text]
  • Postcollisional Stress Field Changes in Eastern Carinthia (Austria) B9
    Mitt. Osterr. Geol. Ges. CkA Oi-i • • iss; N \J£-\J I " / ^TC/\J St 2003 Keywords Structural analysis strike-slip deformation Neogene Eastern Alps Postcollisional stress field changes in Carinthia Eastern Carinthia (Austria) J. KUHLEMANN1, T. SCHOLZ1 & W. FRISCH1 4 Figures and 1 Table Content Abstract 55 1. Introduction 55 2. Regional structural setting of Eastern Carinthia 56 3. Structural analysis 57 4. Discussion and conclusions 59 5. Acknowledgements 60 References 60 Abstract Structural analysis revealed up to 7 fault generations of Miocene to recent brittle deformation in the southeastern Eastern Alps, which are attributed to four episodes of deformation. Calculated paleostress orientations record a local modification of strike-slip movements widely observed in the Eastern Alps during the first deformation episode of E-directed lateral extrusion between 21 and 12 Ma. Apparent counterclockwise (CCW) rotation of the stress field is probably caused by CCW rotation of crustal blocks. The second episode exhibits E-W compression at the end the extrusion phase. Late Miocene normal faulting of the third episode is probably related to the evolution of the intramontane Klagenfurt basin, which became overthrust from the S and accordingly down-warped. This caused local extension along a flexural bulge at its northern margin. Pliocene to recent deformation of the fourth episode records neotectonic strike-slip movements compensating for ongoing SE-directed extrusion in the easternmost Southern Alps (Slovenia). 1. Introduction existence of an E-W striking fault zone. In closer detail W-E striking morphological lineaments visible on a DEM image Since the introduction of the concept of Miocene lateral occur especially in a transition zone between the Klagenfurt extrusion of the Eastern Alps (RATSCHBACHER et al., 1991a, basin to the S, and the Saualpe-Gurktal Alps to the N.
    [Show full text]
  • Geology of the Eastern Alps (An Excursion Guide) 103-170 ©Geol
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Abhandlungen der Geologischen Bundesanstalt in Wien Jahr/Year: 1980 Band/Volume: 34 Autor(en)/Author(s): Matura Alois, Summesberger Herbert Artikel/Article: Geology of the Eastern Alps (An Excursion Guide) 103-170 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Abh. Geol. B.-A. 34 p. 103—170 52 figs., 10 tables 26" C. G. I. Wien 1. 5. 1980 International Geological Congress 26tl) Session Excursion 034 A Geology of the Eastern Alps (An Excursion Guide) - by ALOIS MATURA and HERBERT SUMMESBERGER with contributions from ALOIS FENNINGER, WOLFGANG FRISCH, VOLKER HOCK, HEINZ KOLLMANN, ARTHUR KRÖLL, OTTO MALZER, JULIAN PISTOTNIK, BENNO PLÖCHINGER, ALFRED RÖGL, REINHARD ROETZEL, WOLFGANG SCHNABEL, HANS PETER SCHÖNLAUB and GODFRID WESSELY. 52 figures and 10 tables Address of the authors: Dr. ALOIS MATURA, Geologische Bundesanstalt, A-1031 Wien, Rasumofskygasse 23; Dr. HERBERT SUMMESBERGER, Naturhistorisches Museum Wien, A-1014 Wien, Burgring 7. ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at 4 03 N RSIO Z> H p uX w t < LU ^ h LL LL h- Q ~ r r t O U 3 ve ou LU XC < H ir LU U U \ • D RO ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Acknowledgments drillings we know that the Molasse sediments continue The authors express their gratitude to F. FLIRI, D. VAN far below the Eastern Alps towards south. The crystal­ HUSEN, G. NIEDERMAYR, R. OBERHAUSER, A. RÖGL and line complex of the Bohemian Massif with a thin Palaeo­ A. TOLLMANN for their constructive comments.
    [Show full text]
  • Dénes Lóczy Editor Environmental Problems and Solutions
    Springer Geography Dénes Lóczy Editor The Drava River Environmental Problems and Solutions Springer Geography The Springer Geography series seeks to publish a broad portfolio of scientific books, aiming at researchers, students, and everyone interested in geographical research. The series includes peer-reviewed monographs, edited volumes, text- books, and conference proceedings. It covers the entire research area of geography including, but not limited to, Economic Geography, Physical Geography, Quantitative Geography, and Regional/Urban Planning. More information about this series at http://www.springer.com/series/10180 Dénes Lóczy Editor The Drava River Environmental Problems and Solutions 123 Editor Dénes Lóczy Institute of Geography and Earth Sciences University of Pécs Pécs, Hungary ISSN 2194-315X ISSN 2194-3168 (electronic) Springer Geography ISBN 978-3-319-92815-9 ISBN 978-3-319-92816-6 (eBook) https://doi.org/10.1007/978-3-319-92816-6 Library of Congress Control Number: 2018943247 © Springer International Publishing AG, part of Springer Nature 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Abhandlungen 2013 BAND 66 Igraphic T Ra St Rian T Us a He T S of T
    T HAR C ABHANDLUNGEN 2013 BAND 66 IGRAPHIC T RA ST RIAN T US A HE T S OF T Vol. I THE PALEOZOIC ERA(THEM) Authors: Bernhard Hubmann [Coordinator] (Graz), Fritz Ebner (Leoben), ­Annalisa Ferretti (Modena), Kathleen Histon (Modena), Erika Kido (Graz), ARY SUCCESSIONS) IGRAPHIC UNI Karl Krainer (Innsbruck), Franz Neubauer (Salzburg), T Hans Peter Schönlaub (Kötschach-Mauthen) T & Thomas J. Suttner (Graz). RA T HOS T 2004 (SEDIMEN THE LI WERNER E. PILLER [Ed.] Geologische Bundesanstalt Address of editor: Werner E. Piller University of Graz Institute for Earth Sciences Heinrichstraße 26, A-8010 Graz, Austria [email protected] Addresses of authors: Bernhard Hubmann Franz Neubauer University of Graz University of Salzburg Institute for Earth Sciences Department of Geography and Geology Heinrichstraße 26, A-8010 Graz, Austria Hellbrunnerstraße 34, A-5020 Salzburg, Austria [email protected] [email protected] Fritz Ebner Hans Peter Schönlaub University of Leoben Past Director, Geological Survey of Austria Department of Geosciences/Geology and Economic Geology Kötschach 350, A-9640 Kötschach-Mauthen, Austria; Peter-Tunner-Straße 5, A-8700 Leoben, Austria [email protected] [email protected] Erika Kido, Thomas J. Suttner Annalisa Ferretti, Kathleen Histon University of Graz Università degli Studi di Modena e Reggio Emilia Institute for Earth Sciences Dipartimento di Scienze della Terra Heinrichstraße 26, A-8010 Graz, Austria Largo S. Eufemia 19, I-41121 Modena, Italy [email protected]; [email protected] [email protected]; [email protected], [email protected] Karl Krainer University of Innsbruck Institute of Geology and Paleontology Innrain 52, A-6020 Innsbruck, Austria [email protected] Recommended citation / Zitiervorschlag PILLER, W.E.
    [Show full text]
  • Qualitative and Quantitative Analysis of Different Rhodiola Rosea
    Scientia Pharmaceutica Article Qualitative and Quantitative Analysis of Different Rhodiola rosea Rhizome Extracts by UHPLC-DAD-ESI-MSn Fabian Alperth 1, Ivana Turek 1, Sandra Weiss 1, Dietmar Vogt 2 and Franz Bucar 1,* 1 Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 4, 8010 Graz, Austria; [email protected] (F.A.); [email protected] (I.T.); [email protected] (S.W.) 2 Phytagoras, 9020 Klagenfurt, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-316-380-5531 Received: 14 February 2019; Accepted: 26 March 2019; Published: 29 March 2019 Abstract: Rhodiola rosea has been used in folk medicine as ethanolic macerates for a long time. This study aims to provide a quantitative and qualitative analysis and comparison of different ethanolic Rhodiola rosea rhizome macerates (35%, 70%, and 96% v/v) and accelerated solvent extraction (ASE) extracts prepared with 85% methanol, in order to shed light on the effectivity of different extraction methods. Extract samples were analyzed by UHPLC-DAD-ESI-MSn on a ZORBAX SB-C18 column (100 2.1 mm, 1.8 µm) with a mobile phase consisting of water + × 0.1% formic acid and acetonitrile. Qualitative analysis lead to the tentative identification of 18 compounds: Two cyanogenic glycosides (rhodiocyanoside A, lotaustralin), three phenylethanoids (salidroside, viridoside, 2-phenylethyl-vicianoside), two procyanidin and catechin derivatives (epigallocatechin-epigallocatechin gallate, epigallocatechin-3-O-gallate), five phenylpropanoids (cinnamyl alcohol, rosarin, rosavin, rosin, cinnamyl-(6’-O-β-d-xylopyranosyl)-O-β-glucopyranoside), two monoterpene alcohols (rhodioloside E, rosiridin) and four flavonols (rhodionidin, rhodiosin, rhodionin, kaempferol).
    [Show full text]
  • Spatio-Temporal Modelling of Lightning Climatologies for Complex Terrain
    Nat. Hazards Earth Syst. Sci., 17, 305–314, 2017 www.nat-hazards-earth-syst-sci.net/17/305/2017/ doi:10.5194/nhess-17-305-2017 © Author(s) 2017. CC Attribution 3.0 License. Spatio-temporal modelling of lightning climatologies for complex terrain Thorsten Simon1,2, Nikolaus Umlauf2, Achim Zeileis2, Georg J. Mayr1, Wolfgang Schulz3, and Gerhard Diendorfer3 1Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria 2Department of Statistics, University of Innsbruck, Innsbruck, Austria 3OVE-ALDIS, Vienna, Austria Correspondence to: Thorsten Simon ([email protected]) Received: 1 June 2016 – Discussion started: 4 July 2016 Revised: 16 January 2017 – Accepted: 8 February 2017 – Published: 6 March 2017 Abstract. This study develops methods for estimating light- 2000). Thus, the private and the insurance sector have a ning climatologies on the day−1 km−2 scale for regions with strong interest in reliable climatologies for such events, i.e. complex terrain and applies them to summertime observa- for risk assessment or as a benchmark forecast of a warning tions (2010–2015) of the lightning location system ALDIS system. in the Austrian state of Carinthia in the Eastern Alps. Lightning is a transient, high-current (typically tens of Generalized additive models (GAMs) are used to model kiloamperes) electric discharge in the air with a typical both the probability of occurrence and the intensity of light- length in kilometres. The lightning discharge in its entirety is ning. Additive effects are set up for altitude, day of the usually termed a lightning flash or just a flash. Each flash typ- year (season) and geographical location (longitude/latitude).
    [Show full text]
  • 11Th Workshop on Alpine Geological Studies & 7Th IFAA
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte der Geologischen Bundesanstalt Jahr/Year: 2013 Band/Volume: 99 Autor(en)/Author(s): diverse Artikel/Article: 11th Workshop on Alpine Geological Studies & 7th IFAA. Abstract Volume. 9-106 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Abstract Volume Emile Argand Conference (11th Workshop on Alpine Geological Studies) 7th - 14th September 2013 Schladming, Austria Editorial: Ralf Schuster Geologische Bundesanstalt Neulinggasse 38 1030 Vienna, Austria 9 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Analysis of microseismicity in the Fribourg area (Western Swiss Molasse Basin) Abednego, M.1, Vouillamoz, N.1, Husen, St.2, Wust-Bloch, H.G.3 & Mosar, J.1 1 University of Fribourg, Departement of Geosciences, Earth Sciences, 1700 Fribourg, Switzerland ([email protected]) 2 Schweiz. Erdbebendienst (SED), 8092 Zürich, Switzerland 3 Tel Aviv University, Department of Geophysics and Planetary Sciences, 69978 Tel Aviv, Israel This study presents an analysis of microseismicity in the Fribourg area (Western Swiss Molasse Basin), a region that has recently displayed increased microseismicity (KASTRUP et al., 2007). Arrival time data of these earthquakes were used in a non-linear probabilistic earthquake relocation approach and to refine an existing three-dimensional (3-D) P-wave velocity model of the Fribourg area. Two mini-arrays (seismic navigating systems/SNS) have been deployed since 2010 to enhance seismic monitoring of the Fribourg Lineament within the Fribourg area.
    [Show full text]