An Annotated Bibliography of Weeds As Reservoirs for Organisms Affecting Crops
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Metabolites from Nematophagous Fungi and Nematicidal Natural Products from Fungi As an Alternative for Biological Control
Appl Microbiol Biotechnol (2016) 100:3799–3812 DOI 10.1007/s00253-015-7233-6 MINI-REVIEW Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes Thomas Degenkolb1 & Andreas Vilcinskas1,2 Received: 4 October 2015 /Revised: 29 November 2015 /Accepted: 2 December 2015 /Published online: 29 December 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Plant-parasitic nematodes are estimated to cause Keywords Phytoparasitic nematodes . Nematicides . global annual losses of more than US$ 100 billion. The num- Oligosporon-type antibiotics . Nematophagous fungi . ber of registered nematicides has declined substantially over Secondary metabolites . Biocontrol the last 25 years due to concerns about their non-specific mechanisms of action and hence their potential toxicity and likelihood to cause environmental damage. Environmentally Introduction beneficial and inexpensive alternatives to chemicals, which do not affect vertebrates, crops, and other non-target organisms, Nematodes as economically important crop pests are therefore urgently required. Nematophagous fungi are nat- ural antagonists of nematode parasites, and these offer an eco- Among more than 26,000 known species of nematodes, 8000 physiological source of novel biocontrol strategies. In this first are parasites of vertebrates (Hugot et al. 2001), whereas 4100 section of a two-part review article, we discuss 83 nematicidal are parasites of plants, mostly soil-borne root pathogens and non-nematicidal primary and secondary metabolites (Nicol et al. 2011). Approximately 100 species in this latter found in nematophagous ascomycetes. Some of these sub- group are considered economically important phytoparasites stances exhibit nematicidal activities, namely oligosporon, of crops. -
An Ecological Study of Ditylenchus Dipsaci (Kuhn) Filipjev
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1966 An Ecological Study of Ditylenchus Dipsaci (Kuhn) Filipjev. in a Field of Alfalfa Shu-Ten Tseng Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Plant Sciences Commons Recommended Citation Tseng, Shu-Ten, "An Ecological Study of Ditylenchus Dipsaci (Kuhn) Filipjev. in a Field of Alfalfa" (1966). All Graduate Theses and Dissertations. 2872. https://digitalcommons.usu.edu/etd/2872 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. AN ECOLOGICAL STUDY OF DITYLENCHUS DIPSACI (KUHN) FILIPJEV. IN A FIELD OF ALFALFA by Shu-ten Tseng A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Plant Science UTAH STATE UNIVERSITY Logan, Utah 1966 ACKNOWLEDGMENT Th e author wishes to express his hearty appreciation t o : Dr. Keith R. Allred and Dr. Gerald D. Griffen for their constant encour agement and advice in carrying ou t this s tudy ; Dr. Rex L. Hurst f or his valuable help in statistical analysis; Dr.DeVer e R. McAllister for his kind arrangement which made this study possible . Shu-Ten Tseng TABLE OF CONTENTS INTRODUCTION . REVIEW OF LITERATURE 3 History of alfalfa stem nematode 3 Morphology . 4 Life cycle of Dityl e nchus dipsaci 4 The influence of environme nt 6 Moisture 6 Ae ration 7 Temperature 8 Soil t ype 9 Ditylenchus dipsaci population in soil and its r e lation wi th damage 10 Some aspect of behavior of ~· dipsaci 12 Orientation and invasion 12 Quiescence and l ongevi t y 13 Plant - Parasite relation . -
PDF-Document
Supplementary Table 1. Botanical sources of kaempferol/glycosides. Species Family Kaempferol/glycosides References kaempferol 3-O-β-glucopyranoside, Abutilon theophrasti Malvaceae [1] kaempferol 7-O-β-diglucoside Acaenasplendens Rosaceae 7-O-acetyl-3-O-β-D-glucosyl-kaempferol [2] kaempferol 3-O-α-L-rhamnopyranosyl- Aceriphyllumrossii Saxifragaceae [3] (1→6)-β-D-glucopyranoside, kaempferol Acacia nilotica Leguminosae Kaempferol [4] kaempferol 3-O-(6-trans-p-coumaroyl)-β- glucopyranosyl-(12)-β-glucopyranoside- 7-O-α-rhamnopyranoside, kaempferol 7- Aconitum spp Ranunculaceae O-(6-trans-p-coumaroyl)-β- [5] glucopyranosyl-(13)-α- rhamnopyranoside-3-O-β- glucopyranoside Kaempferol 3-O-β-(2' '- Aconitum paniculatum Ranunculaceae [6] acetyl)galactopyranoside Kaempferol, kaempferol 3-O-β-D- galactopyranoside, kaempferol 3-O-α-L- Actinidia valvata Actinidiaceae rhamnopyranosyl-(1→3)-(4-O-acetyl-α-L- [7] rhamnopyranosyl)-(1→6)-β-D- galactopyranoside. kaempferol 7-O-(6-trans-p-coumaroyl)-β- glucopyranosyl-(13)-α- Aconitum napellus Ranunculaceae [8] rhamnopyranoside-3-O-β- glucopyranoside Kaempferol 3-O-α-L –rhamnopyranosyl- (1→6)-[(4-O-trans-p-coumaroyl)-α-L - Adina racemosa Rubiaceae [9] rhamnopyranosyl (1→2)]-(4-O-trans-p- coumaroyl)-β-D-galactopyranoside Allium cepa Alliaceae Kaempferol [10] Kaempferol 3-O-[2-O-(trans-3-methoxy- 4-hydroxycinnamoyl)-β-D- Allium porrum Alliaceae [11] galactopyranosyl]-(1→4)-O-β-D- glucopyranoside, kaempferol glycosides Aloe vera Asphodelaceae Kaempferol [12] Althaea rosea Malvaceae Kaempferol [13] Argyreiaspeciosa -
Nutritional Profile of Cultivated and Wild Jute (Corchorus) Species
AJCS 7(13):1973-1982 (2013) ISSN:1835-2707 Nutritional profile of cultivated and wild jute (Corchorus) species Shashi Bhushan Choudhary1*, Hariom Kumar Sharma1, Pran Gobinda Karmakar1, A. Anil Kumar1 Amit Ranjan Saha2, Pranab Hazra3, Bikas Singha Mahapatra2 1Crop Improvement Division, Central Research Institute for jute and Allied Fibres (CRIJAF), Barrackpore, Kolkata-700120 West Bengal, India 2Crop Production Division, Central Research Institute for jute and Allied Fibres (CRIJAF), Barrackpore, Kolkata-700120 West Bengal, India 3Department of Vegetable Crop, Bidhan Chandra Krishi Vishwavidyalaya, Kalyani, Kolkata, West Bengal, India *Corresponding author: [email protected] Abstract Traditionally jute is cultivated for bast (phloem) fibre production. But in rural belts of Asian, African and European countries, tender leaves from young jute plants are consumed as green leafy vegetable. With a view to have knowledge of nutritional aspect of jute leaf, an experiment was conducted with 17 genotypes belonging to six jute species namely, Corchorus fascicularis, C. trilocularis, C. aestuans, C. tridens, C. capsularis and C. olitorius. These genotypes were assessed for growth (leaf area, foliage yield) and nutritional (crude protein, potassium, iron and β-carotene content) parameters. C. olitorius genotypes were found to be best performer for all the parameters except iron content, for which C. aestuans outperformed others. C. olitorius cv. JRO-204 had highest leaf area (23.9 x 10-4 m2) and foliage yield (276.67 kg/ha) vis a vis good amount of protein (3.79%), iron (67.93 mg/kg), β-carotene (51.0 mg/kg) and potassium (4400 mg/kg). High heritability coupled with high genetic advance was found for all the parameters which indicate that these traits are governed by additive type of gene action; hence selection may be effective for improvement of these traits. -
Germination, Growth, Photosynthesis, and Osmotic Adjustment of Tossa Jute (Corchorus Olitrius L.) Seeds Under Saline Irrigation
Pol. J. Environ. Stud. Vol. 28, No. 2 (2019), 935-942 DOI: 10.15244/pjoes/85265 ONLINE PUBLICATION DATE: 2018-09-14 Original Research Germination, Growth, Photosynthesis, and Osmotic Adjustment of Tossa Jute (Corchorus olitrius L.) Seeds under Saline Irrigation Amira Racha Ben yakoub1, 2*, Samir Tlahig1, Ali Ferchichi3 1Arid and Oases Cropping Laboratory, Institute of Arid Lands (IRA), Médenine, Tunisia 2Faculty of Sciences of Tunis, University Campus, El Manar, Tunisia 3National Institute of Agronomy, Mahrajène City, Tunis, Tunisia Received: 15 January 2018 Accepted: 12 February 2018 Abstract A field experiment focusing on the response of Tossa jute Corchorus( olitorius L.) to salt stress at germination and vegetative growth stages was held in the Institute of Arid Lands of Medenine, Tunisia. Results showed that germinating rate after 24 hrs exceeded 50% under salt levels between 0 and 5 g.l-1. Indeed, salt stress levels delayed the initiation process and decreased significantly kinetics and rate of germination, which were severely limited at 9 and 10 g.l-1 NaCl. After one month of growth, Tossa jute seedlings were subjected to salt treatments of 2, 4, 6, and 8 g.l-1 NaCl. After four weeks of stress in pots, morphological responses were reflected by a significant decrease in parameters of growth and yield when salinity reached 8 g.l-1. Indeed, a reduction in the photosynthetic gaseous exchange and a stomata resistance were notified for seedlings subjected to 6 and 8 g.l-1 NaCl treatments. However, in order to tolerate the highest levels of salt, Tossa jute seedlings make different strategies by reducing the size of leaves, which increases their accumulation of osmolytes such as proline (3.1 mg.g-1 DM) and soluble sugars (13.22 µg.g-1 FM) to permitting the osmotic adjustment. -
ISTA List of Stabilized Plant Names 7Th Edition
ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations .......................................................................................................................... -
Atoll Research Bulletin No. 503 the Vascular Plants Of
ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll. -
Race Genesis in Ditylenchus Dipsaci 1) by D. R. Viglierchio
RACE GENESIS IN DITYLENCHUS DIPSACI 1) BY D. R. VIGLIERCHIO Department of Nematology, University of California, Davis A garlic isolate of Ditylenchus dipsaci has been found to be polyphagous.Under aseptic conditions this isolate has reproduced on a wide range of plant host tissues many of which are the key hosts reported for the biological races of the stem and bulb nematode. In addition the garlic isolate reproduced on two of nineteen fungus cultures tested. It is clear from the literature reports of many workers that different populations of D. dipsaci can vary in host ranges from very narrow to very broad. It is suggested, as a working hypothesis, that the nominal species, Ditylenchus dipsaci, gene pool be considered as "wild type" polyphagous with race deviations as part of the gene continuum in the fashion illustrated by the schematic representation. The stem and bulb nematode, Ditylenchu.r dipsaci, has been recognized for just over a century. It is perhaps the best known of all plant-parasitic nematodes for complexity in racial characterization. Though restricted essentially to the temperate zones of the world, representatives of the species have been found in hot desert soils, irrigated warm lands, cool most areas, and cold high mountain valleys wherever a host plant is able to grow. The nematode's cryptobiotic state enables it to survive sub-zero winter temperatures, summer soil temperatures of 55°C, or decades of desiccation. It is one of the more cosmopolitan of plant-parasitic nema- todes. It has been reported on nearly 50 botanical families including bryophytes and monocotyledonous and dicotyledonous plants (Filipjev & Schuurmans Stek- hoven, 1941). -
Response of Corchorus Olitorius Leafy Vegetable to Cadmium in the Soil
plants Article Response of Corchorus olitorius Leafy Vegetable to Cadmium in the Soil Sibongokuhle Ndlovu 1, Rajasekhar V.S.R. Pullabhotla 2 and Nontuthuko R. Ntuli 1,* 1 Department of Botany, University of Zululand (Main Campus), Private Bag X1001, KwaDlangezwa 3886, South Africa; [email protected] 2 Department of Chemistry, University of Zululand (Main Campus), Private Bag X1001, KwaDlangezwa 3886, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27-35-902-6105 Received: 11 August 2020; Accepted: 3 September 2020; Published: 14 September 2020 Abstract: Corchorus olitorius, a leafy vegetable with high nutrient content, is normally collected from the wild, in areas that are prone to cadmium (Cd) toxicity. However, studies on how Cd accumulation affects vegetative and reproductive traits of leafy vegetables in South Africa are limited. Therefore, this study tested the effect of Cd accumulation on C. olitorius morphological traits. Plants were grown under various Cd concentrations and studied for variation in vegetative and reproductive traits as well as accumulation in roots and shoots. Plants exposed to 5 mg/kg Cd had longer roots with higher moisture content, heavier fresh and dried stems, as well as dried leaves, which indicated a hormetic effect in C. olitorius after exposure to low Cd concentration in the soil. Again, plants treated with 5–10 mg/kg Cd, accumulated toxic (>10 mg/kg dry weight) Cd within shoots and roots, with minor morphological alterations. Plants could survive, with some morphological defects, Cd toxicity up to 20 mg/kg in soil. Only plants exposed to 5 mg/kg could reproduce. -
US EPA, Pesticide Product Label, FL-AN405F, 07/19/2012
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON DC 20460 JUL102012 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION Sara Ghantous, Manager Falcon Lab LLC 4900 Este Ave Cincinnati, OH 45232 Subject FL-AN405F EPA Registration No 79766-4 Label Amendment to add additional producers to CSF, add alternate packaging size to the label and amend the Environmental Hazards statement by adding the point source discharge statement for large containers Decision # 462775 Application Dated March 15, 2012 Dear Mr Ghantous The amendment referred to above, submitted in connection with registration under FIFRA section 3(c)(5), is acceptable provided that you 1 Submit and/or cite all data required for registration/reregistration of your product under FIFRA section 3(c)(5) when the Agency requires all registrants of similar products to submit such data 2 Submit three (3) copies of your final printed labeling before you release the product for shipment Final printed labeling means the label or labeling of the product when distributed or sold Clearly legible reproductions or photo reductions will be accepted for unusual labels, such as those silk-screened directly onto glass or metal containers or large bags or drum labels If these conditions are not complied with, the registration will be subject to cancellation in accordance with FIFRA section 6(b) Your release for shipment of the product bearing the amended labeling constitutes acceptance of these conditions Should you have any questions, you may contact Ms Menyon Adams directly at 703 347 8496 -
Corchorus Olitorius Jew's Mallow PFAF Plant Database
We have over 100,000 visitors each month, but in the whole of 2013 less than £1,000 was raised from donations. We rely on donations and cannot continue to maintain our database and website unless this increases considerably in 2014. Please make a donation today. More information on our financial position >>> Search For Plant Search Page Content Home About Us Forum Blog Links Shop Contact Us Register/Login By donating to PFAF, you can help support and expand our activities Plant Suppliers: Click here for a List 0 Corchorus olitorius - L. RN to BSN Common Name Jew's Mallow Online Option Family Tiliaceae www.chamberl… Synonyms 3 Semesters & Entirely Online. Known Hazards None known Affordable, Convenient & Habitats Original habitat is obscure. Respected! Tropical Asia? Range Edibility Rating Chocolate Medicinal Rating Elixirs Care Expansion Joints Fast Summary http://commons.wikimedia.org/wiki/File:Co rchorus_olitorius.jpg Physical Characteristics Orchid Growing Secrets+ Corchorus olitorius is a ANNUAL/PERENNIAL growing to 3.5 m (11ft 6in) at a fast rate. It is hardy to zone 10. It is in flower from Aug to October, and the seeds ripen in October. The flowers are hermaphrodite (have both male and female organs) and are pollinated by Insects. http://flickr.com/photos/91314344%40N00 / Suitable for: light (sandy), medium (loamy) and heavy (clay) soils. Suitable pH: acid, neutral and basic (alkaline) soils and can grow in very alkaline soils. It cannot grow in the shade. It prefers moist soil. Habitats Cultivated Beds; Edible Uses Edible Parts: Leaves; Seed. Edible Uses: Tea. Leaves - raw or cooked[1, 27, 46, 61].