Contributing to Expanding the Market for Ecocute Residential Heat Pumps

Total Page:16

File Type:pdf, Size:1020Kb

Contributing to Expanding the Market for Ecocute Residential Heat Pumps March 2013 DENSO CORPORATION ・IEnergy Use Rationalization Technology Strategic Energy Conservation Development / Energy Use Rationalization Technology Actualization Development / Size-Reducing Development of a CO2 Heat Pump Hot-Water Supply System using Ejector Technology (FY2005-FY2007) Residential Heat Pumps ‒ Contributing to Expanding the Market for EcoCute Reduction of energy consumed domestically is one of the important issues in measures against global warming including CO2 reduction. In the supply of hot-water, accounting for approximately 30% of the energy consumed domestically, it is believed that installing a heat-pump method EcoCute unit has a great effect on energy conservation. EcoCute units, which have widely spread since 2005, have been aiming to reach a total number of 5.2 million units by 2010. However, an EcoCute equipped with a large volume hot-water storage tank requires a large space in which to be installed, and this had been an issue stalling popularization in urban areas. Fin of heat exchanger Towards promoting the popularization of heat pump hot-water supply systems, NEDO has implemented a project called“Energy Use Rationalization Technology Strategic Development”. Denso Corporation, who was the first to create a CO2 coolant heat pump powered EcoCute system, continued making efforts in reducing the size of CO2 heat pump hot-water supply systems by taking advantage of elemental technologies acquired through the development of such as heat exchangers for vehicles. After finishing the project, a space-saving EcoCute, integrating the hot-water storage tank into a single The installed heat exchanger, an important component that gathers heat within the air to create body with the heat pump unit developed as the hot-water. accumulated result of studies from the project, has been put on the market. Energy conservation and improvement of efficiency is realized by incorporating each of the elemental technologies onto existing models. Through OEM production for major hot-water supply system manufacturers, the system is being sold throughout Japan. EcoCute is also being sold by other household electronic appliance manufacturers, and as of August, 2011, total sales have exceeded 3 million units. DENSO CORPORATION 20 July 2013 Mazda Motor Corporation ・General Technological Development of Innovative Energy Conservation Next-generation Low-emission Vehicles (FY2004-2008) Clean Diesel Engine with the World’s Highest Level Fuel Efficiency and Environmental Performance Diesel engines are capable of efficiently converting burning energy into driving force and are superior to gasoline engines in the fuel efficiency performance. In Japan, hybrid vehicles are currently attracting attention for their high environmental performance including the performance relating to the exhaust gas, energy saving and CO2 emissions reductions. In Europe, however, diesel engine vehicles are very popular because of their high fuel efficiency performance. It is said that one out of every two vehicles in Europe is a diesel engine vehicle. On the other hand, traditional diesel engines emit larger amounts of air pollutants such as NOx (nitrogen oxides) and PM (particulate matters such as soot) than gasoline engines, The piston head part of“SKYACTIV-D” - the shape with the large dent and achieving environmental performance on par with that has made it possible to achieve high fuel efficiency and reduced pollutant emissions at the same time. of gasoline engines by purifying the exhaust gas has required the use of a catalyst that requires a large amount Conceptual diagram of the burning inside the engine of noble metal and large exhaust gas treatment equipment High compression ratio Low compression ratio such as urea SCR equipment. Against this background, NEDO conducted the“General Oxygen Technological Development for Innovative Next-generation Fuel particle Soot Low-emission Vehicles” Project for five years from FY2004 Uneven burning The burning efficiency is with the aim of improving the environmental performance of - The burning efficiency high because the degree of in the thick part is low. unevenness is lower. diesel engines to alleviate global warming and reduce the Burning the fuel after it has been uniformly mixed with air at a low emissions of environmental pollutants. Mazda Motor compression ratio improves the burning efficiency and reduces NOx and Corporation, which is the automobile manufacturer that has soot. been especially conscious of the possibilities of diesel engines among the Japanese automobile manufactures, participated in the project and endeavored to develop a new burning technology that does not compromise the high heat efficiency of diesel engines and to develop innovative catalyst technologies. As a result, Mazda Motor Corporation commercialized in 2012 the“SKYACTIV-D” diesel engine whose fuel efficiency is at the world’s highest level and whose exhaust gas is so clean that no NOx post-treatment equipment is required. This engine is being used in Mazda vehicles such as “ATENZA” and “CX-5,” and the number of SKYACTIV-D-equipped MAZDA vehicles sold (in Japan) by The high fuel efficiency-SKYACTIV-D engine with cleaner exhaust gas. This June 2013 exceeded 50,000, thereby greatly contributing to engine has an RPM range that is as wide as that of a gasoline engine. (photos courtesy of Mazda Motor Corporation) the popularization of diesel engine vehicles, which helps Mazda Motor Corporation reduce greenhouse gas emissions. 21 March 2013 JATCO Ltd. Energy Conservation ・Development of Material Surface Control Technology for Low Friction Loss High Efficiency Drive Machines (FY2002-FY2006) Improving Fuel Efficiency of a Belt CVT by Increasing the Coefficient of Friction With regard to transmission systems of vehicles, CVT (continuously variable transmissions) having driving performance and fuel efficiency superior to conventional staged AT (automatic transmissions) are gaining attention, and as the use of such leads to CO2 reduction, vehicle manufacturers throughout the world have been implementing them on various models. At JATCO LTD. boasting the world’s greatest share for CVT systems, increased fuel efficiency and improved environmental performance have been realized by numerous technological reforms since the 1990’s. However, with regard to“friction” which plays an important role in relaying torque, little was The pulley of a CVT. The coefficient of friction is improved by engraving detailed grooves. known about the mechanism of the phenomenon and it was difficult to be considered upon quantification. During such, NEDO implemented the project of “Development of Material Surface Control Technology for Low Friction Loss High Efficiency Drive Machines”, in which hydraulic equipment and turbine bearings were subject to the project as well as CVT systems. Cooperative studies were conducted by Jatco, Idemitsu Kosan, Kobe Steel, the Tokyo Institute of Technology, and Iwate University with regard to CVT systems, where a 20% improvement of the coefficient of friction between the element and the pulley was Pulley realized. This has been recognized as a remarkable academic result as well. Mechanism of a CVT (Image provided by JATCO Ltd) Subsequently, the elemental technology developed in this project was implemented in the newest “JatcoCVT8”, displaying further improved fuel efficiency and realizing high efficiency. This technology is used in two vehicle models being sold by a major vehicle manufacturer, and total shipments have exceeded 150,000 units. It is expected that models featuring this technology will continue to increase. JATCO Ltd. 22 December 2009 Mitsubishi Fuso Truck and Bus Corporation Energy Conservation ・R&D of Advanced Clean Energy Vehicles (ACE Project) (FY1997‒FY2003) Trucks and Buses Also Follow Hybrid Trends Eco-friendly vehicles that emit fewer greenhouse on the market in 2006 and the Aero Star Eco Hybrid gases and air pollutants are becoming more popular. large route bus was released in 2007. Both exceed As with passenger vehicles, the demand is also Japan’s 2015 fuel efficiency standards for heavy-duty increasing for commercial vehicles such as trucks and vehicles. As of March 2011, more than 1,000 Canter buses which operate on hybrid systems that integrate Eco Hybrid trucks had been sold. With orders now internal combustion engines and electric motors. coming in from Ireland and Australia, these hybrid About 20% of the CO2 emissions in Japan are vehicles are drawing worldwide attention. produced by the transporation sector. Of this percentage, freight vehicles are responsible for up to 35%. If commercial vehicles gradually switch to hybrid models, this will not only reduce CO2 emissions but also help reduce the potential effects of global warming. Hybrid vehicles store energy produced during deceleration̶energy that’s normally discarded in ordinary vehicles̶in storage batteries with the motor serving as the power generator. This energy is reused during acceleration. Not only does this reduce the burden on the engine, it also completely eliminates Engine room of Aero Star Eco Hybrid CO2 and air pollutants that are normally present in exhaust fumes. Through this project, Mitsubishi Fuso Truck and Bus Corporation has developed two hybrid systems: a parallel-type hybrid system for small trucks and a series-type hybrid system for large buses. The Canter Eco Hybrid light-duty truck was released Total engine exhaust (in liters) Conventional buses: Hybrid buses: Mitsubishi Fuso Truck and Bus Corporation Aero Star Eco Hybrid large route bus engine 23 December 2009, March
Recommended publications
  • CO2 Heat Pump Water Heater 2014 Building Technologies Office Peer Review
    CO2 Heat Pump Water Heater 2014 Building Technologies Office Peer Review Evaporator Evaporator Kyle Gluesenkamp, [email protected] Oak Ridge National Laboratory Project Summary Timeline: Key Partners: Start date: Oct 1, 2009 GE Appliances CRADA partner Planned end date: Sep 30, 2015 Key Milestones 1. Optimize wrap-around coil; Dec 2013 2. Achieve EF>2.0; March 2014 Budget: Project Goal: Total DOE $ to date: $2,147k Develop CO2 heat pump water heater that Total future DOE $: $200k meets Energy Star standards for HPWHs at an installed cost that will enable widespread adoption in US residential market. Target Market/Audience: Residential electric water heating 2 Purpose and Objectives Problem Statement: - Heat pump water heaters can save significant energy, however they currently use refrigerants with high GWP. - Low-GWP heat pump water heaters based on CO2 exist, but first cost of existing products is too high to enable widespread adoption in the US residential market. Target Market and Audience: Electric water heaters currently use 1.4 Quads/yr. Impact of Project: - CO2 heat pump water heater at price point viable for the US residential market - Technical potential of increasing EF from 0.92 to 2.0 is savings of 0.8 Quads/yr - Using CO2 as a refrigerant, this can be done with near-zero GWP and zero ODP 3 Approach Approach: Utilize low cost components; maintain Energy Star performance - Single-speed compressor, single expansion device - Optimized wrap-around gas cooler instead of double-wall external gas cooler Key Issues: Cost of CO2
    [Show full text]
  • Energy Savings Potential and RD&D Opportunities for Non-Vapor
    Building Technologies Office Energy Savings Potential and RD&D Opportunities for Non- Vapor-Compression HVAC Technologies March 2014 NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Available electronically at http://www.osti.gov/home/ i Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies Prepared for: U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Office http://www.buildings.energy.gov Prepared by: Navigant Consulting, Inc. 77 South Bedford Street, Suite 400 Burlington, MA 01803 William Goetzler Robert Zogg Jim Young Caitlin Johnson March 2014 ii Acknowledgement We gratefully acknowledge the support of the U.S. Department of Energy (DOE) Building Technology Office (BTO) in funding this assessment. In addition, we greatly appreciate the guidance and input provided by Antonio Bouza, Technology Development Manager at BTO, and technical review by Omar Abdelaziz, Senior Fellow at BTO.
    [Show full text]
  • HIGH TEMPERATURE HEAT PUMPS for the Australian Food Industry: Opportunities Assessment
    HIGH TEMPERATURE HEAT PUMPS for the Australian food industry: Opportunities assessment August 2017 AUTHORSHIP OF THIS REPORT This report is published by the Australian Alliance for Energy Productivity (A2EP). A2EP is an independent, not-for profit coalition of business, government and environmental leaders promoting a more energy productive and less carbon intensive economy. The members of the project team that compiled this report are Jonathan Jutsen (A2EP), Alan Pears (Senior Consultant), Liz Hutton (Project Manager and Researcher). © Australian Alliance for Energy Productivity 2017 This publication is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. ACKNOWLEDGEMENTS A2EP would like to thank the NSW Office of Environment and Heritage with Sustainability Victoria and RMIT University for supporting this work. A2EP would also like to thank the many stakeholders who generously gave their time to provide valuable input and insights in the preparation of this report. A full list of contributors to this report can be found in Appendix A: Heat pump stakeholder contributors. Note: Acknowledgement of this support does not indicate stakeholders’ endorsement of the views expressed in this report. The website www.industrialheatpumps.nl , published by De Kleijn Energy Consultants & Engineers of The Netherlands, is a source of technical information and diagrams contained in this report, and also the front
    [Show full text]
  • Innovating for Green Growth
    Innovating for green growth Drivers of private sector RD&D World Business Council for Sustainable Development 01-44_ARP.indd 1 24.11.2010 13:55:56 Contents Introduction Purpose 3 Framing the challenge 5 Drivers of private sector investment in RD&D 11 How RD&D public policies complement 13 private sector action The role of collaborative RD&D to fill the gaps 16 Cover image: Fuels from Biomass: New Technique Can Fast-Track Better Ionic Liquids for Biomass Pre-Treatments 01-44_ARP.indd 2 24.11.2010 13:56:09 Business Cases Power 20 Alstom global hydropower technology center 22 BASF new process for carbon capture from combustion gases 24 AEP carbon capture and sequestration demonstration project 26 TEPCO integrated coal gasifi cation combined cycle 28 AEP gridSMARTSM demonstration project Transport 30 TNT Dutch consortium for the tender of electric cars 32 TEPCO fast-charging technology for electric vehicles Industry 34 Asahi Glass Co glass melting technology Forestry 36 MeadWestvaco Corporation and Weyerhaeuser wood biofuel Residential 38 TEPCO heat pump water heater 1 2 01-44_ARP.indd 2 24.11.2010 13:56:26 Purpose Purpose By 2050, the world’s population will have increased to The World Business Council for Sustainable Development 9 billion, with most of the growth in developing countries. (WBCSD) has a track record for facilitating collaboration Increasing urbanization and efforts to combat poverty will between companies and promoting best practice sharing. In lead to rapid energy and infrastructure growth demand this publication, WBCSD members share their understanding in these countries. While this offers a huge growth of the environmental challenges at stake and the role of the opportunity for business, it also presents companies with private sector in low-carbon technology research, development the challenge to address the climate change.
    [Show full text]
  • AIR CONDITIONING and HEAT PUMP PRODUCTS
    AIR CONDITIONING and HEAT PUMP PRODUCTS February 2015 The History of Panasonic Air Conditioning The Panasonic Air Conditioning Group has grown into a global company through its continuous quest for product innovations and technology. The group has evolved from manufacturing compressors to providing comprehensive air conditioning solutions. This has earned Panasonic, the reputation as the most trusted brand for superior energy-efficiency and reliable products. Technological Milestones Started production and sales of 1958 1998 Introduced GAS Heater Air Conditioner 14KGS11 1998 Introduced revolutionary Gas Heater Heating Operation Schematic Home Coolers On/Off Valve 2 Compressor The Electrical Appliance Business Group (Kadoma) Air Conditioner 14KGS11. started cooler production in March 1958. Started sales in May under the “Home Cooler” name. 2001 Introduced first VRF “ECO-Multi” to USA That maintains a consistent heating performance level, regardless of how Orice Check Reversing much the ambient temperature goes Unsealed Circuit Valve 2 1961 Started exports of Home Coolers Launched first R410a refrigerant Ductless A/C to USA Valve 2003 down outside. Exchanger Outdoor Heat Launched EcoCute as a result of better On/Off Refrigerant energy-saving technology Valve 1 Heater Launched Room Coolers 1965 Launched accumulator-less, high-efficiency, Burner Check Valve 1 CO2 scroll compressor for EcoCute Indoor Unit Capillary Tube Began production of Multi-split packaged Began development of 1968 air conditioner (mini-VRF) Rotary Compressors Later, their high efficiency and high quality attracted domestic and overseas air conditioner manufactures. 2005 Launched air conditioner Began external sales. automatic filter cleaning 2001 Launched VRF “Eco-Multi” function (AC robot) to the US market.
    [Show full text]
  • Recent Advances in Transcritical CO2 (R744) Heat Pump System: a Review
    energies Review Recent Advances in Transcritical CO2 (R744) Heat Pump System: A Review Rajib Uddin Rony 1, Huojun Yang 1,*, Sumathy Krishnan 1 and Jongchul Song 2 1 College of Engineering, North Dakota State University, Fargo, ND 58108, USA; [email protected] (R.U.R.); [email protected] (S.K.) 2 Architectural Engineering and Construction Science, Kansas State University, Manhattan, KS 66506, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-701-231-7194 Received: 7 January 2019; Accepted: 29 January 2019; Published: 31 January 2019 Abstract: Heat pump (HP) is one of the most energy efficient tools for address heating and possibly cooling needs in buildings. Growing environmental concerns over conventional HP refrigerants, chlorofluorocarbons (CFCs), and hydrofluorocarbons (HFCs) have forced legislators and researchers to look for alternatives. As such, carbon dioxide (R744/CO2) has come to light due to its low global warming potential (GWP) and zero ozone depleting characteristics. Even though CO2 is environmentally benign, the performance of CO2 HP has been of concern since its inception. To improve the performance of CO2 HP, research has been playing a pivotal role in developing functional designs of heat exchangers, expansion devices, and compressors to suit the CO2 transcritical cycle. Different CO2 HP cycles coupled with auxiliary components, hybrid systems, and refrigerant mixtures along with advanced control strategies have been applied and tested. This paper presents a complete overview of the most recent developments of transcritical CO2 HPs, their components, and applications. Keywords: CO2; heat pumps; transcritical cycle; COP 1. Introduction The natural refrigerant CO2 was one of the first refrigerants used in the mechanical refrigeration systems.
    [Show full text]
  • The Next Generation of Refrigerants — Historical Review, Considerations, and Outlook
    FORUM The next generation of refrigerants — Historical review, considerations, and outlook James M. Calm, Engineering Consultant ABSTRACT This article reviews the progression of refrigerants, from early uses to the present, and then addresses future directions and candidates. The article breaks the history into four refrigerant generations based on defining selection criteria. It discusses displacement of earlier working fluids, with successive criteria, and how interest in some early refrigerants re-emerged, for example renewed interest in those now identified as “natural refrigerants.” The paper examines the outlook for current options in the contexts of existing international agreements, including the Montreal and Kyoto Protocols to avert stratospheric ozone depletion and global climate change, respectively. It also examines other environmental concerns and further international and local control measures. The discussion illustrates how isolated attention to individual environmental issues or regulatory requirements, in contrast to coordinated responses to the several issues together, can result in unintended environmental harm that almost certainly will require future reversals. It identifies pending policy and regulatory changes that may impact the next generation of refrigerants significantly. Keywords — refrigerants, environmental impacts, ozone depletion, climate change, global warming, history, status, outlook 1. REFRIGEraNT Jacob Perkins and Richard Trevithick. industrial solvent that Perkins used in his The latter proposed an air-cycle system business as a printer and therefore had PROGRESSION for refrigeration in 1828, but again did available. Refrigeration goes back to ancient not build one. Perkins, however, did times using stored ice, vaporization of so with his invention of the vapor- Figure 1 depicts the progression of water, and other evaporative processes.
    [Show full text]
  • “Ecocute” Residential Natural Refrigerant Heat Pump Water Heaters
    December 19th 2013 The Japan Refrigeration and Air Conditioning Industry Association Heat Pump and Thermal Storage Technology Center of Japan Domestic shipments hit 4 million units for “EcoCute” Residential natural refrigerant heat pump water heaters The Japan Refrigeration and Air Conditioning Industry Association and the Heat Pump and Thermal Storage Technology Center of Japan have been working to promote the use of EcoCute* residential natural refrigerant heat pump water heaters. We are pleased to announce that total shipments of these products exceeded 4 million by the end of October 2013 (4,008,000 units). EcoCute delivers significantly improved energy efficiency with energy-saving heat pump technology that uses thermal energy collected from the surrounding air for heating water, which accounts for about a third of residential energy consumption. Since the introduction of this world-leading product in 2001, their capabilities have been improved based on customer needs, making them more multifunctional, with features such as the ability to support floor heating, and providing more space-saving models. As a result, EcoCute has been extremely popular, with accumulated shipments exceeding 2 million units in October 2009, 3 million in August 2011, and nearly 1 million units more over the next 2 years. We will continue to encourage better energy efficiency by promoting EcoCute, with superior energy-saving performance that is expected to contribute to climate change mitigation. * Electric power companies and water heater manufacturers use the term “EcoCute” to refer to natural refrigerant oxygen heat pump water heaters. Contact: Heat Pump & Thermal Storage Technology Center of Japan Hulic Kakigaracho BLDG 6F 1-28-5 Nihonbashi Kakigara-cho Chuo-ku, Tokyo 103-0014, Japan Tel: +81-3-5643-2416 Fax: +81-3-5641-4501 1.
    [Show full text]
  • The Next Generation of Refrigerants – Historical Review, 5 Considerations, and Outlook
    international journal of refrigeration 31 (2008) 1123–1133 available at www.sciencedirect.com www.iifiir.org journal homepage: www.elsevier.com/locate/ijrefrig Review The next generation of refrigerants – Historical review, 5 considerations, and outlook James M. Calm* Engineering Consultant, 10887 Woodleaf Lane, Great Falls, VA 22066-3003, USA article info abstract Article history: This article reviews the progression of refrigerants, from early uses to the present, and Received 23 August 2007 then addresses future directions and candidates. The article breaks the history into four Received in revised form refrigerant generations based on defining selection criteria. It discusses displacement of 18 December 2007 earlier working fluids, with successive criteria, and how interest in some early refrigerants Accepted 6 January 2008 re-emerged, for example renewed interest in those now identified as ‘‘natural refrigerants.’’ Published online 10 February 2008 The paper examines the outlook for current options in the contexts of existing interna- tional agreements, including the Montreal and Kyoto Protocols to avert stratospheric ozone Keywords: depletion and global climate change, respectively. It also examines other environmental Refrigerant concerns and further international and local control measures. The discussion illustrates Outlook how isolated attention to individual environmental issues or regulatory requirements, in Background contrast to coordinated responses to the several issues together, can result in unintended History environmental
    [Show full text]
  • Saving Energy with Ammonia/Co
    SEPTEMBER 2016 ADVANCING HVAC&R NATURALLY AMERICA Lineage Oversees 46 Low-Charge NH3 Rooftop Units p. 42 Delhaize's Global NatRef Program p. 48 Keith Milligan, JTM Corp. (Piggly Wiggly) Devising Incentives p. 32 For NatRefs in the Pacific Northwest p. 56 SAVING ENERGY WITH AMMONIA/CO2 /Editor's note/ Editor’s note by Michael Garry CHALLENGING THE STATUS QUO here are many reasons why I enjoy covering the natural Another novel refrigeration design, believed to be unique in the Trefrigerants industry. First and foremost, I believe natural world, is the low-charge ammonia system that is just about refrigerant HVAC&R technology is the best replacement for installed on the rooftop of a 248,000-square-foot Baker Cold halocarbon refrigerant systems that harm the ozone layer and/or Storage warehouse in Long Beach, Calif. (page 42). This system, contribute significantly to global warming. which is being managed by another cold-storage operator, Lineage Logistics, comprises no less than 46 NXTCOLD low- But another very exciting aspect of this industry is the almost charge units, which will serve applications ranging from cold non-stop development of innovative natural refrigerant systems storage and blast freezers to railroad/truck docks and produce that are disrupting the marketplace and offering a myriad of new repacking. Rather than the 22,000 lbs. of ammonia originally options to end users. slated for this building, the system contains just 496 pounds for 1,015 TR. In this issue, we have several examples of eye-catching innovation. For example, our cover story (page 32) tells the story Also in this issue we have articles on two refrigeration systems of JTM Corp., a Piggly Wiggly franchise operator, that installed that have yet to hit the marketplace.
    [Show full text]
  • A Review of Carbon Dioxide As a Refrigerant in Refrigeration Technology
    Review Article Carbon dioxide as a refrigerant Page 1 of 10 A review of carbon dioxide as a refrigerant in AUTHORS: refrigeration technology Paul Maina1,2 Zhongjie Huan1 Tough environmental laws and stringent government policies have revolutionised the refrigeration sector, AFFILIATIONS: especially concerning the cycle fluid known as the refrigerant. It has been observed that only natural 1 Department of Mechanical refrigerants are environmentally benign. When other refrigerant qualities are considered, especially those Engineering, Tshwane University of Technology, Pretoria, South relating to toxicity and flammability, carbon dioxide emerges as the best among the natural refrigerants. Africa However, carbon dioxide based refrigerants are not without drawbacks. Even though the use of R744 – 2Department of Mechanical a carbon dioxide based refrigerant gas – has solved the direct effect of emissions on the environment, Engineering, Moi University, studies to investigate the indirect effects of these systems are needed. Improvement in existing technical Eldoret, Rift Valley, Kenya solutions and the formulation of additional solutions to existing R744 refrigeration problems is paramount if this technology is to be accepted by all, especially in areas with warm climates. National policies geared to CORRESPONDENCE TO: Paul Maina green technologies are important to clear the way and provide support for these technologies. It is clear that carbon dioxide is one of the best refrigerants and as environmental regulations become more intense, it will EMAIL: be the ultimate refrigerant of the future. [email protected] POSTAL ADDRESS: Introduction Department of Mechanical Engineering, Tshwane University Most refrigerators use a liquefiable vapour to transfer heat. This fluid is known as the refrigerant.
    [Show full text]
  • Messages from Modern Inventors to the Next Generation 1. Ecocute, A
    Messages from Modern Inventors to the Next Generation Season 2 1. EcoCute, a water heater using atmospheric heat - Mr. Hisayoshi Sakakibara, Climate, Cooling & Heating Product Division Specific Development Center, Denso Corporation Due to the significantly serious issue of global warming, environmental concerns have been increasing, and we have been flooded with environmentally friendly “eco goods.” EcoCute is one of these environmentally friendly products. The name is formed by combining “eco” from the words “ecology” and “economy” with the Japanese word “給湯” which can be pronounced “kyuto” (sounds like “cute”) but literally means hot-water supply. This first relay message of Season 2 was created by Mr. Sakakibara of Denso Corporation. He tells you what motivated him to develop EcoCute as well as some of his tough experiences in developing the product. Introduction of the product/technology Do you know how much energy is needed to boil water which is used when taking a bath or a shower and doing many daily chores? In fact, one third of the total amount of energy used in a standard home per day for air conditioning, television, lighting, etc. is used only to boil water. The “EcoCute” I am introducing here is an energy-saving water heater which is capable of boiling water by using heat and a small amount of electricity contained in the surrounding air. With its high-performance function, EcoCute has recently been attracting a great deal of attention as an effective apparatus for combating global warming, which is one of the most serious issues in recent years. What inspired you to invent or develop the product/technology? I started developing an “EcoCute” system in 1997 when the Kyoto Conference on the Prevention of Global Warming was held and the world began to pay more attention to technology to save energy and prevent global warming.
    [Show full text]