Dynamic Pressure Calibration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CHAPTER TWO - Static Aeroelasticity – Unswept Wing Structural Loads and Performance 21 2.1 Background
Static aeroelasticity – structural loads and performance CHAPTER TWO - Static Aeroelasticity – Unswept wing structural loads and performance 21 2.1 Background ........................................................................................................................... 21 2.1.2 Scope and purpose ....................................................................................................................... 21 2.1.2 The structures enterprise and its relation to aeroelasticity ............................................................ 22 2.1.3 The evolution of aircraft wing structures-form follows function ................................................ 24 2.2 Analytical modeling............................................................................................................... 30 2.2.1 The typical section, the flying door and Rayleigh-Ritz idealizations ................................................ 31 2.2.2 – Functional diagrams and operators – modeling the aeroelastic feedback process ....................... 33 2.3 Matrix structural analysis – stiffness matrices and strain energy .......................................... 34 2.4 An example - Construction of a structural stiffness matrix – the shear center concept ........ 38 2.5 Subsonic aerodynamics - fundamentals ................................................................................ 40 2.5.1 Reference points – the center of pressure..................................................................................... 44 2.5.2 A different -
Pressure Calibration
Pressure Calibration APPLICATIONS AND SOLUTIONS INTRODUCTION Process pressure devices provide critical process measurement information to process plant’s control systems. The performance of process pressure instruments are often critical to optimizing operation of the plant or proper functioning of the plant’s safety systems. Process pressure instruments are often installed in harsh operating environments causing their performance to shift or change over time. To keep these devices operating within expected limits requires periodic verification, maintenance and calibration. There is no one size fits all pressure test tool that meets the requirements of all users performing pressure instrument maintenance. This brochure illustrates a number of methods and differentiated tools for calibrating and testing the most common process pressure instruments. APPLICATION SELECTION GUIDE Dead- 721/ 719 weight Model number 754 721Ex Pro 719 718 717 700G 3130 2700G Testers Application Calibrating pressure transmitters • • Ideal • • • • (field) Calibrating pressure transmitters • • • • • • Ideal • (bench) Calibrating HART Smart transmitters Ideal Documenting pressure transmitter Ideal calibrations Testing pressure switches Ideal • • • • • • in the field Testing pressure switches • • • • • • Ideal on the bench Documenting pressure switch tests Ideal Testing pressure switches Ideal with live (voltage) contacts Gas custody transfer computer tests • Ideal • Verifying process pressure gauges Ideal • • • • • • (field) Verifying process pressure gauges • • • • • • • • Ideal (bench) Logging pressure measurements • Ideal • Testing pressure devices Ideal using a reference gauge Hydrostatic vessel testing Ideal Leak testing • Ideal (pressure measurement logging) Products noted as “Ideal” are those best suited to a specific task. Model 754 requires the correct range 750P pressure module for pressure testing. Model 753 can be used for the same applications as model 754 except for HART device calibration. -
Role of Measurement and Calibration in the Manufacture of Products for the Global Market a Guide for Small and Medium-Sized Enterprises
Working paper Role of measurement and calibration in the manufacture of products for the global market A guide for small and medium-sized enterprises UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Role of measurement and calibration in the manufacture of products for the global market A guide for small and medium-sized enterprises Working paper UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna, 2006 This publication is one of a series of guides resulting from the work of the United Nations Industrial Development Organization (UNIDO) under its project entitled “Market access and trade facilitation support for South Asian least developed countries, through strengthening institutional and national capacities related to standards, metrology, testing and quality” (US/RAS/03/043 and TF/RAS/03/001). It is based on the work of UNIDO consultant S. C. Arora. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of UNIDO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The opinions, fig- ures and estimates set forth are the responsibility of the authors and should not necessarily be considered as reflect- ing the views or carrying the endorsement of UNIDO. The mention of firm names or commercial products does not imply endorsement by UNIDO. PREFACE In the globalized marketplace following the creation of the World Trade Organization, a key challenge facing developing countries is a lack of national capacity to overcome technical bar- riers to trade and to comply with the requirements of agreements on sanitary and phytosani- tary conditions, which are now basic prerequisites for market access embedded in the global trading system. -
Upwind Sail Aerodynamics : a RANS Numerical Investigation Validated with Wind Tunnel Pressure Measurements I.M Viola, Patrick Bot, M
Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements I.M Viola, Patrick Bot, M. Riotte To cite this version: I.M Viola, Patrick Bot, M. Riotte. Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements. International Journal of Heat and Fluid Flow, Elsevier, 2012, 39, pp.90-101. 10.1016/j.ijheatfluidflow.2012.10.004. hal-01071323 HAL Id: hal-01071323 https://hal.archives-ouvertes.fr/hal-01071323 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. I.M. Viola, P. Bot, M. Riotte Upwind Sail Aerodynamics: a RANS numerical investigation validated with wind tunnel pressure measurements International Journal of Heat and Fluid Flow 39 (2013) 90–101 http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.10.004 Keywords: sail aerodynamics, CFD, RANS, yacht, laminar separation bubble, viscous drag. Abstract The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using Computational Fluid Dynamics. A Reynolds-averaged Navier- Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where the pressure distributions on the sails were measured. -
Introduction
CHAPTER 1 Introduction "For some years I have been afflicted with the belief that flight is possible to man." Wilbur Wright, May 13, 1900 1.1 ATMOSPHERIC FLIGHT MECHANICS Atmospheric flight mechanics is a broad heading that encompasses three major disciplines; namely, performance, flight dynamics, and aeroelasticity. In the past each of these subjects was treated independently of the others. However, because of the structural flexibility of modern airplanes, the interplay among the disciplines no longer can be ignored. For example, if the flight loads cause significant structural deformation of the aircraft, one can expect changes in the airplane's aerodynamic and stability characteristics that will influence its performance and dynamic behavior. Airplane performance deals with the determination of performance character- istics such as range, endurance, rate of climb, and takeoff and landing distance as well as flight path optimization. To evaluate these performance characteristics, one normally treats the airplane as a point mass acted on by gravity, lift, drag, and thrust. The accuracy of the performance calculations depends on how accurately the lift, drag, and thrust can be determined. Flight dynamics is concerned with the motion of an airplane due to internally or externally generated disturbances. We particularly are interested in the vehicle's stability and control capabilities. To describe adequately the rigid-body motion of an airplane one needs to consider the complete equations of motion with six degrees of freedom. Again, this will require accurate estimates of the aerodynamic forces and moments acting on the airplane. The final subject included under the heading of atmospheric flight mechanics is aeroelasticity. -
How Do Airplanes
AIAA AEROSPACE M ICRO-LESSON Easily digestible Aerospace Principles revealed for K-12 Students and Educators. These lessons will be sent on a bi-weekly basis and allow grade-level focused learning. - AIAA STEM K-12 Committee. How Do Airplanes Fly? Airplanes – from airliners to fighter jets and just about everything in between – are such a normal part of life in the 21st century that we take them for granted. Yet even today, over a century after the Wright Brothers’ first flights, many people don’t know the science of how airplanes fly. It’s simple, really – it’s all about managing airflow and using something called Bernoulli’s principle. GRADES K-2 Do you know what part of an airplane lets it fly? The answer is the wings. As air flows over the wings, it pulls the whole airplane upward. This may sound strange, but think of the way the sail on a sailboat catches the wind to move the boat forward. The way an airplane wing works is not so different. Airplane wings have a special shape which you can see by looking at it from the side; this shape is called an airfoil. The airfoil creates high-pressure air underneath the wing and low-pressure air above the wing; this is like blowing on the bottom of the wing and sucking upwards on the top of the wing at the same time. As long as there is air flowing over the wings, they produce lift which can hold the airplane up. You can have your students demonstrate this idea (called Bernoulli’s Principle) using nothing more than a sheet of paper and your mouth. -
Calibration and MSA – a Practical Approach to Implementation
Calibration and Measurement Systems Analysis - A Practical Approach to Implementation - By Marc Schaeffers Calibration and Measurement Systems Analysis INTRODUCTION The Advanced Product Quality Planning (APQP) process is becoming standard practice in more and more industries. In the graph below you see the steps and requirements shown for the Aerospace industry, but a similar picture can be shown for automotive or other industries. 2 An important step which is often overlooked is the measurement systems analysis (MSA) step. In principle, it is a very easy and logical step. Skipping this step can result in costly mistakes and loss of time spent on root cause analysis. We are not saying solving measurement problems is easy, only that checking if your measurements systems are adequate is not so complicated or costly activity to implement. In this document, DataLyzer will give you some brief introduction in calibration and MSA and provide some guidelines about how you can easily implement calibration and measurement systems analysis. CALIBRATION Before we can even start to perform measurements or an MSA study, we need to have a calibrated measurement system. The calibration process has 2 purposes: 1. Make sure the measurement system is adequate to perform future measurements 2. Evaluate if the measurements performed in the past are correct (establish bias). Calibration costs can be high. If the purpose of calibration would only be to ensure future measurements are ok, then we could also use a new instrument instead of calibrating the existing instrument. Calibration however is needed to give us confidence that past measurements were reliable and statements about the quality of the products shipped were correct. -
Nanotechnology Standards and Applications Read-Ahead Material
Global Summit on Regulatory Science1 (GSRS16) Nanotechnology Standards and Applications Read-Ahead Material Contents Regulatory Agency Guidance Documents ……………………………………….……..……………………….…. 2 US Food and Drug Administration (US FDA) Australian Pesticides and Veterinary Medicines Authority (APVMA, Australia) Ministry of Health, Labour and Welfare (MHLW, Japan) European Food Safety Authority (EFSA, European Union, EU) European Chemicals Agency (ECHA, EU) European Medicines Agency (EMA, EU) European Council (EC, EU) European Commission Scientific Committees (EU) European Commission Joint Research Centre (JRC, EU) Guidance Documents from Other Organizations ………………………………………………..….…………… 7 OECD Working Party on Manufactured Nanomaterials (WPMN) ICCR (International Co-operation of Cosmetics Regulation) Documentary Standards ……………………………………………………………………………………...……………. 8 International Organization for Standardization (ISO) ASTM International European Committee for Standardization (CEN, EU) Publicly Available Protocols ……………………………………………………………………………………………… 20 National Cancer Institute/Nanotechnology Characterization Laboratory (NCI/NCL, US) (some developed jointly with NIST) National Institute of Standards and Technology (NIST, US) Nanoscale Reference Materials ……………………………………….……………………………………………….. 25 1 http://www.fda.gov/AboutFDA/CentersOffices/OC/OfficeofScientificandMedicalPrograms/NCTR/WhatWeDo/ucm289679.htm. The Global Summit on Regulatory Science (GSRS) is an international conference for discussion of innovative technologies and partnerships to enhance -
Introduction to Aerospace Engineering
Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Introduction to Aerospace Engineering Aerodynamics 11&12 Prof. H. Bijl ir. N. Timmer 11 & 12. Airfoils and finite wings Anderson 5.9 – end of chapter 5 excl. 5.19 Topics lecture 11 & 12 • Pressure distributions and lift • Finite wings • Swept wings 3 Pressure coefficient Typical example Definition of pressure coefficient : p − p -Cp = ∞ Cp q∞ upper side lower side -1.0 Stagnation point: p=p t … p t-p∞=q ∞ => C p=1 4 Example 5.6 • The pressure on a point on the wing of an airplane is 7.58x10 4 N/m2. The airplane is flying with a velocity of 70 m/s at conditions associated with standard altitude of 2000m. Calculate the pressure coefficient at this point on the wing 4 2 3 2000 m: p ∞=7.95.10 N/m ρ∞=1.0066 kg/m − = p p ∞ = − C p Cp 1.50 q∞ 5 Obtaining lift from pressure distribution leading edge θ V∞ trailing edge s p ds dy θ dx = ds cos θ 6 Obtaining lift from pressure distribution TE TE Normal force per meter span: = θ − θ N ∫ pl cos ds ∫ pu cos ds LE LE c c θ = = − with ds cos dx N ∫ pl dx ∫ pu dx 0 0 NN Write dimensionless force coefficient : C = = n 1 ρ 2 2 Vc∞ qc ∞ 1 1 p − p x 1 p − p x x = l ∞ − u ∞ C = ()C −C d Cn d d n ∫ pl pu ∫ q c ∫ q c 0 ∞ 0 ∞ 0 c 7 T=Lsin α - Dcosα N=Lcos α + Dsinα L R N α T D V α = angle of attack 8 Obtaining lift from normal force coefficient =α − α =α − α L Ncos T sin cl c ncos c t sin L N T =cosα − sin α qc∞ qc ∞ qc ∞ For small angle of attack α≤5o : cos α ≈ 1, sin α ≈ 0 1 1 C≈() CCdx − () l∫ pl p u c 0 9 Example 5.11 Consider an airfoil with chord length c and the running distance x measured along the chord. -
Activities on Dynamic Pressure
Activities on Dynamic Pressure Sari Saxholm Madrid and Tres Cantos, Spain 15 – 18 May 2017 Dynamic Measurements • Dynamic measurements are widely performed as a part of process control, manufacturing, product testing, research and development activities • Measurements of dynamic pressure have especially a key role in several demanding applications, e.g., in automotive, marine and turbine engines • However, if the sensors are calibrated with static techniques the sensor behavior and reliability of measurement results cannot be ensured in dynamically changing conditions • To guarantee the reliability of results there is the need of traceable methods for dynamic characterization of sensors 2 11th EURAMET General Assembly - 15 - 18 May 2017 EMRP IND09 Dynamic • This EMRP Project (Traceable dynamic measurement of mechanical quantities) was an unique opportunity to develop a new field of metrology • The aim was to develop devices and methods to provide traceability for dynamic measurements of the mechanical quantities force, torque, and pressure • Measurement standards were successfully developed for dynamic pressures for limited range Development work has continued after this EMRP Project: because the awareness of dynamic measurements, and challenges related with the traceability issues, has increased. 3 11th EURAMET General Assembly - 15 - 18 May 2017 Industry Needs • To cover, e.g., the motor industry measurement range better • To investigate the effects of pressure pulse frequency and shape • To investigate the effects of measuring media -
GMP 11 Assignment and Adjustment of Calibration Intervals For
GMP 11 Good Measurement Practice for Assignment and Adjustment of Calibration Intervals for Laboratory Standards 1 Introduction Purpose This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.6969 Measurement processes are dynamic systems and often deteriorate with time or use. The design of a calibration program is incomplete without some established means of determining how often to calibrate instruments and standards. A calibration performed only once establishes a one-time reference of uncertainty. Periodic recalibration detects uncertainty growth, serves to reset values while keeping a bound on the limits of errors and minimizes the risk of producing poor measurement results. A properly selected interval assures that an item will be recalibrated at the proper time. Proper calibration intervals allow specified confidence intervals to be selected and they support evidence of metrological traceability. The following practice establishes calibration intervals for standards and instrumentation used in measurement processes. Note: This Good Measurement Practice provides a baseline for documenting calibration intervals. This GMP is a template that must be modified beyond Section 4.1 to match the scope1 and specific measurement parameters and applications in each laboratory. Legal requirements for calibration intervals may be used to supplement this procedure but are generally established as a maximum limit assuming no evidence of problematic data. For legal metrology (weights and measures) laboratories, no calibration interval may exceed 10 years without exceptional analysis of laboratory measurement assurance data. Associated analyses may include a detailed technical and statistical assessment of historical calibration data, control charts, check standards, internal verification assessments, demonstration of ongoing stability through multiple proficiency tests, and/or other analyses to unquestionably demonstrate adequate stability of the standards for the prescribed interval. -
A New Dynamic Pressure Source for the Calibration of Pressure Transducers
NBS Pubii - cations eferenc© sssfc in NBS TECHNICAL NOTE 914 *J *^AU Of U.S. DEPARTMENT OF COMMERCE/ National Bureau of Standards NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, the Office of Radiation Measurement and the following Center and divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research: Nuclear Sciences; Applied Radiation — Laboratory Astrophysics 2 2 " 2 — Cryogenics — Electromagnetics — Time and Frequency . THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials.