Wild Bee Diversity Increases with Local Fire Severity in a Fire‐Prone Landscape

Total Page:16

File Type:pdf, Size:1020Kb

Wild Bee Diversity Increases with Local Fire Severity in a Fire‐Prone Landscape Utah State University DigitalCommons@USU All PIRU Publications Pollinating Insects Research Unit 4-3-2019 Wild Bee Diversity Increases With Local Fire Severity in a Fire‐Prone Landscape Sara M. Galbraith Oregon State University James H. Cane Utah State University Andrew R. Moldenke Oregon State University James W. Rivers Oregon State University Follow this and additional works at: https://digitalcommons.usu.edu/piru_pubs Part of the Biology Commons Recommended Citation Galbraith, S. M., Cane, J. H., Moldenke, A. R., and Rivers, J. W.. 2019. Wild bee diversity increases with local fire severity in a fire‐prone landscape. Ecosphere 10(4):e02668. 10.1002/ecs2.2668 This Article is brought to you for free and open access by the Pollinating Insects Research Unit at DigitalCommons@USU. It has been accepted for inclusion in All PIRU Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Wild bee diversity increases with local fire severity in a fire-prone landscape 1, 2 3 1 SARA M. GALBRAITH , JAMES H. CANE, ANDREW R. MOLDENKE, AND JAMES W. RIVERS 1Department of Forest Ecosystems and Society, 321 Richardson Hall, Oregon State University, Corvallis, Oregon 97331 USA 2USDA-ARS Pollinating Insects Research Unit, BNR 257 Old Main Hill, Utah State University, Logan, Utah 84322 USA 3Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, Oregon 97331 USA Citation: Galbraith, S. M., J. H. Cane, A. R. Moldenke, and J. W. Rivers. 2019. Wild bee diversity increases with local fire severity in a fire-prone landscape. Ecosphere 10(4):e02668. 10.1002/ecs2.2668 Abstract. As wildfire activity increases in many regions of the world, it is imperative that we understand how key components of fire-prone ecosystems respond to spatial variation in fire characteristics. Pollina- tors provide a foundation for ecological communities by assisting in the reproduction of native plants, yet our understanding of how pollinators such as wild bees respond to variation in fire severity is limited, particularly for forest ecosystems. Here, we took advantage of a natural experiment created by a large- scale, mixed-severity wildfire to provide the first assessment of how wild bee communities are shaped by fire severity in mixed-conifer forest. We sampled bees in the Douglas Fire Complex, a 19,000-ha fire in southern Oregon, USA, to evaluate how bee communities responded to local-scale fire severity. We found that fire severity served a strong driver of bee diversity: 20 times more individuals and 11 times more species were captured in areas that experienced high fire severity relative to areas with the lowest fire severity. In addition, we found pronounced seasonality in the local bee community, with more individuals and more species captured during late summer, especially in severely burned regions of the landscape. Two critical habitat components for maintaining bee populations—flowering plants and boring insect exit holes used by cavity-nesting bees—also increased with fire severity. Although we detected shifts in the rel- ative abundance of several bee and plant genera along the fire severity gradient, the two most abundant bee genera (Bombus and Halictus) responded positively to high fire severity despite differences in their typi- cal foraging ranges. Our study demonstrates that within a large wildfire mosaic, severely burned forest contained the most diverse wild bee communities. This finding has particularly important implications for biodiversity in fire-prone areas given the expected expansion of wildfires in the coming decades. Key words: Apoidea; bees; fire severity; managed forest; mixed-conifer forest; pollinators; relative differenced normalized burn ratio; wildfire. Received 21 December 2018; revised 21 February 2019; accepted 25 February 2019. Corresponding Editor: T’ai Roulston. Copyright: © 2019 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. E-mail: [email protected] INTRODUCTION (Biesmeijer et al. 2006, Brosi and Briggs 2013), with implications for flowering plant diversity as Animal pollinators play a critical role in main- well as the broader ecological communities that taining biodiversity in natural and managed sys- depend on flowering plants as critical habitat fea- tems, with most of the world’s flowering plants tures. In addition to promoting and maintaining either requiring or benefitting from pollination biodiversity, an estimated 70% of global crops services for reproduction (Ollerton et al. 2011). used for human consumption are enhanced by Changes in animal pollinator populations can pollination services (Klein et al. 2007), valued at drive changes in wild plant persistence €153 billion annually (Gallai et al. 2009). ❖ www.esajournals.org 1 April 2019 ❖ Volume 10(4) ❖ Article e02668 GALBRAITH ET AL. Concerns remain high regarding the economic canopy, and exposes mineral soil; in turn, this is and ecological consequences of long-term popula- likely to shift communities back to the early tion declines of pollinators (Pollinator Health Task successional pre-forest stage. In contrast, low- Force 2015, IPBES 2016), yet we lack a founda- severity fires only burn the most flammable fuels tional understanding of wild pollinator population and often have little influence on tree mortality dynamics in many natural and human-dominated (Perry et al. 2011). In fire-adapted forests, many ecosystems (Bartomeus et al. 2018). understory plant species have adaptive strategies Understanding how ecological communities that allow them to compete after canopy and/or respond to large-scale disturbances is a critical duff cover is reduced by severe fire (Bond and topic for successful pollinator conservation, espe- van Wilgen 1996). Although fire severity influ- cially as many disturbance regimes shift world- ences the composition of understory plant com- wide (Turner 2010). Wildfire is a natural munities by selectively influencing recruitment disturbance agent that plays a key role in shap- (Bond and van Wilgen 1996), severe wildfires are ing many terrestrial ecosystems (DeBano et al. followed by a temporary increase in plant species 1998, Pyne et al. 1996, Bowman et al. 2009), and richness and forb cover in fire-adapted regions it can enhance biodiversity via increases in habi- due to reduced light competition (Keeley 1987, tat heterogeneity and reductions in species domi- Keeley et al. 2003, Huisinga et al. 2005). The dif- nance (Bond and van Wilgen 1996, Pyne et al. ferences in post-wildfire habitats caused by vari- 1996, DeBano et al. 1998). Historical wildfire ation in fire severity, in turn, are expected to have regimes have shifted markedly due to extensive important consequences for local pollinator com- suppression efforts of the past (Bowman et al. munities. 2009), and global climate change has led to alter- Nevertheless, nearly all studies examining ations in the frequency, severity, and extent of post-fire responses of pollinators in forest ecosys- wildfire (Westerling et al. 2006, Miller et al. 2009, tems to date have either used limited-severity Flannigan et al. 2013, Jolly et al. 2015). In the prescribed fire (Campbell et al. 2007, Rubene western United States, the average wildfire sea- et al. 2015, Rodrıguez and Kouki 2017) or have son length increased 64% between the periods of focused on small fires (Potts et al. 2003, Bogusch 1970–1986 and 1986–2003 (Westerling et al. et al. 2014, Lazarina et al. 2017), both of which 2006), and total burn area has increased at a rate are unrepresentative of the mosaic of fire severity of 355 km2 per year (Dennison et al. 2014). Fire that is typical of contemporary wildfires in many activity is projected to continue to change rapidly regions of the world (Strauss et al. 1989, Stocks in the coming decades, potentially faster than et al. 2002, Lentile et al. 2005, Halofsky et al. many terrestrial species’ ability to accommodate 2011). The lone exception is a recent study that (Krawchuk et al. 2009). Given these ongoing investigated the influence of the diversity of fire changes, a stronger understanding of how wild- histories (pyrodiversity) on pollinators after a fire characteristics influence biodiversity is criti- mixed-severity fire in forest/scrub habitat (Poni- cal, and this is particularly true for pollinators sio et al. 2016), and researchers found positive inhabiting fire-prone landscapes. effects of pyrodiversity on pollinators only Despite the important and changing role of within plots that burned at low to moderate fire wildfire in most biomes, we have a poor under- severity (Ponisio et al. 2016). Given that high- standing of how characteristics of fire influence severity wildfires are expected to have stronger pollinator diversity within forest ecosystems effects on pollinator habitat (i.e., increased flow- (Koltz et al. 2018, Rivers et al. 2018a). Fire sever- ering plant abundance) than low-severity wild- ity is an important characteristic of wildfire that fires as outlined above, additional research is is measured by the amount of change in organic needed to understand the response of pollinator matter due to burning (Keeley 2009), and wild- communities and their habitat to local fire sever- fires can have markedly different effects on eco- ity itself. Furthermore, because pollinators play a logical communities depending on the degree of fundamental role in maintaining plant popula- fire severity. For example, high-severity fire typi- tions that serve as the basis for terrestrial food cally acts as a stand-replacing event that kills webs (Kearns and Inouye 1997), understanding dominant overstory trees, removes the forest pollinator response to wildfire will help us ❖ www.esajournals.org 2 April 2019 ❖ Volume 10(4) ❖ Article e02668 GALBRAITH ET AL. predict broader ecological shifts as wildfire activ- estimated 14.5 yr pre-settlement, lengthening to ity continues to increase in many regions of the 21.8 yr during a century of active fire suppres- world (Jolly et al.
Recommended publications
  • Floral Guilds of Bees in Sagebrush Steppe: Comparing Bee Usage Of
    ABSTRACT: Healthy plant communities of the American sagebrush steppe consist of mostly wind-polli- • nated shrubs and grasses interspersed with a diverse mix of mostly spring-blooming, herbaceous perennial wildflowers. Native, nonsocial bees are their common floral visitors, but their floral associations and abundances are poorly known. Extrapolating from the few available pollination studies, bees are the primary pollinators needed for seed production. Bees, therefore, will underpin the success of ambitious seeding efforts to restore native forbs to impoverished sagebrush steppe communities following vast Floral Guilds of wildfires. This study quantitatively characterized the floral guilds of 17 prevalent wildflower species of the Great Basin that are, or could be, available for restoration seed mixes. More than 3800 bees repre- senting >170 species were sampled from >35,000 plants. Species of Osmia, Andrena, Bombus, Eucera, Bees in Sagebrush Halictus, and Lasioglossum bees prevailed. The most thoroughly collected floral guilds, at Balsamorhiza sagittata and Astragalus filipes, comprised 76 and 85 native bee species, respectively. Pollen-specialists Steppe: Comparing dominated guilds at Lomatium dissectum, Penstemon speciosus, and several congenerics. In contrast, the two native wildflowers used most often in sagebrush steppe seeding mixes—Achillea millefolium and Linum lewisii—attracted the fewest bees, most of them unimportant in the other floral guilds. Suc- Bee Usage of cessfully seeding more of the other wildflowers studied here would greatly improve degraded sagebrush Wildflowers steppe for its diverse native bee communities. Index terms: Apoidea, Asteraceae, Great Basin, oligolecty, restoration Available for Postfire INTRODUCTION twice a decade (Whisenant 1990). Massive Restoration wildfires are burning record acreages of the The American sagebrush steppe grows American West; two fires in 2007 together across the basins and foothills over much burned >500,000 ha of shrub-steppe and 1,3 James H.
    [Show full text]
  • EFFECTS of LAND USE on NATIVE BEE DIVERSITY Byron
    THE BEES OF THE AMERICAN AND COSUMNES RIVERS IN SACRAMENTO COUNTY, CALIFORNIA: EFFECTS OF LAND USE ON NATIVE BEE DIVERSITY Byron Love B.S., California State University, Humboldt, 2003 THESIS Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in BIOLOGICAL SCIENCES (Biological Conservation) at CALIFORNIA STATE UNIVERSITY, SACRAMENTO SUMMER 2010 © 2010 Byron Love ALL RIGHTS RESERVED ii THE BEES OF THE AMERICAN AND COSUMNES RIVERS IN SACRAMENTO COUNTY, CALIFORNIA: EFFECTS OF LAND USE ON NATIVE BEE DIVERSITY A Thesis by Byron Love Approved by: __________________________________, Committee Chair Dr. Shannon Datwyler __________________________________, Second Reader Dr. Patrick Foley __________________________________, Third Reader Dr. Jamie Kneitel __________________________________, Fourth Reader Dr. James W. Baxter Date:____________________ iii Student: Byron Love I certify that this student has met the requirements for format contained in the University format manual, and that this thesis is suitable for shelving in the Library and credit is to be awarded for the thesis. ______________________,Graduate Coordinator _________________ Dr. James W. Baxter Date Department of Biological Sciences iv Abstract of THE BEES OF THE AMERICAN AND COSUMNES RIVERS IN SACRAMENTO COUNTY, CALIFORNIA: EFFECTS OF LAND USE ON NATIVE BEE DIVERSITY by Byron Love A survey of the bees in semi-natural habitat along the American and Cosumnes rivers in Sacramento County, California, was conducted during the flower season of 2007. Although the highly modified landscapes surrounding the two rivers is distinctly different, with urban and suburban development dominant along the American River, and agriculture along the Cosumnes River, there is no difference in the proportion of modified landscape between the two rivers.
    [Show full text]
  • The Role of Fire in Shaping Pollinator Communities: a Post Burn
    THE ROLE OF FIRE IN SHAPING POLLINATOR COMMUNITIES: A POST BURN ANALYSIS OF BEES IN SERPENTINE HABITAT HUMBOLDT STATE UNIVERSITY By Sheilah Lillie A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Master of Arts In Biological Sciences May 2011 THE ROLE OF FIRE IN SHAPING POLLINATOR COMMUNITIES: A POST BURN ANALYSIS OF BEES IN SERPENTINE HABITAT By Sheilah Lillie “We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Arts.” Approved by the Master’s Thesis Committee: ________________________________________________________________________ Erik S. Jules, Major Professor Date ________________________________________________________________________ Michael R. Mesler, Committee Member Date ________________________________________________________________________ Michael A. Camann, Committee Member Date ________________________________________________________________________ Gregory M. Crutsinger, Committee Member Date ________________________________________________________________________ Michael R. Mesler, Graduate Coordinator Date ________________________________________________________________________ Dr. Jená Burges, Vice Provost Date ABSTRACT THE ROLE OF FIRE IN SHAPING POLLINATOR COMMUNITIES: A POST BURN ANALYSIS OF BEES IN SERPENTINE HABITAT Sheilah Lillie Bees (Hymenoptera) represent one of the primary pollinators in most
    [Show full text]
  • Bee-Mediated Pollen Transfer in Two Populations of Cypripedium Montanum Douglas Ex Lindley
    Journal of Pollination Ecology, 13(20), 2014, pp 188-202 BEE-MEDIATED POLLEN TRANSFER IN TWO POPULATIONS OF CYPRIPEDIUM MONTANUM DOUGLAS EX LINDLEY Peter Bernhardt*1, Retha Edens-Meier2, Eric Westhus3, Nan Vance4 1Department of Biology, Saint Louis University, St. Louis, MO 63103, USA 2Department of Educational Studies, Saint Louis University, St. Louis, MO 63103, USA 3Center for Outcomes Research, Saint Louis University, St. Louis, MO 63103, USA 4P.O. Box 282, Kooskia, ID 83539, USA Abstract—The conversion rate of flowers into fruit in C. montanum at two sites over four seasons was 52-85%, unusually high for a food mimic orchid. Comparative measurements of the trap-like labellum of C. montanum showed it was intermediate in size compared to measurements of six other Cypripedium spp. found in North America and China. While visitors to flowers of C. montanum represented three insect orders, at two sites, over four seasons only small- to medium-sized, solitary bees (5-10 mm in length) carried the pollen massulae. Bee-visitation occurred at both sites and began within 24-48 hours following labellum expansion. Female bees in the genus Lasioglossum (Halictidae) were the most common carriers of massulae. However, species of visiting bees differed between sites and years. At both sites the majority of bees entered and escaped from the labellum in less than 180 seconds and there was no significant difference between the times bees spent in the flowers at both sites. At the site on the Eastside Cascades of Central Oregon, there was no correlation between the length and width of a bee and the time it spent escaping from the basal openings.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Effects of Habitat Fragmentation and Introduced Species on the Structure and Function Of
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Effects of Habitat Fragmentation and Introduced Species on the Structure and Function of Plant-Pollinator Interactions A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Keng-Lou James Hung Committee in charge: Professor David A. Holway, Chair Professor Joshua R. Kohn Professor Lisa A. Levin Professor Jean-Bernard H. Minster Professor James C. Nieh 2017 © Keng-Lou James Hung, 2017 All rights reserved. The Dissertation of Keng-Lou James Hung is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2017 iii DEDICATION This dissertation is dedicated to my parents, who stopped at nothing to nurture my intellectual curiosity; to my brother, who was my ever-reliable field assistant and encourager; and to my wife, who gave up everything she had to make this venture a reality. This dissertation is as much a product of my hard work as it is your unconditional love, support, and prayers. This dissertation is also dedicated to the 43,000 bees, wasps, flies, and other insects whose curtailed lives will be forever immortalized in data that will one day be used to secure a brighter future for their kind. You took one for the team; thank you for your sacrifice. iv TABLE OF CONTENTS Signature Page ................................................................................................................. iii Dedication .......................................................................................................................
    [Show full text]
  • Plant-Pollinator Interactions of the Oak-Savanna: Evaluation of Community Structure and Dietary Specialization
    Plant-Pollinator Interactions of the Oak-Savanna: Evaluation of Community Structure and Dietary Specialization by Tyler Thomas Kelly B.Sc. (Wildlife Biology), University of Montana, 2014 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Biological Sciences Faculty of Science © Tyler Thomas Kelly 2019 SIMON FRASER UNIVERSITY SPRING 2019 Copyright in this work rests with the author. Please ensure that any reproduction or re-use is done in accordance with the relevant national copyright legislation. Approval Name: Tyler Kelly Degree: Master of Science (Biological Sciences) Title: Plant-Pollinator Interactions of the Oak-Savanna: Evaluation of Community Structure and Dietary Specialization Examining Committee: Chair: John Reynolds Professor Elizabeth Elle Senior Supervisor Professor Jonathan Moore Supervisor Associate Professor David Green Internal Examiner Professor [ Date Defended/Approved: April 08, 2019 ii Abstract Pollination events are highly dynamic and adaptive interactions that may vary across spatial scales. Furthermore, the composition of species within a location can highly influence the interactions between trophic levels, which may impact community resilience to disturbances. Here, I evaluated the species composition and interactions of plants and pollinators across a latitudinal gradient, from Vancouver Island, British Columbia, Canada to the Willamette and Umpqua Valleys in Oregon and Washington, United States of America. I surveyed 16 oak-savanna communities within three ecoregions (the Strait of Georgia/ Puget Lowlands, the Willamette Valley, and the Klamath Mountains), documenting interactions and abundances of the plants and pollinators. I then conducted various multivariate and network analyses on these communities to understand the effects of space and species composition on community resilience.
    [Show full text]
  • Impacts of Dryland Farming Systems on Biodiversity, Plant
    IMPACTS OF DRYLAND FARMING SYSTEMS ON BIODIVERSITY, PLANT- INSECT INTERACTIONS, AND ECOSYSTEM SERVICES by Subodh Adhikari A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana January 2018 ©COPYRIGHT by Subodh Adhikari 2018 All Rights Reserved ii DEDICATION To my parents, my family, and Montana friends iii ACKNOWLEDGMENTS With my sincere gratitude, I would like to thank my major adviser, Dr. Fabián Menalled, for his support, advice, encouragement, and thoughtful guidance. I am very grateful for my co-adviser Dr. Laura Burkle, and committee members, Dr. Kevin O’Neill and Dr. David Weaver for their valuable insights and continuous guidance. Thank you to Drs. Tim Seipel, Judit Barroso, Zach Miller, and Casey Delphia for their various helps. Many thanks to Robert Quinn and Seth Goodman, Mark and Patti Gasvoda, J.R. Labuda, and Frank and Liz Maxwell for providing their farms to conduct my research. My field and lab work could not have been done without the help of Madison Nixon, Ali Thornton, Jesse Hunter, Ceci Welch, Chris Larson, Wyatt Holmes, Sam Leuthold, Andrew Thorson, Kyla Crisps, Megan Hofland, Norma Irish, Katelyn Thornton, Paramjit Gill and Lori Saulsbury. My warm gratitude goes to my labmates Sean McKenzie, Nar Ranabhat, Stephen Johnson, Erin Burns, Krista Elhert, and Tessa Scott for their help and friendship; Sean was exceptional for helping and guiding. Thank you to the Graduate School, College of Agriculture, Institute on Ecosystems, and LRES department (all awesome staffs) for providing various supports to my research.
    [Show full text]
  • Examining​​Phylogenetic​​Relatedness​​As​​A​​Driver
    Examining phylogenetic relatedness as a driver of ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ plant-pollinator interactions in montane meadows. ​ ​ ​ ​ ​ ​ ​ ​ Jane S. Huestis ​ ​ ​ ​ Lewis & Clark College ‘19 ​ ​ ​ ​ ​ ​ ​ ​ Oregon State University Eco-Informatics Summer Institute | August 2017 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ______________________________________________________________ Abstract Pollinators are currently experiencing widespread population decline, thus ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ plant-pollinator networks are of particular interest and concern in the ecological community. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ This study investigates whether phylogenetic relatedness of plant families is correlated with the ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ families of pollinators they share. Phylogenetic trees of plant and pollinator families present at ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ the H.J. Andrews Experimental Forest were produced using software associated with the ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ National Center for Biotechnology Information (NCBI). These phylogenies and plant-pollinator ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ interaction data were analyzed in a pairwise family comparison using the Jaccard index. The ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ study found that there is a weak negative correlation between phylogenetic distance of plant ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ families and the percent of pollinator families they share, although many closely related plant
    [Show full text]
  • Pollination Biology of Potentilla Recta (Sulfur Cinquefoil) and Its Cooccurring Native Congener Potentilla Gracilis in Northeastern Oregon
    Hindawi Publishing Corporation Psyche Volume 2012, Article ID 281732, 18 pages doi:10.1155/2012/281732 Research Article Pollination Biology of Potentilla recta (Sulfur Cinquefoil) and Its Cooccurring Native Congener Potentilla gracilis in Northeastern Oregon James McIver and Karen Erickson Eastern Oregon Agricultural Research Station, Oregon State University, P.O. Box E, 372 S. 10th Street, Union, OR 97883, USA Correspondence should be addressed to James McIver, [email protected] Received 22 January 2012; Accepted 14 May 2012 Academic Editor: Tugrul Giray Copyright © 2012 J. McIver and K. Erickson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Pollination biology of the invasive plant sulfur cinquefoil (Potentilla recta L.) and it’s native cooccurring congener slender cinquefoil (P. gracilis Dougl. ex. Hook.) was studied from 2002–2004, at four sites in northeastern Oregon, USA The native cinquefoil flowered first for five weeks, followed by the invasive for five weeks, with two weeks overlap in mid-June. Invasive flowers attracted 74 species and 543 individuals; the native attracted 93 species and 619 individuals. The most important pollinators for the invasive, in order of importance, were: Apis mellifera, Ceratina nanula, Halictus tripartitus, Lasioglossum sisymbrii,andBombus rufocinctus;forthe native: C. nanula, Trichodes ornatus, H. ligatus, L. sisymbrii,andL. olympiae. The invasive produced higher numbers of seeds per plant, having greater mass per unit vegetation. Mean seed size was lower for the invasive when pollinators were allowed access to flowers, but seed size increased linearly with more complete exclusion of pollinators; the native showed no such response to pollinator exclusion.
    [Show full text]
  • An Abstract of the Dissertation Of
    AN ABSTRACT OF THE DISSERTATION OF Lauren Ashley Smith DiCarlo for the degree of Doctor of Philosophy in Wildlife Science on June 1, 2018 Title: Native Bee and Spider Community Responses to Grassland Restoration and Wildfire Abstract approved: ______________________________________________________ Sandra J. DeBano Up to 99.9% of native North American grasslands have been degraded since European settlement, primarily due to agricultural conversion. Today, grasslands are a top priority for restoration as they provide essential habitat for many rare and endangered species; however, the majority of studies in grasslands have focused on vegetation or vertebrate responses to restoration while largely neglecting invertebrates. Grassland invertebrates are highly diverse and provide important ecosystem services such as pollination, nutrient cycling, food for vertebrates, and pest control. This dissertation seeks to understand the structure of spider and native bee communities within arid bunchgrass prairies and determine how grassland restoration and wildfire impact these beneficial invertebrates. In Chapter 2, I focus on spider communities in a low-elevation, arid Pacific Northwest bunchgrass prairie and compare degraded, native, and restored sites to examine how spider communities and habitat respond to arid grassland restoration. Spider communities responded strongly to invasive annual grass, litter, and biological soil crust cover. Native sites differed from those in restored and degraded sites by community composition and abundance, with fewer spiders found in native sites than degraded and restored sites. However, native and restored sites had more species than degraded sites. I also examine how responses varied with the age of the restoration project. Chronosequence data showed trends for lower abundance, higher species richness, and changing community composition as restoration projects mature.
    [Show full text]
  • Bees in a Changing World: How Land Surface Phenology, Bee Community Distributions, and Pollinator-Plant Interactions Are Impacted by Urbanization and Agriculture
    Bees in a Changing World: How Land Surface Phenology, Bee Community Distributions, and Pollinator-Plant Interactions are Impacted by Urbanization and Agriculture By Misha Tomaye Leong A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management Organsims & the Environment in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor George K. Roderick, Chair Professor Claire Kremen Professor Steve Selvin Fall 2014 Abstract Bees in a Changing World: How Land Surface Phenology, Bee Community Distributions, and Pollinator-Plant Interactions are Impacted by Urbanization and Agriculture by Misha Tomaye Leong Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor George K. Roderick, Chair Background Urbanization and agricultural intensification of landscapes are influential drivers of global change, resulting in direct impacts on ecological communities and leading to shifts in species distributions and interactions. These landscapes are novel for many reasons, but an often overlooked aspect is how the phenology of vegetation can vary between land use types. Because such differences can impact floral-dependent species, I explored how human-altered landscapes affect bees, a group of high economic and ecological importance. I measured the phenological diversity of vegetation across a human-altered landscape, compared these findings to a spatio- temporal pollinator distribution dataset, and investigated how pollinator visitation translates to seed set. Approach I collected and observed bees for three field seasons in a peri-urban landscape on the outskirts of the San Francisco Bay Area, California, where urban, agricultural, and natural land use types interface.
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Molecular Phylogenetics and Evolution 65 (2012) 926–939 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny of halictine bees supports a shared origin of eusociality for Halictus and Lasioglossum (Apoidea: Anthophila: Halictidae) ⇑ Jason Gibbs a, , Seán G. Brady b, Kojun Kanda c, Bryan N. Danforth a a Department of Entomology, Cornell University, Ithaca, NY, USA b Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA c Department of Zoology, Oregon State University, Corvallis, OR, USA article info abstract Article history: The halictid bees are excellent models for the study of social evolution because greater social diversity Received 9 April 2012 and plasticity are observed in the tribe Halictini than in any other comparable taxonomic group. We Revised 30 July 2012 examine the evolutionary relationships within the subfamily Halictinae (‘‘sweat bees’’) to investigate Accepted 17 August 2012 the origins of social behaviour within the tribe Halictini. We present a new phylogeny of the subfamily Available online 7 September 2012 Halictinae based on three nuclear genes (elongation factor-1 alpha, wingless, and long-wavelength rho- dopsin) and one mitochondrial gene (cytochrome c oxidase 1) sequenced for 206 halictine bees. We use Keywords: model-based character reconstruction to infer the probability of a shared eusocial ancestor for the genera Social evolution Halictus and Lasioglossum, the two genera of Halictini which display eusociality. Our results suggest a high Sweat bees Bayesian analysis probability for a single origin of eusociality for these two genera, contradicting earlier views of separate Maximum-likelihood origins within each taxon.
    [Show full text]