GEOLOGIC MAP of the MTM 85080 QUADRANGLE, CHASMA BOREALE REGION of MARS for Sale by U.S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design of Low-Altitude Martian Orbits Using Frequency Analysis A
Design of Low-Altitude Martian Orbits using Frequency Analysis A. Noullez, K. Tsiganis To cite this version: A. Noullez, K. Tsiganis. Design of Low-Altitude Martian Orbits using Frequency Analysis. Advances in Space Research, Elsevier, 2021, 67, pp.477-495. 10.1016/j.asr.2020.10.032. hal-03007909 HAL Id: hal-03007909 https://hal.archives-ouvertes.fr/hal-03007909 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Design of Low-Altitude Martian Orbits using Frequency Analysis A. Noulleza,∗, K. Tsiganisb aUniversit´eC^oted'Azur, Observatoire de la C^oted'Azur, CNRS, Laboratoire Lagrange, bd. de l'Observatoire, C.S. 34229, 06304 Nice Cedex 4, France bSection of Astrophysics Astronomy & Mechanics, Department of Physics, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece Abstract Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies | or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies | are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony's Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors. -
Evidence for Volcanism in and Near the Chaotic Terrains East of Valles Marineris, Mars
43rd Lunar and Planetary Science Conference (2012) 1057.pdf EVIDENCE FOR VOLCANISM IN AND NEAR THE CHAOTIC TERRAINS EAST OF VALLES MARINERIS, MARS. Tanya N. Harrison, Malin Space Science Systems ([email protected]; P.O. Box 910148, San Diego, CA 92191). Introduction: Martian chaotic terrain was first de- ple chaotic regions are visible in CTX images (Figs. scribed by [1] from Mariner 6 and 7 data as a “rough, 1,2). These fractures have widened since the formation irregular complex of short ridges, knobs, and irregular- of the flows. The flows overtop and/or bank up upon ly shaped troughs and depressions,” attributing this pre-existing topography such as crater ejecta blankets morphology to subsidence and suggesting volcanism (Fig. 2c). Flows are also observed originating from as a possible cause. McCauley et al. [2], who were the fractures within some craters in the vicinity of the cha- first to note the presence of large outflow channels that os regions. Potential lava flows are observed on a por- appeared to originate from the chaotic terrains in Mar- tion of the floor as Hydaspis Chaos, possibly associat- iner 9 data, proposed localized geothermal melting ed with fissures on the chaos floor. As in Hydraotes, followed by catastrophic release as the formation these flows bank up against blocks on the chaos floor, mechanism of chaotic terrain. Variants of this model implying that if the flows are volcanic in origin, the have subsequently been detailed by a number of au- volcanism occurred after the formation of Hydaspis thors [e.g. 3,4,5]. Meresse et al. -
Variability of Mars' North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data
Icarus 144, 382–396 (2000) doi:10.1006/icar.1999.6300, available online at http://www.idealibrary.com on Variability of Mars’ North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data Deborah S. Bass Instrumentation and Space Research Division, Southwest Research Institute, P.O. Drawer 28510, San Antonio, Texas 78228-0510 E-mail: [email protected] Kenneth E. Herkenhoff U.S. Geological Survey, 2255 North Gemini Drive, Flagstaff, Arizona 86001 and David A. Paige Department of Earth and Space Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1567 Received May 15, 1998; revised November 17, 1999 1. INTRODUCTION Previous studies interpreted differences in ice coverage between Mariner 9 and Viking Orbiter observations of Mars’ north residual Like Earth, Mars has perennial ice caps and an active wa- polar cap as evidence of interannual variability of ice deposition on ter cycle. The Viking Orbiter determined that the surface of the the cap. However,these investigators did not consider the possibility northern residual cap is water ice (Kieffer et al. 1976, Farmer that there could be significant changes in the ice coverage within et al. 1976). At the south residual polar cap, both Mariner 9 the northern residual cap over the course of the summer season. and Viking Orbiter observed carbon dioxide ice throughout the Our more comprehensive analysis of Mariner 9 and Viking Orbiter summer. Many have related observed atmospheric water vapor imaging data shows that the appearance of the residual cap does not abundances to seasonal exchange between reservoirs such as show large-scale variance on an interannual basis. -
A Future Mars Environment for Science and Exploration
Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8250.pdf A FUTURE MARS ENVIRONMENT FOR SCIENCE AND EXPLORATION. J. L. Green1, J. Hol- lingsworth2, D. Brain3, V. Airapetian4, A. Glocer4, A. Pulkkinen4, C. Dong5 and R. Bamford6 (1NASA HQ, 2ARC, 3U of Colorado, 4GSFC, 5Princeton University, 6Rutherford Appleton Laboratory) Introduction: Today, Mars is an arid and cold world of existing simulation tools that reproduce the physics with a very thin atmosphere that has significant frozen of the processes that model today’s Martian climate. A and underground water resources. The thin atmosphere series of simulations can be used to assess how best to both prevents liquid water from residing permanently largely stop the solar wind stripping of the Martian on its surface and makes it difficult to land missions atmosphere and allow the atmosphere to come to a new since it is not thick enough to completely facilitate a equilibrium. soft landing. In its past, under the influence of a signif- Models hosted at the Coordinated Community icant greenhouse effect, Mars may have had a signifi- Modeling Center (CCMC) are used to simulate a mag- cant water ocean covering perhaps 30% of the northern netic shield, and an artificial magnetosphere, for Mars hemisphere. When Mars lost its protective magneto- by generating a magnetic dipole field at the Mars L1 sphere, three or more billion years ago, the solar wind Lagrange point within an average solar wind environ- was allowed to directly ravish its atmosphere.[1] The ment. The magnetic field will be increased until the lack of a magnetic field, its relatively small mass, and resulting magnetotail of the artificial magnetosphere its atmospheric photochemistry, all would have con- encompasses the entire planet as shown in Figure 1. -
MARS DURING the PRE-NOACHIAN. J. C. Andrews-Hanna1 and W. B. Bottke2, 1Lunar and Planetary La- Boratory, University of Arizona
Fourth Conference on Early Mars 2017 (LPI Contrib. No. 2014) 3078.pdf MARS DURING THE PRE-NOACHIAN. J. C. Andrews-Hanna1 and W. B. Bottke2, 1Lunar and Planetary La- boratory, University of Arizona, Tucson, AZ 85721, [email protected], 2Southwest Research Institute and NASA’s SSERVI-ISET team, 1050 Walnut St., Suite 300, Boulder, CO 80302. Introduction: The surface geology of Mars appar- ing the pre-Noachian was ~10% of that during the ently dates back to the beginning of the Early Noachi- LHB. Consideration of the sawtooth-shaped exponen- an, at ~4.1 Ga, leaving ~400 Myr of Mars’ earliest tially declining impact fluxes both in the aftermath of evolution effectively unconstrained [1]. However, an planet formation and during the Late Heavy Bom- enduring record of the earlier pre-Noachian conditions bardment [5] suggests that the impact flux during persists in geophysical and mineralogical data. We use much of the pre-Noachian was even lower than indi- geophysical evidence, primarily in the form of the cated above. This bombardment history is consistent preservation of the crustal dichotomy boundary, to- with a late heavy bombardment (LHB) of the inner gether with mineralogical evidence in order to infer the Solar System [6] during which HUIA formed, which prevailing surface conditions during the pre-Noachian. followed the planet formation era impacts during The emerging picture is a pre-Noachian Mars that was which the dichotomy formed. less dynamic than Noachian Mars in terms of impacts, Pre-Noachian Tectonism and Volcanism: The geodynamics, and hydrology. crust within each of the southern highlands and north- Pre-Noachian Impacts: We define the pre- ern lowlands is remarkably uniform in thickness, aside Noachian as the time period bounded by two impacts – from regions in which it has been thickened by volcan- the dichotomy-forming impact and the Hellas-forming ism (e.g., Tharsis, Elysium) or thinned by impacts impact. -
Pioneering the Red Planet
RVD NASA PIONEERING THE RED PLANET Adventures on Martian soil Mars has always obsessed humankind - the Red planet, the ‘New Earth’. And with the recent successful landing of NASA’s Curiosity rover, Mars is closer than ever. Ever since 1960, we have actively been sending probes and rovers to observe the planet, but not without defeat. The road to the red planet is long, and the landing is rough. And since we do not have the technology yet to bring pieces of Mars to our laboratories, we’ll have to bring the laboratories to Mars. TEXT Ivo van der Peijl and Marijn Veraart, Students Aerospace Engineering, President and Treasurer of the 27th Space Department. THE EARLY DAYS ther attempts, the Mars 4 through 7, were velocity of 1cm/s. The main task of the rov- Between October 10, 1960 and 1967, six all partially successful. They all gathered er was to examine rocks nearby the land- Mars missions were undertaken, ! ve by some data, but none of them were able to ing site. Equipped with an Alpha Particle the USSR and one by USA. This was maybe either enter the intended orbit, or make a X-ray Spectrometer (APXS), the composi- too ambitious for the early days, because successful landing. tion of rocks could be determined. two failed to reach earth orbit, two failed It was NASA who had the next success. The oldest Mars-related spacecraft that is to leave it and two had problems en route. The Viking 1 landed on the Martian sur- still in use today is the 2001 Mars Odys- It was December 20, 1967 when the Mari- face July 20, 1976, shortly followed by the sey. -
Habitability of Mars: How Welcoming Are the Surface and Subsurface to Life on the Red Planet?
geosciences Review Habitability of Mars: How Welcoming Are the Surface and Subsurface to Life on the Red Planet? Aleksandra Checinska Sielaff and Stephanie A. Smith * Youth and Families Program Unit, Washington State University, Pullman, WA 99163, USA * Correspondence: [email protected] Received: 31 July 2019; Accepted: 20 August 2019; Published: 22 August 2019 Abstract: Mars is a planet of great interest in the search for signatures of past or present life beyond Earth. The years of research, and more advanced instrumentation, have yielded a lot of evidence which may be considered by the scientific community as proof of past or present habitability of Mars. Recent discoveries including seasonal methane releases and a subglacial lake are exciting, yet challenging findings. Concurrently, laboratory and environmental studies on the limits of microbial life in extreme environments on Earth broaden our knowledge of the possibility of Mars habitability. In this review, we aim to: (1) Discuss the characteristics of the Martian surface and subsurface that may be conducive to habitability either in the past or at present; (2) discuss laboratory-based studies on Earth that provide us with discoveries on the limits of life; and (3) summarize the current state of knowledge in terms of direction for future research. Keywords: Mars; habitability; surface; subsurface; water; organics; methane; life; microorganisms; lichens; bryophytes 1. Introduction “The Earth remains the only inhabited world known so far, but scientists are finding that the universe -
Aqueous Minerals from Arsia Chasmata of Arsia Mons, Tharsis Region: Implications for Aqueous Alteration Processes on Mars
45th Lunar and Planetary Science Conference (2014) 1826.pdf AQUEOUS MINERALS FROM ARSIA CHASMATA OF ARSIA MONS, THARSIS REGION: IMPLICATIONS FOR AQUEOUS ALTERATION PROCESSES ON MARS. N. Jain*, S. Bhattacharya, P. Chauhan, Space Applications Centre (ISRO), Ahmedabad, Gujarat, India ([email protected]/ Fax: +91-079- 26915825). Introduction: The Arsia Chasmata is a complex help of high resolution data such as MGS-MOC (Mars collapsed region located at the northeastern flank of Global Surveyor-Mars Orbiter Camera), Viking orbiter Arsia Mons (figure 1 A and B) within Tharsis region [3], fresh appearing lava flows [4], graben and glaciers of planet Mars and is the most important region for the on flanks of Arsia Mons [5], young lava flows [6] study of minerals like phyllosilicate and pyroxene. The small shields at floor of caldera [7]. reflectance data of MRO-CRISM (figure 1 C D) has Present study mainly focuses on the mineralogy of confirmed above mentioned minerals in the study area. Arsia Chasmata which interestingly contains The presence of these minerals at the Arsia Chasmata absorption features of aqueous altered minerals such as on Mars provides the evidence of its past watery serpentine (phyllosilicate). This mineral is also located environment and their processes of formation. In the in Nili Fossae region which is long, narrow depression present study the absorption features of serpentine present on Mars [8]. But in the present study (phyllosilicate) are obtained at 2.32 µm, 1.94 µm and occurrence of this mineral at high altitude region raise 2.51 µm. Previous studies on Mars show that the curiosity to know about their formation processes. -
Obituary "C" Index
Obituary "C" Index Copyright © 2004 - 2021 GRHS DISCLAIMER: GRHS cannot guarantee that should you purchase a copy of what you would expect to be an obituary from its obituary collection that you will receive an obituary per se. The obituary collection consists of such items as a) personal cards of information shared with GRHS by researchers, b) www.findagrave.com extractions, c) funeral home cards, d) newspaper death notices, and e) obituaries extracted from newspapers and other publications as well as funeral home web sites. Some obituaries are translations of obituaries published in German publications, although generally GRHS has copies of the German versions. These German versions would have to be ordered separately for they are kept in a separate file in the GRHS library. The list of names and dates contained herein is an alphabetical listing [by surname and given name] of the obituaries held at the Society's headquarters for the letter combination indicated. Each name is followed by the birth date in the first column and death date in the second. Dates may be extrapolated or provided from another source. Important note about UMLAUTS: Surnames in this index have been entered by our volunteers exactly as they appear in each obituary but the use of characters with umlauts in obits has been found to be inconsistant. For example the surname Büchele may be entered as Buchele or Bahmüller as Bahmueller. This is important because surnames with umlauted characters are placed in alphabetic order after regular characters so if you are just scrolling down this sorted list you may find the surname you are looking for in an unexpected place (i.e. -
“Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target -
Physical Properties of Martian Meteorites: Porosity and Density Measurements
Meteoritics & Planetary Science 42, Nr 12, 2043–2054 (2007) Abstract available online at http://meteoritics.org Physical properties of Martian meteorites: Porosity and density measurements Ian M. COULSON1, 2*, Martin BEECH3, and Wenshuang NIE3 1Solid Earth Studies Laboratory (SESL), Department of Geology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada 2Institut für Geowissenschaften, Universität Tübingen, 72074 Tübingen, Germany 3Campion College, University of Regina, Regina, Saskatchewan S4S 0A2, Canada *Corresponding author. E-mail: [email protected] (Received 11 September 2006; revision accepted 06 June 2007) Abstract–Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet’s surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. -
Conference Program
Conference Program 24th WRMISS Conference Program: Tuesday 3rd September 2019 08.30 – 09:00 Registration 09.00 – 10:00 Opening 10.00 – 10:30 Scientific Session 1 10.30 – 11.30 Coffee/Tea Break 11.30 – 13:00 Scientific Session 2 13:00 – 14:00 Lunch 14.00 – 15:30 Scientific Session 3 15.30 – 16:30 Coffee/Tea Break 16:30 – 18.15 Scientific Session 4 Major of Athens, Ministry of Ministry of digital policy Ministry of Ministry of Development and Investment Opening speeches President of Hellenic Space Center Greek ESA‐ representative NASA Radiation Health Officer: Edward Semones Guenther Reitz, Marianthi Fragopoulou Welcome and Organisational Issues Scientific Session 1 Reviewing ISS‐member cancer and non‐cancer risk models and their Samy El‐Jaby differences for exploration class missions Scientific Session 2 Xiaojing Xu Validation of Trapped Proton Environments with EFT‐1 Measurements Solar Modulation, Forbush decreases and Solar Particle Events by AMS Claudio Cordi onboard ISS Validation of NASA’s Radiation Analysis Tools with ISS Radiation Martha Clowdsley Environment (REM) Measurements Scientific Session 3 Pawel Bilski Fluorescent Nuclear Track detectors based on LiF single crystals Lawrence Pinsky The Timepix 2 from the Medipix 2 Collaboration – First results The AMS‐02 experiment as a cosmic ray flux and radiation monitor on the Valerie Formato ISS Scientific Session 4 GCR flux and dose rates variations observed experimentally by 13 Liulin Tsvetan Dachev Type instruments between 1991 and 2019 Attila Hirn Pille Measurements on ISS (February