Bioactive Alkaloids from Medicinal Plants of Lombok Surya Hadi University of Wollongong

Total Page:16

File Type:pdf, Size:1020Kb

Bioactive Alkaloids from Medicinal Plants of Lombok Surya Hadi University of Wollongong University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2002 Bioactive alkaloids from medicinal plants of Lombok Surya Hadi University of Wollongong Recommended Citation Hadi, Surya, Bioactive alkaloids from medicinal plants of Lombok, Doctor of Philosophy thesis, Department of Chemistry, University of Wollongong, 2002. http://ro.uow.edu.au/theses/1117 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] BIOACTIVE ALKALOIDS FROM MEDICINAL PLANTS OF LOMBOK A Thesis Submitted in Fulfillment ofthe Requirements for the Award ofthe Degree of DOCTOR OF PHILOSOPHY from The University of Wollongong by SURYA HADI, Ir. M.Sc. (Hons.) Department of Chemistry October 2002 CERTIFICATION I, Surya Hadi, declare that this thesis, submitted in fulfillment of requirement for the award of Doctor of Philosophy, in the Department of Chemistry, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledge. The document has not been submitted for qualifications at any other academic institution. SURYA HADI 10 October 2002 u PUBLICATIONS 1. Initial Studies on Alkaloids from Lombok Medicinal Plants (Molecules)1 2. Constituents of Medicinal Plants of Lombok: A New Antibacterial Alkaloid from Voacangafoetida (Bl.) Rolfe (Phytochernistry, in preparation) 3. New Bioactive Alkaloids from Young Trees of Alstonia scholaris R. Br. (Planta Medica, in preparation) (1) Hadi, S.; Bremner, J. B. Initial studies on alkaloids from Lombok medicinal plants. Molecules [online computer file] 2001, 6, 117-129. Ill ACKNOWLEDGEMENTS I would like to give my sincere thanks to my supervisor, Prof. John B. Bremner for his continuous guidance and support during the course of this study. Thanks are extended to Aus Aid for the scholarship and to the Institute for Biomolecular Science in providing extra funds to assist this project. My utmost thanks to the following people Who extended their kind aid in completing this work: Dr. John Korth for training me to operate the Low Resolution Chemical Ionisation/Electron Impact Mass Spectrometer; Larry Hick for his help in performing High Resolution Chemical Ionisation/Electron Impact Mass Spectrometry; the NMR people, Sandra Chapman, Ellen Manning, and Yoke Berry for their assistance in training me in using the NMR spectrometer; Dr. David Perkins, not only for his kind help in correcting my thesis but also for his warm friendship; Dr. Irawati and Mr. Made Sudana for their great contribution to facilitate the collection of medicinal plants; Mr. Taspin for his help in collecting the plants; Dr. Kirsten Benkendorff for her guidance in the antibacterial testing; Dr. Sumalee Kamchonwongpaisan for the antimalarial testing; and finally to my best friends in the Bremner research group, Susan, Collette, Waya, Siritron, Nisit, Johana, and Burak (Dr. Coban) for their uncountable help and friendship. iv TABLE OF CONTENTS Certification ii Publications iii Acknowledgements iv Table of Contents v List of Abbreviations ix Abstract xi Chapter 1 INTRODUCTION 1 1.1. General 1 1.2. Resistance to Antibacterial Agents 3 1.3. Resistance to Antimalarial Agents 5 1.4. The Importance of Alkaloids in Drug Discovery 6 1.4.1. Alkaloids in Plants 7 1.4.2. Contribution of Alkaloids to Humankind 8 1.4.3. Alkaloids and Drug Discovery 9 1.5. Lombok and Natural Products Development 11 1.6. The Aims ofthe Study 12 Chapter 2 SELECTION OF PLANT MATERIALS 14 2.1. General 14 2.2. Approaches to Plant Selection 15 2.3. Medicinal Plant Use in Lombok 16 v 2.4. Alkaloid Screening 17 2.5. Collection of Lombok Medicinal Plants 18 2.6. Previous Work and Geographical Distribution of Alkaloid Positive Species 25 2.7. Plants Selected for Further Study 36 Chapter 3 ALKALOIDS FROM Voacangafoetida (Bl.) Rolfe 38 3.1. Introduction 38 3.2. Indole Alkaloids: Biosynthesis and Classification 39 3.3. Alkaloids from the Genus Voacanga 47 3.4. Isolation and Structural Elucidation of Alkaloids from Voacangafoetida (Bl.) Rolfe 50 3.4.1. Lombine 50 3.4.2. Voacangine 57 3.4.3. Coronaridine 58 3.4.3. Voacristine 61 Chapter 4 ALKALOIDS FROM Psychotria malayana Jack 66 4.1. Introduction 66 4.2. Alkaloids from the Genus Psychotria 67 4.3. Biosynthesis of Calycanthine Type Alkaloids 76 4.4. Isolation and Structure Elucidation of Alkaloids from Psychotria malayana Jack.78 4.4.1. Hodgkinsine 79 4.4.2. MesoChimonanthine and /.yo-Calycanthine 81 4.4.3. The Alkaloid LPM-574 83 4.4.4. The Alkaloid LPM-186 85 vi Chapter 5 ALKALOIDS FROM Alstonia scholaris R. Br 87 5.1. Introduction 87 5.2. Alkaloids from the Genus Alstonia 88 5.3. Antiplasmodial Activity of Alstonia Alkaloids 95 5.4. Isolation and Structure Elucidation of Alkaloids from A. scholaris R. Br 101 5.4.1. Mataranine A and B 101 5.4.2. Alstonamine (Angustilobine B) 106 5.4.3. (15S* io^-Losbanine 109 5.4.4. Kotarajine 113 5.4.5. (£AAkuammidine 115 Chapter 6 ALKALOIDS FROM Clerodendron calamitosum L. and Clerodendron paniculatum L.118 6.1. Introduction 118 6.2. Alkaloids from the Family Verbenaceae 119 6.3. Isolation and Structure Elucidation of Alkaloids from C. calamitosum L. and C. paniculatum L 124 6.3.1. Alkaloids from C. calamitosum L 124 4.3.2. Alkaloids from C. paniculatum L 130 Chapter 7 ANTIMICROBIAL TESTING 133 7.1. Introduction 133 7.2. Assays for Detecting Antibacterial Activity 134 7.3. Assays for Detecting Antimalarial Activity 137 7.4. Results of Antibacterial Testing 140 7.4.1. Voacangafoetida (Bl.) Rolfe 140 7.4.2. Psychotria malayana Jack 143 7.4.3. Clerodendron calamitosum L. and Clerodendron paniculatum L 144 7.5. Results of Antimalarial Testing 145 vu Chapter 8 CONCLUSIONS AND FUTURE WORK 147 8.1. Conclusions 147 8.2. Future Work 152 Chapter 9 EXPERIMENTAL SECTION 153 9.1. General 153 9.2. Plant Collection 154 9.3. Alkaloid Screening 155 9.4. Alkaloid Isolation Procedure 156 9.4.1. Isolation and Purification of Alkaloids from Voacangafoetida (Bl.) Rolf. 159 9.4.2. Isolation and Purification of Alkaloids from Psychotria malayana Jack.... 164 9.4.3. Isolation and Purification of Alkaloids from Alstonia scholaris R. Br 168 9.4.4. Isolation and Purification of Alkaloids from Clerodendron calamitosum L. and C. paniculatum L 173 9.5. Antibacterial Assay 178 9.5.1. Sample Preparation 178 9.5.2. Antibacterial Test Procedure 178 9.6. Antimalarial Assay 179 9.6.1. Sample Preparation 179 9.6.2. Procedure of Antimalarial Activity Testing 179 REFERENCES 181 APPENDICES 209 vm LIST OF ABBREVIATIONS [oc]D Specific Optical Rotation 13C-NMR Carbon Nuclear Magnetic Resonance 'H-NMR Proton Nuclear Magnetic Resonance CH3C02H Acetic Acid CL Central Lombok COSY Correlation Spectroscopy DCM/CH2C12 Dichloromethane DDQ 2,3-Dichloro-5,6-dicyano-l,4-benzoquinone DEPT Distortionless Enhancement by Polarisation Transfer DMAPP Dimethylallyl diphosphate DNA Deoxyribonucleic Acid EL East Lombok FDA Fluorescein Diacetate GABA Garama-Aminobutyric Acid HGPRT Hypoxanthine Guanine Phosphoribosyl Transferase HIV Human Immunodeficiency Virus HMBC Heteronuclear Multiple Bond Correlation HRCLMS High Resolution Chemical Ionisation Mass Spectrometry HREIMS High Resolution Electron Impact Mass Spectrometry HSQC Heteronuclear Single Quantum Coherence ix HTS High-Throughput Screening IMPDH Inosine Monophosphate Dehydrogenase IPP Isopentenyl Diphosphate IR Infrared K2HgL Potassium tetraiodomercurate LRCIMS Low Resolution Chemical Ionisation Spectrometry LREIMS Low Resolution Electron Impact Spectrometry MeOH Methanol MIC Minimum Inhibitory Concentration MRSA Methicillin-Resistant Staphylococcus aureus Na2C03 Sodium carbonate NMR Nuclear Magnetic Resonance NOE Nuclear Overhauser Effect NOESY ID Nuclear Overhauser Exchange Spectroscopy One Dimension rRNA ribosome Ribonucleic Acid UTIs Urinary Tract Infections UV Ultraviolet WL West Lombok 5 Chemical shift (ppm) x ABSTRACT The aims of this project were to: 1) assess the efficacy of a combined chemo- and bio- rational approach involving alkaloid occurrence with antimicrobial medicinal plant use, focussing on plants from Lombok island. Lombok has a large population while herbal medicines are widely used with a diverse range of plant species. 2) Investigate the alkaloid constituents of selected plants including isolation, purification, and characterisation, and structure elucidation. 3) Evaluate antibacterial and antimalarial activities of crude alkaloid extracts and major alkaloid compounds isolated from the plants. 4) Identify compounds as possible new drug leads. A combined chemo- and bio-rational strategy based on alkaloid content and traditional medicinal plant use was demonstrated to be an effective and efficient approach to finding new biologically active compounds in nature. Several new alkaloids were isolated with some potential for development as antibacterial and antimalarial agents. Some previously known alkaloids were also isolated, and in some cases NMR features not previously reported in the literature are presented. A new optically active indole alkaloid, lombine (major), and the known alkaloid voacangine (minor), were identified from the bark of Voacanga foetida (Bl.) Rolfe, used ethnomedically for the treatment of wounds, itches, and swellings. The fruits of the plant produced three known alkaloid compounds, coronaridine (major), voacangine, and xi voacristine, together with the new indole alkaloids mataranine A and B, which were also isolated from Alstonia scholaris R. Br. in this study. Voacristine was found as a major alkaloid together with the minor alkaloid voacangine from the leaves of V. foetida (Bl.) Rolfe. A structural revision for voacristine was also completed. Initial antibacterial testing of the crude alkaloid extract from V. foetida (Bl.) Rolfe (bark and fruits) showed activity against both Gram-positive bacteria [Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The new alkaloids lombine (bark) and mataranine A and B (fruits) also exhibited antibacterial activity. Bactericidal activity was observed for lombine at a concentration of 0.5 mg/ml against S. aureus and E. coli. At the lower concentration of 0.05 mg/l, it partially inhibited the growth of both S.
Recommended publications
  • Chapter 2 Studies Towards the Synthesis of Jlnhydride (Based Naturac (Products £ CQ 2A
    Chapter 2 Studies towards the Synthesis of JLnhydride (Based NaturaC (Products _£ CQ 2A. Section A 9/LaCeic Anhydrides andJdomophthatic Anhydrides in Organic Synthesis \J This section features the following topics: 2A. 1 Maleic Anhydride and Derivatives: An Overview 2A.2 Homophthalic Anhydrides and their Applications 2 A3 References 2A.1 Section A: I. Maleic Anhydride and Derivatives: An Overview 2A.1.1 Introduction & Monoalkylmaleic Anhydrides Maleic anhydride (2,5-furandione) was prepared for the first time two centuries ago and became commercially available a century later by the catalytic oxidation of benzene using vanadium pentoxide.1 It is a versatile synthon wherein all the sites are amenable for a variety of reactions and possesses exceptional selectivity in reactions towards several nucleophiles. The vast array of nucleophilic reactions undergone by maleic anhydrides confer a high synthetic potential on them.2 In the past century, several symmetrically and unsymmetrically substituted maleic anhydride derivatives have been prepared, the simplest of them being methylmaleic anhydride or citraconic anhydride (1). Although the utilities of methylmaleic anhydride (1) have been well proven in laboratory as well as in industrial practice,3 only three synthetic approaches towards methylmaleic anhydride are known in the literature: (i) starting from citric acid by double dehydrative decarboxylation and isomerization,4 (ii) from ethyl acetoacetate via cyanohydrin formation followed by dehydrative cyclization5 and (iii) by the gas phase
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,859,764 B2 Mash Et Al
    US008859764B2 (12) United States Patent (10) Patent No.: US 8,859,764 B2 Mash et al. (45) Date of Patent: Oct. 14, 2014 (54) METHODS AND COMPOSITIONS FOR 4,464,378 A 8, 1984 Hussain PREPARING NORIBOGAINE FROM 1999 A 5. E. E.ea. tal VOACANGINE 4,587,243 A 5/1986 LotSof 4,604,365. A 8, 1986 O'Neill et al. (75) Inventors: Deborah C. Mash, Miami, CA (US); 4,620,977 A 1 1/1986 Strahilevitz Robert M. Moriarty, Michiana Shores, 4,626,539 A 12/1986 Aungst et al. IN (US); Richard D. Gless, Jr., 2.s sy s: A : 3. E.OCS ca.t Oakland, CA (US) 4,737,586 A 4, 1988 Potier et al. 4,806,341 A 2f1989 Chien et al. (73) Assignee: DemeRx, Inc., Ft. Lauderdale, FL (US) 4,857,523 A 8, 1989 LotSof 5,026,697 A 6, 1991 LotSof (*) Notice: Subject to any disclaimer, the term of this 5,075,341. A 12, 1991 Mendelson et al. patent is extended or adjusted under 35 Sigi A 3. 3: E. al. U.S.C. 154(b) by 0 days. 5,152.994.J. I.- A 10/1992 Lotsofranger et al. 5,283,247 A 2f1994 Dwivedi et al. (21) Appl. No.: 13/496,185 5,290,784. A 3/1994 Quet al. 5,316,759 A 5/1994 Rose et al. (22) PCT Filed: Jan. 23, 2012 5,382,657 A 1/1995 Karasiewicz et al. 5,426,112 A 6/1995 Zagon et al. (86). PCT No.: PCT/US2012/022255 5,574,0525,552,406 A 1 9,1/1996 1996 MendelsonRose et al.
    [Show full text]
  • Modifications on the Basic Skeletons of Vinblastine and Vincristine
    Molecules 2012, 17, 5893-5914; doi:10.3390/molecules17055893 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Modifications on the Basic Skeletons of Vinblastine and Vincristine Péter Keglevich, László Hazai, György Kalaus and Csaba Szántay * Department of Organic Chemistry and Technology, University of Technology and Economics, H-1111 Budapest, Szt. Gellért tér 4, Hungary * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +36-1-463-1195; Fax: +36-1-463-3297. Received: 30 March 2012; in revised form: 9 May 2012 / Accepted: 10 May 2012 / Published: 18 May 2012 Abstract: The synthetic investigation of biologically active natural compounds serves two main purposes: (i) the total synthesis of alkaloids and their analogues; (ii) modification of the structures for producing more selective, more effective, or less toxic derivatives. In the chemistry of dimeric Vinca alkaloids enormous efforts have been directed towards synthesizing new derivatives of the antitumor agents vinblastine and vincristine so as to obtain novel compounds with improved therapeutic properties. Keywords: antitumor therapy; vinblastine; vincristine; derivatives 1. Introduction Vinblastine (1) and vincristine (2) are dimeric alkaloids (Figure 1) isolated from the Madagaskar periwinkle plant (Catharantus roseus), exhibit significant cytotoxic activity and are used in the antitumor therapy as antineoplastic agents. In the course of cell proliferation they act as inhibitors during the metaphase of the cell cycle and by binding to the microtubules inhibit the development of the mitotic spindle. In tumor cells these agents inhibit the DNA repair and the RNA synthesis mechanisms, blocking the DNA-dependent RNA polymerase. Molecules 2012, 17 5894 Figure 1.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/017.4603 A1 Abayarathna Et Al
    US 2016O174603A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/017.4603 A1 Abayarathna et al. (43) Pub. Date: Jun. 23, 2016 (54) ELECTRONIC VAPORLIQUID (52) U.S. Cl. COMPOSITION AND METHOD OF USE CPC ................. A24B 15/16 (2013.01); A24B 15/18 (2013.01); A24F 47/002 (2013.01) (71) Applicants: Sahan Abayarathna, Missouri City, TX 57 ABSTRACT (US); Michael Jaehne, Missouri CIty, An(57) e-liquid for use in electronic cigarettes which utilizes- a TX (US) vaporizing base (either propylene glycol, vegetable glycerin, (72) Inventors: Sahan Abayarathna, MissOU1 City,- 0 TX generallyor mixture at of a 0.001 the two) g-2.0 mixed g per with 1 mL an ratio. herbal The powder herbal extract TX(US); (US) Michael Jaehne, Missouri CIty, can be any of the following:- - - Kanna (Sceletium tortuosum), Blue lotus (Nymphaea caerulea), Salvia (Salvia divinorum), Salvia eivinorm, Kratom (Mitragyna speciosa), Celandine (21) Appl. No.: 14/581,179 poppy (Stylophorum diphyllum), Mugwort (Artemisia), Coltsfoot leaf (Tussilago farfara), California poppy (Eschscholzia Californica), Sinicuichi (Heimia Salicifolia), (22) Filed: Dec. 23, 2014 St. John's Wort (Hypericum perforatum), Yerba lenna yesca A rtemisia scoparia), CaleaCal Zacatechichihichi (Calea(Cal termifolia), Leonurus Sibericus (Leonurus Sibiricus), Wild dagga (Leono Publication Classification tis leonurus), Klip dagga (Leonotis nepetifolia), Damiana (Turnera diffiisa), Kava (Piper methysticum), Scotch broom (51) Int. Cl. tops (Cytisus scoparius), Valarien (Valeriana officinalis), A24B 15/16 (2006.01) Indian warrior (Pedicularis densiflora), Wild lettuce (Lactuca A24F 47/00 (2006.01) virosa), Skullcap (Scutellaria lateriflora), Red Clover (Trifo A24B I5/8 (2006.01) lium pretense), and/or combinations therein.
    [Show full text]
  • Methods of Isolation and Bioactivity of Alkaloids Obtained from Selected
    DOI: 10.2478/cipms-2021-0016 Curr. Issues Pharm. Med. Sci., Vol. 34, No. 2, Pages 81-86 Current Issues in Pharmacy and Medical Sciences Formerly ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA, SECTIO DDD, PHARMACIA journal homepage: http://www.curipms.umlub.pl/ Methods of isolation and bioactivity of alkaloids obtained from selected species belonging to the Amaryllidaceae and Lycopodiaceae families Aleksandra Dymek* , Tomasz Mroczek Independent Laboratory of Chemistry of Natural Products, The Chair of Pharmacognosy, Medical University of Lublin, Poland ARTICLE INFO ABSTRACT Received 17 February 2021 Alkaloids obtained from plants belonging to the Amaryllidaceae and Lycopodiaceae Accepted 20 May 2021 families are of great interest due to their numerous properties. They play a very important Keywords: role mainly due to their strong antioxidant, anxiolytic and anticholinesterase activities. Lycopodium sp., The bioactive compounds obtained from these two families, especially galanthamine Narcissus sp., and huperzine A, have found application in the treatment of the common and AChE inhibitors, TLC, incurable dementia-like Alzheimer’s disease. Thanks to this discovery, there has been SPE, a breakthrough in its treatment by significantly improving the patient’s quality of life and PLE, slowing down disease symptoms – albeit with no chance of a complete cure. Therefore, TLC-bioatography. a continuous search for new compounds with potent anti-AChE activity is needed in modern medicine. In obtaining new therapeutic bioactive phytochemicals from plant material, the isolation process and its efficiency are crucial. Many techniques are known for isolating bioactive compounds and determining their amounts in complex samples. The most commonly utilized methods are extraction using different variants of organic solvents allied with chromatographic and spectrometric techniques.
    [Show full text]
  • “Biosynthesis of Morphine in Mammals”
    “Biosynthesis of Morphine in Mammals” D i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Frau Nadja Grobe geb. am 21.08.1981 in Querfurt Gutachter /in 1. 2. 3. Halle (Saale), Table of Contents I INTRODUCTION ........................................................................................................1 II MATERIAL & METHODS ........................................................................................ 10 1 Animal Tissue ....................................................................................................... 10 2 Chemicals and Enzymes ....................................................................................... 10 3 Bacteria and Vectors ............................................................................................ 10 4 Instruments ........................................................................................................... 11 5 Synthesis ................................................................................................................ 12 5.1 Preparation of DOPAL from Epinephrine (according to DUNCAN 1975) ................. 12 5.2 Synthesis of (R)-Norlaudanosoline*HBr ................................................................. 12 5.3 Synthesis of [7D]-Salutaridinol and [7D]-epi-Salutaridinol ..................................... 13 6 Application Experiments .....................................................................................
    [Show full text]
  • Alkaloids with Anti-Onchocercal Activity from Voacanga Africana Stapf (Apocynaceae): Identification and Molecular Modeling
    molecules Article Alkaloids with Anti-Onchocercal Activity from Voacanga africana Stapf (Apocynaceae): Identification and Molecular Modeling Smith B. Babiaka 1,2,*, Conrad V. Simoben 3 , Kennedy O. Abuga 4, James A. Mbah 1, Rajshekhar Karpoormath 5 , Dennis Ongarora 4 , Hannington Mugo 4, Elvis Monya 6, Fidelis Cho-Ngwa 6, Wolfgang Sippl 3 , Edric Joel Loveridge 7,* and Fidele Ntie-Kang 1,3,8,* 1 Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63, Buea CM-00237, Cameroon; [email protected] 2 AgroEco Health Platform, International Institute of Tropical Agriculture, Cotonou, Abomey-Calavi BEN-00229, Benin 3 Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany; [email protected] (C.V.S.); [email protected] (W.S.) 4 Department of Pharmaceutical Chemistry, School of Pharmacy, University of Nairobi, Nairobi P.O. Box 19676–00202, Kenya; [email protected] (K.O.A.); [email protected] (D.O.); [email protected] (H.M.) 5 Department of Pharmaceutical Chemistry, School of Chemistry, University of KwaZulu-Natal, Durban 4001, South Africa; [email protected] 6 ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, P.O. Box 63, Buea CM-00237, Cameroon; [email protected] (E.M.); fi[email protected] (F.C.-N.) 7 Department of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, UK 8 Institute of Botany, Technical University of Dresden, 01217 Dresden, Germany * Correspondence: [email protected] or [email protected] (S.B.B.); Citation: Babiaka, S.B.; Simoben, C.V.; [email protected] (E.J.L.); ntiekfi[email protected] or fi[email protected] (F.N.-K.) Abuga, K.O.; Mbah, J.A.; Karpoormath, R.; Ongarora, D.; Abstract: A new iboga-vobasine-type isomeric bisindole alkaloid named voacamine A (1), along with Mugo, H.; Monya, E.; Cho-Ngwa, F.; eight known compounds—voacangine (2), voacristine (3), coronaridine (4), tabernanthine (5), iboxy- Sippl, W.; et al.
    [Show full text]
  • A Review on Tabernaemontana Spp.: Multipotential Medicinal Plant
    Online - 2455-3891 Vol 11, Issue 5, 2018 Print - 0974-2441 Review Article A REVIEW ON TABERNAEMONTANA SPP.: MULTIPOTENTIAL MEDICINAL PLANT ANAN ATHIPORNCHAI* Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131 Thailand. Email: [email protected] Received: 01 March 2016, Revised and Accepted: 29 January 2018 ABSTRACT Plants in the genus Tabernaemontana have been using in Thai and Chinese traditional medicine for the treatment several diseases. The great majority constituents of Tabernaemontana species have already been subjected to isolation and identification of monoterpene indole alkaloids present in their several parts. Many of monoterpene indole alkaloids exhibited a wide array of several activities. The biogenesis, classification, and biological activities of these alkaloids which found in Tabernaemontana plants were discussed in this review and its brings the research up-to-date on the bioactive compounds produced by Tabernaemontana species, directly or indirectly related to human health. Keywords: Tabernaemontana plants, Phytochemistry, Biogenesis, Terpene indole alkaloids, Biological activities. © 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i5.11478 INTRODUCTION alkaloids are investigated. All monoterpene indole alkaloids are derived from aromatic amino acid tryptophan and the iridoid terpene Several already drugs were discovered from the natural products. secologanin (Scheme 1). Tryptophan converts to tryptamine using Especially, the treatments of infectious diseases and oncology have tryptophan decarboxylase which is a pyridoxal-dependent enzyme. benefited from numerous drugs which were found in natural product The specific iridoid precursor was subsequently identified as sources.
    [Show full text]
  • The Catechol-O-Methyltransferase Inhibitory Potential of Z
    Revista Brasileira de Farmacognosia 25 (2015) 382–386 www .sbfgnosia.org.br/revista Original Article The catechol-O-methyltransferase inhibitory potential of Z-vallesiachotamine by in silico and in vitro approaches a,b,1 a,1 a Carolina dos Santos Passos , Luiz Carlos Klein-Júnior , Juliana Maria de Mello Andrade , c a,∗ Cristiane Matté , Amélia Teresinha Henriques a Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil b Department of Pharmacochemistry, School of Pharmaceutical Sciences, Université de Genève, Genève, Switzerland c Programa de Pós-graduac¸ ão em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil a b s t r a c t a r t i c l e i n f o Article history: Z-Vallesiachotamine is a monoterpene indole alkaloid that has a ␤-N-acrylate group in its structure. Received 29 May 2015 This class of compounds has already been described in different Psychotria species. Our research group Accepted 3 July 2015 observed that E/Z-vallesiachotamine exhibits a multifunctional feature, being able to inhibit targets Available online 26 July 2015 related to neurodegeneration, such as monoamine oxidase A, sirtuins 1 and 2, and butyrylcholinesterase enzymes. Aiming at better characterizing the multifunctional profile of this compound, its effect on Keywords: cathecol-O-methyltransferase activity was investigated. The cathecol-O-methyltransferase activity was Monoterpene indole alkaloids evaluated in vitro by a fluorescence-based method, using S-(5 -adenosyl)-l-methionine as methyl donor Vallesiachotamine and aesculetin as substrate. The assay optimization was performed varying the concentrations of methyl Catechol-O-methyltransferase l Docking donor (S-(5 -adenosyl)- -methionine) and enzyme.
    [Show full text]
  • Links Between Genetic Groups, Indole Alkaloid Profiles and Ecology Within the Grass-Parasitic Claviceps Purpurea Species Complex
    Toxins 2015, 7, 1431-1456; doi:10.3390/toxins7051431 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex Mariell Negård 1,2, Silvio Uhlig 1,3, Håvard Kauserud 2, Tom Andersen 2, Klaus Høiland 2 and Trude Vrålstad 1,2,* 1 Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway; E-Mails: [email protected] (M.N.); [email protected] (S.U.) 2 Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; E-Mails: [email protected] (H.K.); [email protected] (T.A.); [email protected] (K.H.) 3 Department of the Chemical and Biological Working Environment, National Institute of Occupational Health, P.O. Box 8149 Dep, 0033 Oslo, Norway * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +47-2321-6247. Academic Editor: Christopher L. Schardl Received: 3 January 2015 / Accepted: 22 April 2015 / Published: 28 April 2015 Abstract: The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS.
    [Show full text]
  • Ethylene-Induced Vinblastine Accumulation Is Related to Activated Expression of Downstream TIA Pathway Genes in Catharanthus Roseus
    Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 3708187, 8 pages http://dx.doi.org/10.1155/2016/3708187 Research Article Ethylene-Induced Vinblastine Accumulation Is Related to Activated Expression of Downstream TIA Pathway Genes in Catharanthus roseus Xi Wang,1 Ya-Jie Pan,1 Bo-Wen Chang,2 Yan-Bo Hu,2 Xiao-Rui Guo,1 and Zhong-Hua Tang1 1 Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China 2College of Life Science, Northeast Forestry University, Harbin 150040, China Correspondence should be addressed to Xiao-Rui Guo; [email protected] and Zhong-Hua Tang; [email protected] Received 13 December 2015; Revised 30 March 2016; Accepted 6 April 2016 Academic Editor: Sudhir Sopory Copyright © 2016 Xi Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We selected different concentrations of ethephon, to stress C. roseus.WeusedqRT-PCRandHPLCfollowedbyPCAtoobtain comprehensive profiling of the vinblastine biosynthesis in response to ethephon. Based on our findings, the results showed thatthe high concentration of ethephon had a positive effect at both transcriptional and metabolite level. Meanwhile, there was a remarkable decrease of hydrogen peroxide content and a promoted peroxidase activity in leaves. The loading plot combination with correlation analysis suggested that CrPrx1 could be regarded as a positive regulator and interacts with ethylene response factor (ERF)toplaya key role in vinblastine content and peroxidase (POD) activity. This study provides the foundation for a better understanding of the regulation and accumulation of vinblastine in response to ethephon.
    [Show full text]
  • The Iboga Alkaloids
    The Iboga Alkaloids Catherine Lavaud and Georges Massiot Contents 1 Introduction ................................................................................. 90 2 Biosynthesis ................................................................................. 92 3 Structural Elucidation and Reactivity ...................................................... 93 4 New Molecules .............................................................................. 97 4.1 Monomers ............................................................................. 99 4.1.1 Ibogamine and Coronaridine Derivatives .................................... 99 4.1.2 3-Alkyl- or 3-Oxo-ibogamine/-coronaridine Derivatives . 102 4.1.3 5- and/or 6-Oxo-ibogamine/-coronaridine Derivatives ...................... 104 4.1.4 Rearranged Ibogamine/Coronaridine Alkaloids .. ........................... 105 4.1.5 Catharanthine and Pseudoeburnamonine Derivatives .. .. .. ... .. ... .. .. ... .. 106 4.1.6 Miscellaneous Representatives and Another Enigma . ..................... 107 4.2 Dimers ................................................................................. 108 4.2.1 Bisindoles with an Ibogamine Moiety ....................................... 110 4.2.2 Bisindoles with a Voacangine (10-Methoxy-coronaridine) Moiety ........ 111 4.2.3 Bisindoles with an Isovoacangine (11-Methoxy-coronaridine) Moiety . 111 4.2.4 Bisindoles with an Iboga-Indolenine or Rearranged Moiety ................ 116 4.2.5 Bisindoles with a Chippiine Moiety ... .....................................
    [Show full text]