Draft International Iso/Iec Standard Wd 10967-1

Total Page:16

File Type:pdf, Size:1020Kb

Draft International Iso/Iec Standard Wd 10967-1 SC22/WG11 N507 DRAFT INTERNATIONAL ISO/IEC STANDARD WD 10967-1 Working draft for the Second edition 2007-07-17 Information technology | Language independent arithmetic | Part 1: Integer and floating point arithmetic Technologies de l'information | Arithm´etiqueind´ependante des languages | Partie 1: Arithm´etiquedes nombres entiers et en virgule flottante Warning This document is not an ISO/IEC International Standard. It is distributed for review and comment. It is subject to change without notice and shall not be referred to as an International Standard. Recipients of this draft are invited to submit, with their comment, notification of any relevant patent rights of which they are aware and to provide supporting documentation. EDITOR'S WORKING DRAFT July 18, 2007 11:07 Editor: Kent Karlsson E-mail: [email protected] Reference number ISO/IEC WD 10967-1.1:2007(E) ISO/IEC WD 10967-1.1:2007(E) Working draft Copyright notice This ISO document is a Working Draft for an International Standard and is not copyright- protected by ISO. ii Working draft ISO/IEC WD 10967-1.1:2007(E) Contents Foreword vii Introduction viii 1 Scope 1 1.1 Inclusions . 1 1.2 Exclusions . 2 2 Conformity 3 3 Normative references 4 4 Symbols and definitions 4 4.1 Symbols . 4 4.1.1 Sets and intervals . 4 4.1.2 Operators and relations . 4 4.1.3 Exceptional values . 5 4.1.4 Datatypes . 6 4.1.5 Special values . 6 4.1.6 Operation specification framework . 6 4.2 Definitions of terms . 7 5 Specifications for integer and floating point datatypes and operations 10 5.1 Integer datatypes and operations . 12 5.1.1 Integer result function . 13 5.1.2 Integer operations . 13 5.1.2.1 Comparisons . 13 5.1.2.2 Basic arithmetic . 14 5.2 Floating point datatypes and operations . 15 5.2.1 Conformity to IEC 60559 . 17 5.2.2 Range and granularity constants . 17 5.2.3 Approximate operations . 17 5.2.4 Rounding and rounding constants . 18 5.2.5 Floating point result function . 19 5.2.6 Floating point operations . 20 5.2.6.1 Comparisons . 20 5.2.6.2 Basic arithmetic . 22 5.2.6.3 Value dissection . 24 5.2.6.4 Value splitting . 25 5.3 Operations for conversion between numeric datatypes . 26 5.4 Numerals as operations in a programming language . 26 6 Notification 26 6.1 Model handling of notifications . 26 6.2 Notification alternatives . 27 6.2.1 Recording in indicators . 27 6.2.2 Alteration of control flow . 29 iii ISO/IEC WD 10967-1.1:2007(E) Working draft 6.2.3 Termination with message . 29 6.3 Delays in notification . 29 6.4 User selection of alternative for notification . 30 7 Relationship with language standards 30 8 Documentation requirements 31 Annex A (normative) Partial conformity 33 A.1 Integer overflow notification relaxation . 33 A.2 Infinitary notification relaxation . 34 A.3 Denormalisation loss notification relaxations . 34 A.4 Subnormal values relaxation . 35 A.5 Accuracy relaxation for add, subtract, multiply, and divide . 35 A.6 Comparison operations relaxation . 38 A.7 Sign symmetric value set relaxation . 38 Annex B (informative) IEC 60559 bindings 39 B.1 Summary . 39 B.2 Notification . 40 B.3 Rounding . 41 Annex C (informative) Requirements beyond IEC 60559 43 Annex D (informative) Rationale 45 D.1 Scope . 45 D.1.1 Inclusions . 45 D.1.2 Exclusions . 45 D.1.3 Companion parts to this part . 46 D.2 Conformity . 46 D.2.1 Validation . 47 D.3 Normative references . 47 D.4 Symbols and definitions . 47 D.4.1 Symbols . 48 D.4.2 Definitions of terms . 48 D.5 Specifications for integer and floating point datatypes and operations . 49 D.5.1 Integer datatypes and operations . 50 D.5.1.0.1 Unbounded integers . 50 D.5.1.0.2 Bounded non-modulo integers . 51 D.5.1.0.3 Modulo integers . 51 D.5.1.0.4 Modulo integers versus overflow . 52 D.5.1.1 Integer result function . 52 D.5.1.2 Integer operations . 52 D.5.1.2.1 Comparisons . 52 D.5.1.2.2 Basic arithmetic . 52 D.5.2 Floating point datatypes and operations . 53 D.5.2.0.1 Constraints on the floating point parameters . 54 D.5.2.0.2 Radix complement floating point . 55 D.5.2.1 Conformity to IEC 60559 . 56 iv Working draft ISO/IEC WD 10967-1.1:2007(E) D.5.2.1.1 Subnormal numbers . 56 D.5.2.1.2 Signed zero . 57 D.5.2.1.3 Infinities and NaNs . 57 D.5.2.2 Range and granularity constants . 57 D.5.2.2.1 Relations among floating point datatypes . 58 D.5.2.3 Approximate operations . 58 D.5.2.4 Rounding and rounding constants . 59 D.5.2.5 Floating point result function . 60 D.5.2.6 Floating point operations . 60 D.5.2.6.1 Comparisons . 61 D.5.2.6.2 Basic arithmetic . 61 D.5.2.6.3 Value dissection . 61 D.5.2.6.4 Value splitting . 62 D.5.2.7 Levels of predictability . 62 D.5.2.8 Identities . 63 D.5.2.9 Precision, accuracy, and error . 65 D.5.2.9.1 LIA-1 and error . 66 D.5.2.9.2 Empirical and modelling errors . 66 D.5.2.9.3 Propagation of errors . 67 D.5.2.10 Extra precision . 68 D.5.3 Conversion operations . 68 D.6 Notification . 69 D.6.1 Model handling of notifications . 69 D.6.2 Notification alternatives . 69 D.6.2.1 Recording of indicators . 69 D.6.2.2 Alteration of control flow . 70 D.6.2.3 Termination with message . 71 D.6.3 Delays in notification . 71 D.6.4 User selection of alternative for notification . 71 D.7 Relationship with language standards . 72 D.8 Documentation requirements . 73 Annex E (informative) Example bindings for specific languages 75 E.1 Ada . 76 E.2 C.............................................. 80 E.3 C++ . 86 E.4 Fortran . 91 E.5 Common Lisp . ..
Recommended publications
  • Communications/Information
    Communications/Information Volume 7 — November 2008 Issue date: November 7, 2008 Info Update is published by the Canadian Standards Association (CSA) eight times a year. It contains important information about new and existing standards, e.g., recently published standards, and withdrawn standards. It also gives you highlights of other activities and services. CSA offers a free online service called Keep Me Informed that will notify registered users when each new issue of Info Update is published. To register go to http://www.csa-intl.org/onlinestore/KeepMeInformed/PleaseIdentifyYourself.asp?Language=EN. To view the complete issue of Info Update visit http://standardsactivities.csa.ca/standardsactivities/default.asp?language=en. y Completed Projects / Projets terminés New Standards — New Editions — Special Publications Please note: The following standards were developed by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC), and have been adopted by the Canadian Standards Association. These standards are available in Portable Document Format (PDF) only. CAN/CSA-ISO/IEC 7812-2:08, 2nd edition Identification cards — Identification of issuers — Part 2: Application and registration procedures (Adopted ISO/IEC 7812-2:2007).................................................................. $110 CAN/CSA-ISO/IEC 7816-2:08, 1st edition Identification cards — Integrated circuit cards — Part 2: Cards with contacts — Dimensions and location of the contacts (Adopted ISO/IEC 7816-2:2007) ......................... $60 CAN/CSA-ISO/IEC 7816-13:08, 1st edition Identification cards — Integrated circuit cards — Part 13: Commands for application management in a multi-application environment (Adopted ISO/IEC 7816-13:2007)....... $110 CAN/CSA-ISO/IEC 8484:08, 1st edition Information technology — Magnetic stripes on savingsbooks (Adopted ISO/IEC 8484:2007) ......................................................................................
    [Show full text]
  • Instructions to the Ada Rapporteur Group from SC22/WG9 For
    Work Programme of ISO/IEC JTC1/SC22/WG9 (Ada) For presentation to the SIGAda Conference December 2003 Jim Moore, [The MITRE Corporation] Convener of ISO/IEC JTC1/SC22/WG9 In this presentation, Jim Moore is representing his opinions as an officer of ISO/IEC JTC1/SC22/WG9. His opinions do not necessarily represent those of The MITRE Corporation or any of its sponsors. Goal for the Presentation A quick description of international standardization. An overview of the work programme of the standards committee responsible for Ada. A description of the process and constraints for amending the Ada language standard. Who Makes Standards? De jure standards are formal standards made Today’s by organizations authorized, in some way, to Subject make them. Examples include ISO and IEEE standards. De facto standards (more properly called specifications) are those recognized by the marketplace as important. Examples include OMG CORBA, Windows API. Developers of International Standards ISO IEC ITU ... TC176 JTC1 TC56 SC65A Quality Information Technology Dependability Functional Safety ... SC7 SC22 Software & Systems Languages, OS Engineering WG9 Ada Developers of US Standards ANSI INCITS AIAA ANS ASTM EIA IEEE PMI OMG About 550 organizations in the U. S. make standards. About half of them are accredited by ANSI, allowing them to participate in international standardization activity. Three Ways to Make a US Standard Accredited Standards Organization: An organization that does many things including making standards, e.g. IEEE. Accredited Standards
    [Show full text]
  • The Glib/GTK+ Development Platform
    The GLib/GTK+ Development Platform A Getting Started Guide Version 0.8 Sébastien Wilmet March 29, 2019 Contents 1 Introduction 3 1.1 License . 3 1.2 Financial Support . 3 1.3 Todo List for this Book and a Quick 2019 Update . 4 1.4 What is GLib and GTK+? . 4 1.5 The GNOME Desktop . 5 1.6 Prerequisites . 6 1.7 Why and When Using the C Language? . 7 1.7.1 Separate the Backend from the Frontend . 7 1.7.2 Other Aspects to Keep in Mind . 8 1.8 Learning Path . 9 1.9 The Development Environment . 10 1.10 Acknowledgments . 10 I GLib, the Core Library 11 2 GLib, the Core Library 12 2.1 Basics . 13 2.1.1 Type Definitions . 13 2.1.2 Frequently Used Macros . 13 2.1.3 Debugging Macros . 14 2.1.4 Memory . 16 2.1.5 String Handling . 18 2.2 Data Structures . 20 2.2.1 Lists . 20 2.2.2 Trees . 24 2.2.3 Hash Tables . 29 2.3 The Main Event Loop . 31 2.4 Other Features . 33 II Object-Oriented Programming in C 35 3 Semi-Object-Oriented Programming in C 37 3.1 Header Example . 37 3.1.1 Project Namespace . 37 3.1.2 Class Namespace . 39 3.1.3 Lowercase, Uppercase or CamelCase? . 39 3.1.4 Include Guard . 39 3.1.5 C++ Support . 39 1 3.1.6 #include . 39 3.1.7 Type Definition . 40 3.1.8 Object Constructor . 40 3.1.9 Object Destructor .
    [Show full text]
  • The Evolution of Lisp
    1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp.
    [Show full text]
  • NINETEENTH PLENARY MEETING of ISO/IEC JTC 1/SC 22 London, United Kingdom September 19-22, 2006 [20060918/22] Version 1, April 17, 2006 1
    NINETEENTH PLENARY MEETING OF ISO/IEC JTC 1/SC 22 London, United Kingdom September 19-22, 2006 [20060918/22] Version 1, April 17, 2006 1. OPENING OF PLENARY MEETING (9:00 hours, Tuesday, September 19) 2. CHAIRMAN'S REMARKS 3. ROLL CALL OF DELEGATES 4. APPOINTMENT OF DRAFTING COMMITTEE 5. ADOPTION OF THE AGENDA 6. REPORT OF THE SECRETARY 6.1 SC 22 Project Information 6.2 Proposals for New Work Items within SC 22 6.3 Outstanding Actions From the Eighteenth Plenary of SC 22 Page 1 of 7 JTC 1 SC 22, 2005 Version 1, April 14, 2006 6.4 Transition to ISO Livelink 6.4.1 SC 22 Transition 7. ACTIVITY REPORTS 7.1 National Body Reports 7.2 External Liaison Reports 7.2.1 ECMA International (Rex Jaeschke) 7.2.2 Free Standards Group (Nick Stoughton) 7.2.2 Austin Joint Working Group (Nick Stoughton) 7.3 Internal Liaison Reports 7.3.1 Liaison Officers from JTC 1/SC 2 (Mike Ksar) 7.3.2 Liaison Officer from JTC 1/SC 7 (J. Moore) Page 2 of 7 JTC 1 SC 22, 2005 Version 1, April 14, 2006 7.3.3 Liaison Officer from ISO/TC 37 (Keld Simonsen) 7.3.5 Liaison Officer from JTC 1 SC 32 (Frank Farance) 7.4 Reports from SC 22 Subgroups 7.4.1 Other Working Group Vulnerabilities (Jim Moore) 7.4.2 SC 22 Advisory Group for POSIX (Stephen Walli) 7.5 Reports from JTC 1 Subgroups 7.5.1 JTC 1 Vocabulary (John Hill) 7.5.2 JTC 1 Ad Hoc Directives (John Hill) 8.
    [Show full text]
  • Gábor Melis to Keynote European Lisp Symposium
    Gábor Melis to Keynote European Lisp Symposium OAKLAND, Calif. — April 14, 2014 —Franz Inc.’s Senior Engineer, Gábor Melis, will be a keynote speaker at the 7th annual European Lisp Symposium (ELS’14) this May in Paris, France. The European Lisp Symposium provides a forum for the discussion and dissemination of all aspects of design, implementationand application of any of the Lisp and Lisp- inspired dialects, including Common Lisp, Scheme, Emacs Lisp, AutoLisp, ISLISP, Dylan, Clojure, ACL2, ECMAScript, Racket, SKILL, Hop etc. Sending Beams into the Parallel Cube A pop-scientific look through the Lisp lens at machine learning, parallelism, software, and prize fighting We send probes into the topic hypercube bounded by machine learning, parallelism, software and contests, demonstrate existing and sketch future Lisp infrastructure, pin the future and foreign arrays down. We take a seemingly random walk along the different paths, watch the scenery of pairwise interactions unfold and piece a puzzle together. In the purely speculative thread, we compare models of parallel computation, keeping an eye on their applicability and lisp support. In the the Python and R envy thread, we detail why lisp could be a better vehicle for scientific programming and how high performance computing is eroding lisp’s largely unrealized competitive advantages. Switching to constructive mode, a basic data structure is proposed as a first step. In the machine learning thread, lisp’s unparalleled interactive capabilities meet contests, neural networks cross threads and all get in the way of the presentation. Video Presentation About Gábor Melis Gábor Melis is a consultant at Franz Inc.
    [Show full text]
  • JTC1 and SC22 - Terminology
    JTC1 AD Hoc Terminology, August 2005 1 JTC1 and SC22 - Terminology Background Following my offer to collect together the definitions from SC22 standards, SC22 accepted my offer and appointed me as its terminology representative (I was later also asked to represent UK and BSI) on the JTC1 ad hoc group on terminology. These notes summarise the results of collecting the SC22 definitions, and my impressions of the JTC1 ad hoc group. Roger Scowen August 2005 A collection of definitions from SC22 standards SC22 asked me to prepare a collected terminology for SC22 containing the definitions from standards for which SC22 is responsible, and asked the project editors to send me the definitions in text form. Many, but not all, project editors did so. However there are sufficient for SC22 to judge whether to complete the list or abandon it as an interesting but unprofitable exercise. Adding definitions to the database The project editor of a standard typically sends the definitions from the standard as a Word file, but it may be plain text or in Latex or nroff format. These definitions are transformed into a uniform format by a series of global ‘find & replace’ operations to produce a Word file where each definition is represented as a row of a table with three columns: the term, its definition, and any notes and/or examples. It is often easier to check this has been accomplished by copying and pasting successive attempts into Excel than examining the Word file itself. Sometimes there are special cases such as exotic characters (for example Greek or mathematical characters), special fonts, illustrations, diagrams, or tables.
    [Show full text]
  • The Component Object Model Specification Version 0.9 October 24, 1995
    http://scottge.wordpress.com The Component Object Model Specification Version 0.9 October 24, 1995 This document contains the specification to the Component Object Model (COM), an architecture and supporting infrastructure for building, using, and evolving component software in a robust manner. This specification contains the standard APIs supported by the COM Library, the standard suites of interfaces supported or used by software written in a COM environment, along with the network protocols used by COM in support of distributed computing. This specification is still in draft form, and thus subject to change. Note: This document is an early release of the final specification. It is meant to specify and accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of the final specification or software. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies. Microsoft may have trademarks, copyrights, patents or pending patent applications, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you a license to these trademarks, copyrights, patents, or other intellectual property rights. Copyright ? 1992-95 Microsoft Corporation. All Rights Reserved The Component Object Model Specification The Component Object Model The Component Object Model Specification Draft Version 0.9, October 24, 1995 Microsoft Corporation and Digital Equipment Corporation Copyright ? 1992-95 Microsoft Corporation. Microsoft does not make any representation or warranty regarding the Specification or any product or item developed based on the Specification.
    [Show full text]
  • Reading for Monday
    Reading for Monday Subsequent pages of this document contain the appropriate excerpts from the 3 papers, in the order of the bullet points listed below: • H/Direct: • Read sections 1 and 2: this sets up the problem and design space. – In section 2.3: focus on understanding IDL types versus Haskell types. • Read the bullets on page 157: these explain the five IDL pointer types. • Attempt to understand what marshalPoint on page 159 is doing. • Take note of the main claim on the page after page 159. • Stretching the storage manager: • Read section 4 to understand stable names and stable pointers – Read section 4.4 closely to understand some garbage collection im- plications. • Read section 5.6 to understand the memory management issue (not the solution). • Calling hell from heaven and heaven from hell: • Read the second bulleted point in the intro. • Read section 3 – Read section 3.3 closely (stable pointers) – Read section 3.5 closely (higher-order callbacks) • The Lua Registry: • Read section 27.3.1: “Lua offers a separate table, called the registry, that C code can freely use, but Lua code cannot access.” 1 H/Direct: A Binary Foreign Language Interface for Haskell Sigbjorn Finne Daan Leijen Erik Meijer University of Glasgow University of Utrecht University of Utrecht [email protected] [email protected] [email protected] Simon Peyton Jones University of Glasgow [email protected] Abstract the particular Haskell implementation. To maintain this in- dependence, H/Direct requires the implementation to sup- H/Direct is a foreign-language interface for the purely func- port a primitive foreign-language interface mechanism, ex- tional language Haskell.
    [Show full text]
  • On2 Flix Engine for Linux Installation
    On2 Flix Engine for Linux Installation Topics Preparing the System Java Perl PHP Python Installation Instructions 1. Accept the EULA 2. Verify Prerequisites 3. Uninstall the Previous Version 4. Verify Language Support 5. Register On2 Flix Engine 6. Configure the Installation 7. Install Files 8. Configure the System 9. Build Optional Modules 10. Installation Complete Additional Resources Preparing the System Perform the following to prepare the system for installation: 1. Read the System Overview document provided with this release. 2. Verify Linux prerequisites. a. Operating System: x86 GNU/Linux with GNU C Library (glibc) version 2.3.2 or higher, x86_64 is supported with 32-bit support libraries installed. To determine the version of glibc installed on your system, execute the following: $ /lib/ld-linux.so.2 /lib/libc.so.6 This command should produce output similar to the following (note, your output may differ, however the version number should be equal or greater). © 2009, On2 Technologies, Inc. 1 On2 Flix Engine for Linux Installation GNU C Library stable release version 2.3.2, by Roland McGrath et al. Copyright (C) 2003 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Compiled by GNU CC version 3.3.3. Compiled on a Linux 2.4.26 system on 2004-05-24. Available extensions: GNU libio by Per Bothner crypt add-on version 2.1 by Michael Glad and others linuxthreads-0.10 by Xavier Leroy BIND-8.2.3-T5B libthread_db work sponsored by Alpha Processor Inc NIS(YP)/NIS+ NSS modules 0.19 by Thorsten Kukuk Report bugs using the `glibcbug' script to <[email protected]>.
    [Show full text]
  • Inferred Interface Glue: Supporting Language Interoperability with Static Analysis
    Inferred Interface Glue: Supporting Language Interoperability with Static Analysis by Tristan Ravitch A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Sciences) at the UNIVERSITY OF WISCONSIN–MADISON 2013 Date of final oral examination: 08/09/2013 The dissertation is approved by the following members of the Final Oral Committee: Ben Liblit, Associate Professor, Computer Sciences Tom Reps, Professor, Computer Sciences Susan Horwitz, Professor, Computer Sciences Somesh Jha, Professor, Computer Sciences Timothy Tautges, Adjunct Professor, Engineering Physics © Copyright by Tristan Ravitch 2013 All Rights Reserved i acknowledgments I would like to thank Aditya Thakur, Tycho Andersen, Evan Driscoll, and Steve Jackson for many productive technical discussions and valuable feedback for both practice talks and paper submissions. I would also like to thank my advisor Ben Liblit for consistent encouragement and support. Most importantly, I thank Tycho Andersen, Polina Dudnik, James Doherty, Aubrey Barnard, Erin Barnard, and Bess Berg for numerous bicycle rides and the many other things that have made Madison enjoyable. ii contents Contents ii List of Tables iv List of Figures v Abstract viii 1 Introduction 1 1.1 Preliminaries 6 2 Related Work 8 2.1 Library Binding Generation 8 2.2 FFI Checking 10 3 Error Codes 12 3.1 Algorithm 14 3.2 Related Work 30 3.3 Evaluation 31 4 Semantics of Pointer Parameters 43 4.1 Symbolic Access Paths 48 4.2 Array Parameters 50 4.3 Output Parameters 51
    [Show full text]
  • Using the Go Programming Language in Practice
    MASTER’S THESIS | LUND UNIVERSITY 2014 Using the Go Programming Language in Practice Fredrik Pettersson, Erik Westrup Department of Computer Science Faculty of Engineering LTH ISSN 1650-2884 LU-CS-EX 2014-19 Using the Go Programming Language in Practice Erik Westrup Fredrik Pettersson <[email protected]> <[email protected]> <[email protected]> <[email protected]> June 5, 2014 Master’s thesis work carried out at Axis Communications AB for the Department of Computer Science, Lund University. Supervisors: Jonas Skeppstedt <[email protected]> Mathias Bruce <[email protected]> Robert Rosengren <[email protected]> Examiner Jonas Skeppstedt Abstract When developing software today, we still use old tools and ideas. Maybe it is time to start from scratch and try tools and languages that are more in line with how we actually want to develop software. The Go Programming Language was created at Google by a rather famous trio: Rob Pike, Ken Thompson and Robert Griesemer. Before introducing Go, the company suffered from their development process not scaling well due to slow builds, uncontrolled dependencies, hard to read code, poor documenta- tion and so on. Go is set out to provide a solution for these issues. The purpose of this master’s thesis was to review the current state of the language. This is not only a study of the language itself but an investigation of the whole software development process using Go. The study was carried out from an embedded development perspective which includes an investigation of compilers and cross-compilation. We found that Go is exciting, fun to use and fulfills what is promised in many cases.
    [Show full text]