Follow-Up of Delayed Health Consequences of Acute Accidental Radiation Exposure Lessons to Be Learned from Their Medical Management

Total Page:16

File Type:pdf, Size:1020Kb

Follow-Up of Delayed Health Consequences of Acute Accidental Radiation Exposure Lessons to Be Learned from Their Medical Management IAEA-TECDOC-1300 Follow-up of delayed health consequences of acute accidental radiation exposure Lessons to be learned from their medical management Co-sponsored by the International Atomic Energy Agency and the World Health Organization July 2002 The originating Section of this publication in the IAEA was: Radiation Safety Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria FOLLOW-UP OF DELAYED HEALTH CONSEQUENCES OF ACUTE ACCIDENTAL RADIATION EXPOSURE IAEA, VIENNA, 2002 IAEA-TECDOC-1300 ISBN 92–0–133202–5 ISSN 1011–4289 © IAEA, 2002 Printed by the IAEA in Austria July 2002 FOREWORD While the use of radioactive materials around the world offers a wide range of benefits in medicine, industry and research, safety precautions are essential to limit the exposure of persons to harmful radiation. When the quantity of radioactive material employed is substantial, as when radioactive sources are used for radiotherapy in medicine or for industrial radiography, extreme care is necessary to prevent accidents that may lead to severe health consequences for the individuals involved. Despite the fact that the precautions to be taken are clearly established, accidents with radiation sources continue to occur, albeit infrequently. The IAEA, as part of its ‘Safety of Radiation Sources’ and ‘Emergency Response’ subprogrammes, follows up severe accidents of this kind. In so doing, the IAEA attempts to document both the circumstances leading to the accident and the subsequent medical treatment in order to define the lessons to be learned from these events. The overall objective is to provide information that will be of benefit to organizations with responsibilities for radiation protection, the safety of radiation sources and the medical management of radiation accidents. The International Atomic Energy Agency has issued a number of publications on radiation accidents which have occurred in the past 15 years, reporting on the causes, radiation safety aspects and medical management of those affected particularly in the acute phase following an accident. These reports cover the accidents in Chernobyl, Ukraine (the Republic of the former Soviet Union) and Goiânia (Brazil), and those in El Salvador, Vietnam, Belarus, Israel, Estonia, Costa Rica, Georgia, Russian Federation, Turkey, Peru and Panama. In 1998 the IAEA published three Safety Reports, co-sponsored by the World Health Organization, aimed at disseminating medical information on the recognition and treatment of radiation injuries, planning the medical response to radiation accidents and occupational health surveillance in the event of accidental overexposure. As part of the co-operative arrangements between the IAEA and WHO, a joint IAEA–WHO technical meeting (TM) was held on 1–3 October 2001 at WHO Headquarters. Ten radiation medicine experts, who had been responsible for providing medical assistance to victims of radiation accidents, and four members of the Joint IAEA–WHO Secretariat, attended the meeting. The objectives of the TM were to review the delayed health consequences of acute exposure to radiation consecutive to a number of recent radiation accidents and to analyse lessons to be learned in their diagnosis and treatment. Eight papers were presented and discussed. These form the basis of this joint IAEA–WHO publication. Accounting for the conclusions and lessons learned from the medical management and follow up of recent severe radiation accidents, a Joint IAEA–WHO Consultancy Services Meeting (CSM) was held on 8–9 November 2001 at the WHO Collaborating Centre for Radiation Accident Management, at the University of Ulm, Germany, where recommendations were developed by the team of medical experts for the Joint Secretariat on updating the strategy for the treatment of local radiation injuries and of acute radiation sickness. These are to be discussed in an upcoming joint publication together with recent follow-up findings. The contribution of all participants to the drafting and review of this publication is acknowledged. The Chernobyl chapters have benefited greatly from the technical review of G. Souchkevitch, the Scientific Co-Secretary from the WHO. The IAEA officer responsible for the preparation of this report was I. Turai of the Division of Radiation and Waste Safety. EDITORIAL NOTE The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. CONTENTS Summary ..................................................................................................................................................1 CHAPTER 1. HEALTH CONSEQUENCES IN THE CHERNOBYL EMERGENCY WORKERS SURVIVING AFTER CONFIRMED ACUTE RADIATION SICKNESS..................................................................................5 1.1. Short description of the Chernobyl accident .....................................................................................5 1.1.1. Place, date, circumstances .......................................................................................................5 1.1.2. Radioactive source...................................................................................................................5 1.1.3. Number of affected persons, estimated individual doses.........................................................5 1.1.4. Degree and type of initial injuries............................................................................................6 1.2. Medical actions in the early period after the accident.......................................................................6 1.3. Follow-up of ARS survivors in the Scientific Center for Radiation Medicine, Kiev, Ukraine.........7 1.3.1. Patients and methods of study..................................................................................................8 1.4. Follow-up in the delayed period: Non-stochastic and stochastic consequences in acute radiation syndrome survivors...............................................................................................9 1.4.1. Oncological and oncohaematological pathology.....................................................................9 1.4.2. Haematopoiesis......................................................................................................................11 1.4.3. Immune system......................................................................................................................13 1.4.4. Cytogenetic analysis ..............................................................................................................15 1.4.5. Follow-up of the nervous system...........................................................................................16 1.4.6. Endocrine system...................................................................................................................17 1.4.7. Other organs and systems ......................................................................................................18 1.4.8. Metabolic processes...............................................................................................................20 1.4.9. Follow-up of skin injuries......................................................................................................21 1.4.10. Eyes......................................................................................................................................22 1.4.11. Capacity for work and disability..........................................................................................23 1.5. Conclusions.................................................................................................................................23 1.6. Lessons learned...........................................................................................................................24 References to Chapter 1 .........................................................................................................................25 CHAPTER 2. PSYCHOLOGICAL CONSEQUENCES OF NUCLEAR AND RADIOLOGICAL ACCIDENTS: DELAYED NEUROPSYCHIATRIC EFFECTS OF THE ACUTE RADIATION SICKNESS FOLLOWING CHERNOBYL...............27 2.1. The accident ....................................................................................................................................27 2.2. Follow-up in the delayed period......................................................................................................27 2.2.1. Frequency of medical examinations per year ........................................................................27 2.2.2. Type of examinations (laboratory methods and clinical investigations) ...............................27 2.2.3. Results of clinical and laboratory examinations (cross-sectional neuropsychiatric study of ARS patients with parallel groups, 1996–1998) .....................................................34 2.2.4. Psycho- and neurophysiological studies ................................................................................37 2.2.5. Principles and methods of treatment......................................................................................44
Recommended publications
  • The Ageing Haematopoietic Stem Cell Compartment
    REVIEWS The ageing haematopoietic stem cell compartment Hartmut Geiger1,2, Gerald de Haan3 and M. Carolina Florian1 Abstract | Stem cell ageing underlies the ageing of tissues, especially those with a high cellular turnover. There is growing evidence that the ageing of the immune system is initiated at the very top of the haematopoietic hierarchy and that the ageing of haematopoietic stem cells (HSCs) directly contributes to changes in the immune system, referred to as immunosenescence. In this Review, we summarize the phenotypes of ageing HSCs and discuss how the cell-intrinsic and cell-extrinsic mechanisms of HSC ageing might promote immunosenescence. Stem cell ageing has long been considered to be irreversible. However, recent findings indicate that several molecular pathways could be targeted to rejuvenate HSCs and thus to reverse some aspects of immunosenescence. HSC niche The current demographic shift towards an ageing popu- The innate immune system is also affected by ageing. A specialized lation is an unprecedented global phenomenon that has Although an increase in the number of myeloid precur- microenvironment that profound implications. Ageing is associated with tissue sors has been described in the bone marrow of elderly interacts with haematopoietic attrition and an increased incidence of many types of can- people, the oxidative burst and the phagocytic capacity of stem cells (HSCs) to regulate cers, including both myeloid and lymphoid leukaemias, and both macrophages and neutrophils are decreased in these their fate. other haematopoietic cell malignancies1,2. Thus, we need individuals12,13. Moreover, the levels of soluble immune to understand the molecular and cellular mechanisms of mediators are altered with ageing.
    [Show full text]
  • Diverse T-Cell Differentiation Potentials of Human Fetal Thymus, Fetal Liver, Cord Blood and Adult Bone Marrow CD34 Cells On
    IMMUNOLOGY ORIGINAL ARTICLE Diverse T-cell differentiation potentials of human fetal thymus, fetal liver, cord blood and adult bone marrow CD34 cells on lentiviral Delta-like-1-modified mouse stromal cells Ekta Patel,1 Bei Wang,1 Lily Lien,2 Summary Yichen Wang,2 Li-Jun Yang,3 Jan Human haematopoietic progenitor/stem cells (HPCs) differentiate into S. Moreb4 and Lung-Ji Chang1 functional T cells in the thymus through a series of checkpoints. A conve- 1Department of Molecular Genetics and nient in vitro system will greatly facilitate the understanding of T-cell Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA, 2Vectorite development and future engineering of therapeutic T cells. In this report, Biomedica Inc., Taipei, Taiwan, 3Department we established a lentiviral vector-engineered stromal cell line (LSC) of Pathology, Immunology and Laboratory expressing the key lymphopoiesis regulator Notch ligand, Delta-like 1 Medicine, University of Florida, Gainesville, (DL1), as feeder cells (LSC-mDL1) supplemented with Flt3 ligand (fms- 4 FL, USA, and Department of Medicine, like tyrosine kinase 3, Flt3L or FL) and interleukin-7 for the development University of Florida, Gainesville, FL, USA of T cells from CD34+ HPCs. We demonstrated T-cell development from human HPCs with various origins including fetal thymus (FT), fetal liver (FL), cord blood (CB) and adult bone marrow (BM). The CD34+ HPCs from FT, FL and adult BM expanded more than 100-fold before reaching the b-selection and CD4/CD8 double-positive T-cell stage. The CB HPCs, on the other hand, expanded more than 1000-fold before b-selection.
    [Show full text]
  • Cognitive Emotional Sequelae Post Stroke
    11/26/2019 The Neuropsychology of Objectives 1. Identify various cognitive sequelae that may result from stroke Stroke: Cognitive & 2. Explain how stroke may impact emotional functioning, both acutely and long-term Emotional Sequelae COX HEALTH STROKE CONFERENCE BRITTANY ALLEN, PHD, ABPP, MBA 12/13/2019 Epidemiology of Stroke Stroke Statistics • > 795,000 people in the United States have a stroke • 5th leading cause of death for Americans • ~610,000 are first or new strokes • Risk of having a first stroke is nearly twice as high for blacks as whites • ~1/4 occur in people with a history of prior stroke • Blacks have the highest rate of death due to stroke • ~140,000 Americans die every year due to stroke • Death rates have declined for all races/ethnicities for decades except that Hispanics have seen • Approximately 87% of all strokes are ischemic an increase in death rates since 2013 • Costs the United States an estimated $34 billion annually • Risk for stroke increases with age, but 34% of people hospitalized for stroke were < 65 years of • Health care services age • Medicines to treat stroke • Women have a lower stroke risk until late in life when the association reverses • Missed days of work • Approximately 15% of strokes are heralded by a TIA • Leading cause of long-term disability • Reduces mobility in > 50% of stroke survivors > 65 years of age Source: Centers for Disease Control Stroke Death Rates Neuropsychological Assessment • Task Engagement • Memory • Language • Visuospatial Functioning • Attention/Concentration • Executive
    [Show full text]
  • RADIATION EFFECTS and SOURCES What Is Radiation? What Does Radiation Do to Us? Where Does Radiation Come From?
    RADIATION EFFECTS and SOURCES What is radiation? What does radiation do to us? Where does radiation come from? United Nations Environment Programme RADIATION EFFECTS and SOURCES What is radiation? What does radiation do to us? Where does radiation come from? United Nations Environment Programme DISCLAIMER This publication is largely based on the findings of the United Nations Scientific Committee on the Effects of Atomic Radiation, a subsidiary body of the United Nations General Assembly and for which the United Nations Environment Pro- gramme provides the secretariat. This publication does not necessarily r epresent the views of the Scientific Committee or of the United Nations Environment Programme. The designations employed and the presentation of the material in this publica- tion do not imply the expression of any opinion whatsoever on the part of the United Nations Environment Programme concerning the legal status of any country, territory, city or area or of its authorities, or concerning delimitation of its frontiers or boundaries. This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. The United Nations Environment Programme would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. The United Nations Environment Programme promotes environmentally sound practices globally and in its own activities. This publication was printed on recycled paper, 100 per cent chlorine free.
    [Show full text]
  • Lack of Motivation: Akinetic Mutism After Subarachnoid Haemorrhage
    Netherlands Journal of Critical Care Submitted October 2015; Accepted March 2016 CASE REPORT Lack of motivation: Akinetic mutism after subarachnoid haemorrhage M.W. Herklots1, A. Oldenbeuving2, G.N. Beute3, G. Roks1, G.G. Schoonman1 Departments of 1Neurology, 2Intensive Care Medicine and 3Neurosurgery, St. Elisabeth Hospital, Tilburg, the Netherlands Correspondence M.W. Herklots - [email protected] Keywords - akinetic mutism, abulia, subarachnoid haemorrhage, cingulate cortex Abstract Akinetic mutism is a rare neurological condition characterised by One of the major threats after an aneurysmal SAH is delayed the lack of verbal and motor output in the presence of preserved cerebral ischaemia, caused by cerebral vasospasm. Cerebral alertness. It has been described in a number of neurological infarction on CT scans is seen in about 25 to 35% of patients conditions including trauma, malignancy and cerebral ischaemia. surviving the initial haemorrhage, mostly between days 4 and We present three patients with ruptured aneurysms of the 10 after the SAH. In 77% of the patients the area of cerebral anterior circulation and akinetic mutism. After treatment of the infarction corresponded with the aneurysm location. Delayed aneurysm, the patients lay immobile, mute and were unresponsive cerebral ischaemia is associated with worse functional outcome to commands or questions. However, these patients were awake and higher mortality rate.[6] and their eyes followed the movements of persons around their bed. MRI showed bilateral ischaemia of the medial frontal Cases lobes. Our case series highlights the risk of akinetic mutism in Case 1: Anterior communicating artery aneurysm patients with ruptured aneurysms of the anterior circulation. It A 28-year-old woman with an unremarkable medical history is important to recognise akinetic mutism in a patient and not to presented with a Hunt and Hess grade 3 and Fisher grade mistake it for a minimal consciousness state.
    [Show full text]
  • Radiation Risk in Perspective
    PS010-1 RADIATION RISK IN PERSPECTIVE POSITION STATEMENT OF THE HEALTH HEALTH PHYSICS SOCIETY* PHYSICS SOCIETY Adopted: January 1996 Revised: August 2004 Contact: Richard J. Burk, Jr. Executive Secretary Health Physics Society Telephone: 703-790-1745 Fax: 703-790-2672 Email: [email protected] http://www.hps.org In accordance with current knowledge of radiation health risks, the Health Physics Society recommends against quantitative estimation of health risks below an individual dose of 5 rem1 in one year or a lifetime dose of 10 rem above that received from natural sources. Doses from natural background radiation in the United States average about 0.3 rem per year. A dose of 5 rem will be accumulated in the first 17 years of life and about 25 rem in a lifetime of 80 years. Estimation of health risk associated with radiation doses that are of similar magnitude as those received from natural sources should be strictly qualitative and encompass a range of hypothetical health outcomes, including the possibility of no adverse health effects at such low levels. There is substantial and convincing scientific evidence for health risks following high-dose exposures. However, below 5–10 rem (which includes occupational and environmental exposures), risks of health effects are either too small to be observed or are nonexistent. In part because of the insurmountable intrinsic and methodological difficulties in determining if the health effects that are demonstrated at high radiation doses are also present at low doses, current radiation protection standards and practices are based on the premise that any radiation dose, no matter how small, may result in detrimental health effects, such as cancer and hereditary genetic damage.
    [Show full text]
  • A Randomized, Double-Blind, Placebo-Controlled Study
    medRxiv preprint doi: https://doi.org/10.1101/2020.04.06.20055715; this version posted April 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 1 Mo%on Sifnos: A randomized, double-blind, placebo-controlled study demonstra%ng the effec%veness of tradipitant in the treatment of mo%on sickness Vasilios M. Polymeropoulos*1, Mark É. Czeisler1#a, Mary M. Gibson1¶, Aus%n A. Anderson1¶, Jane Miglo1#b, Jingyuan Wang1, Changfu Xiao1, Christos M. Polymeropoulos1, Gunther Birznieks1, Mihael H. Polymeropoulos1 1 Vanda Pharmaceu%cals, Washington, District of Columbia, United States of America #a The Ins%tute for Breathing and Sleeping, Aus%n Health, Heidelberg, Victoria, Australia #b College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America *Corresponding author Email: [email protected] (VMP) ¶These authors contributed equally to this work. NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.04.06.20055715; this version posted April 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 2 Abstract Background Novel therapies are needed for the treatment of mo%on sickness given the inadequate relief, and bothersome and dangerous adverse effects of currently approved therapies.
    [Show full text]
  • Adverse Drug Reactions Sample Chapter
    Sample copyright Pharmaceutical Press www.pharmpress.com 5 Drug-induced skin reactions Anne Lee and John Thomson Introduction Cutaneous drug eruptions are one of the most common types of adverse reaction to drug therapy, with an overall incidence rate of 2–3% in hos- pitalised patients.1–3 Almost any medicine can induce skin reactions, and certain drug classes, such as non-steroidal anti-inflammatory drugs (NSAIDs), antibiotics and antiepileptics, have drug eruption rates approaching 1–5%.4 Although most drug-related skin eruptions are not serious, some are severe and potentially life-threatening. Serious reac- tions include angio-oedema, erythroderma, Stevens–Johnson syndrome and toxic epidermal necrolysis. Drug eruptions can also occur as part of a spectrum of multiorgan involvement, for example in drug-induced sys- temic lupus erythematosus (see Chapter 11). As with other types of drug reaction, the pathogenesis of these eruptions may be either immunological or non-immunological. Healthcare professionals should carefully evalu- ate all drug-associated rashes. It is important that skin reactions are identified and documented in the patient record so that their recurrence can be avoided. This chapter describes common, serious and distinctive cutaneous reactions (excluding contact dermatitis, which may be due to any external irritant, including drugs and excipients), with guidance on diagnosis and management. A cutaneous drug reaction should be suspected in any patient who develops a rash during a course of drug therapy. The reaction may be due to any medicine the patient is currently taking or has recently been exposed to, including prescribed and over-the-counter medicines, herbal or homoeopathic preparations, vaccines or contrast media.
    [Show full text]
  • RADIOACTIVE MATERIALS SECTION Revisions 3 and 4 Filing Instructions
    Jeb Bush John O. Agwunobi, M.D., M.B.A Governor Acting Secretary August 2001 Bureau of Radiation Control RADIOACTIVE MATERIALS SECTION Information Notice 2001-04 Revisions 3 and 4 Filing Instructions: Changes to Chapter 64E-5, Florida Administrative Code (F.A.C.) Changes were made to “Control of Radiation Hazard Regu lations,” Chapter 64E-5, F.A.C., that became effective August 8 and September 11, 2001. These changes are indicated as Revision 3 or (R3) and Revision 4 (R4) in the margin. Enclosed are copies of the pages to be inserted. This update is printed on blue paper. These instructions apply to the complete version (brown cover) of Chapter 64E -5, F.A.C. Be sure that Revision 1 and Revision 2 changes have been made before making these changes. This can be verified by checking page ii of the index. PART PAGES TO BE REMOVED PAGES TO BE INSERTED Page Number Page Number Index i through xii i through xii I Part I Index Part I Index General Provisions I-1 through I-22 I-1 through I-22 II Part II Index Part II Index Licensing of Radioactive II-45 through II-46 II-45 through II-46 Materials II-53 through II-54 II-53 through II-54 IV Part IV Index Part IV Index Radiation Safety Requirements IV-1 through IV-16 IV-1 through IV-24 for Industrial Radiographic Operations VI Part VI Index Part VI Index Use of Radionuclides in the VI-1 through VI-2 VI-1 through VI-2 Healing Arts VI-5 through VI-6 VI-5 through VI-6 VI-23 through VI-26 VI-23 through VI-26 Attachment Attachment page not Attachment not numbered Certificate – Disposition of numbered (mailing
    [Show full text]
  • Release of Patients Administered Radioactive Materials
    NEW YORK STATE DEPARTMENT OF HEALTH BUREAU OF ENVIRONMENTAL RADIATION PROTECTION DRAFT RADIATION GUIDE 10.17 RELEASE OF PATIENTS ADMINISTERED RADIOACTIVE MATERIALS A. INTRODUCTION Section 16.123(b) of 10 NYCRR Part 16 requires licensees to assess the radiation exposure to individuals from patients administered radioactive materials and take action, as appropriate, to reduce exposures to other individuals. These requirements apply for both diagnostic and therapeutic uses regardless of the amount administered. Section 16.123(b), Medical uses of radioactive material, states: P The licensee shall confine patients undergoing procedures authorized by ...until the total effective dose equivalent for the individuals (other than the patient) likely to receive the greatest dose is 5 mSv (500 mrem) or less. P When the total effective dose equivalent to any individual that could result from the release of a patient is likely to exceed 1 mSv (100 mrem), the licensee shall: • provide the patient, or his/her competent representative, written information on risks of radiation and methods for reducing the exposure of individuals; and • keep records of such patients release for a period of five years. This document is designed to provide guidance on determining the potential dose to an individual likely to receive the highest dose from exposure to the patient, to establish appropriate activities and dose rates for release, to provide guidelines for instructions to patients on how to reduce exposures to other individuals, to describe recordkeeping requirements, and to inform licensees of other potential problems associated with the release of patients containing radioactive materials. B. DISCUSSION The radiation dose to another individual from a patient is highly dependent on a number of factors, including the amount and type of radioactive material administered, the patient's living/working arrangements, ability/willingness to follow instructions, etc.
    [Show full text]
  • Autologous Haematopoietic Stem Cell Transplantation (Ahsct) for Severe Resistant Autoimmune and Inflammatory Diseases - a Guide for the Generalist
    This is a repository copy of Autologous haematopoietic stem cell transplantation (aHSCT) for severe resistant autoimmune and inflammatory diseases - a guide for the generalist. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/144052/ Version: Published Version Article: Snowden, J.A. orcid.org/0000-0001-6819-3476, Sharrack, B., Akil, M. et al. (5 more authors) (2018) Autologous haematopoietic stem cell transplantation (aHSCT) for severe resistant autoimmune and inflammatory diseases - a guide for the generalist. Clinical Medicine, 18 (4). pp. 329-334. ISSN 1470-2118 https://doi.org/10.7861/clinmedicine.18-4-329 © Royal College of Physicians 2018. This is an author produced version of a paper subsequently published in Clinical Medicine. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/
    [Show full text]
  • Radiation Basics
    Environmental Impact Statement for Remediation of Area IV \'- f Susana Field Laboratory .A . &at is radiation? Ra - -.. - -. - - . known as ionizing radiatios bScause it can produce charged.. particles (ions)..- in matter. .-- . 'I" . .. .. .. .- . - .- . -- . .-- - .. What is radioactivity? Radioactivity is produced by the process of radioactive atmi trying to become stable. Radiation is emitted in the process. In the United State! Radioactive radioactivity is measured in units of curies. Smaller fractions of the curie are the millicurie (111,000 curie), the microcurie (111,000,000 curie), and the picocurie (1/1,000,000 microcurie). Particle What is radioactive material? Radioactive material is any material containing unstable atoms that emit radiation. What are the four basic types of ionizing radiation? Aluminum Leadl Paper foil Concrete Adphaparticles-Alpha particles consist of two protons and two neutrons. They can travel only a few centimeters in air and can be stopped easily by a sheet of paper or by the skin's surface. Betaparticles-Beta articles are smaller and lighter than alpha particles and have the mass of a single electron. A high-energy beta particle can travel a few meters in the air. Beta particles can pass through a sheet of paper, but may be stopped by a thin sheet of aluminum foil or glass. Gamma rays-Gamma rays (and x-rays), unlike alpha or beta particles, are waves of pure energy. Gamma radiation is very penetrating and can travel several hundred feet in air. Gamma radiation requires a thick wall of concrete, lead, or steel to stop it. Neutrons-A neutron is an atomic particle that has about one-quarter the weight of an alpha particle.
    [Show full text]