Lack of Motivation: Akinetic Mutism After Subarachnoid Haemorrhage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cognitive Emotional Sequelae Post Stroke
11/26/2019 The Neuropsychology of Objectives 1. Identify various cognitive sequelae that may result from stroke Stroke: Cognitive & 2. Explain how stroke may impact emotional functioning, both acutely and long-term Emotional Sequelae COX HEALTH STROKE CONFERENCE BRITTANY ALLEN, PHD, ABPP, MBA 12/13/2019 Epidemiology of Stroke Stroke Statistics • > 795,000 people in the United States have a stroke • 5th leading cause of death for Americans • ~610,000 are first or new strokes • Risk of having a first stroke is nearly twice as high for blacks as whites • ~1/4 occur in people with a history of prior stroke • Blacks have the highest rate of death due to stroke • ~140,000 Americans die every year due to stroke • Death rates have declined for all races/ethnicities for decades except that Hispanics have seen • Approximately 87% of all strokes are ischemic an increase in death rates since 2013 • Costs the United States an estimated $34 billion annually • Risk for stroke increases with age, but 34% of people hospitalized for stroke were < 65 years of • Health care services age • Medicines to treat stroke • Women have a lower stroke risk until late in life when the association reverses • Missed days of work • Approximately 15% of strokes are heralded by a TIA • Leading cause of long-term disability • Reduces mobility in > 50% of stroke survivors > 65 years of age Source: Centers for Disease Control Stroke Death Rates Neuropsychological Assessment • Task Engagement • Memory • Language • Visuospatial Functioning • Attention/Concentration • Executive -
Steroid-Responsive Encephalitis Lethargica Syndrome with Malignant Catatonia
□ CASE REPORT □ Steroid-Responsive Encephalitis Lethargica Syndrome with Malignant Catatonia Yoichi Ono 1, Yasuhiro Manabe 1, Yoshiyuki Hamakawa 1, Nobuhiko Omori 1 and Koji Abe 2 Abstract We report a 47-year-old man who is considered to have sporadic encephalitis lethargica (EL). He presented with hyperpyrexia, lethargy, akinetic mutism, and posture of decorticate rigidity following coma and respira- tory failure. Intravenous methylprednisolone pulse therapy improved his condition rapidly and remarkably. Electroencephalography (EEG) showed severe diffuse slow waves of bilateral frontal dominancy, and paral- leled the clinical course. Our patient fulfilled the diagnostic criteria for malignant catatonia, so we diagnosed secondary malignant catatonia due to EL syndrome. The effect of corticosteroid treatment remains controver- sial in encephalitis; however, some EL syndrome patients exhibit an excellent response to corticosteroid treat- ment. Therefore, EL syndrome may be secondary to autoimmunity against deep grey matter. It is important to distinguish secondary catatonia due to general medical conditions from psychiatric catatonia and to choose a treatment suitable for the medical condition. Key words: encephalitis lethargica, catatonia, steroid therapy (DOI: 10.2169/internalmedicine.46.6179) Introduction Case Report Encephalitis lethargica (EL), named by von Economo, is A 47-year-old man, who had a past history of delusional severe encephalitis which appeared in epidemic form in disorder for about 2 years, developed a pyrexia, vomiting Europe and elsewhere towards the end of World War I and and diarrhea. He was brought to our hospital because his lasted into the 1920’s (1, 2). Since then, occasional cases condition had deteriorated. On admission, his examination that resembled EL syndrome have been described in the showed a body temperature of 39℃ and systolic blood pres- medical literature. -
Supranuclear and Internuclear Ocular Motility Disorders
CHAPTER 19 Supranuclear and Internuclear Ocular Motility Disorders David S. Zee and David Newman-Toker OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN OCULAR MOTOR SYNDROMES CAUSED BY LESIONS OF THE MEDULLA THE SUPERIOR COLLICULUS Wallenberg’s Syndrome (Lateral Medullary Infarction) OCULAR MOTOR SYNDROMES CAUSED BY LESIONS OF Syndrome of the Anterior Inferior Cerebellar Artery THE THALAMUS Skew Deviation and the Ocular Tilt Reaction OCULAR MOTOR ABNORMALITIES AND DISEASES OF THE OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN BASAL GANGLIA THE CEREBELLUM Parkinson’s Disease Location of Lesions and Their Manifestations Huntington’s Disease Etiologies Other Diseases of Basal Ganglia OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN THE PONS THE CEREBRAL HEMISPHERES Lesions of the Internuclear System: Internuclear Acute Lesions Ophthalmoplegia Persistent Deficits Caused by Large Unilateral Lesions Lesions of the Abducens Nucleus Focal Lesions Lesions of the Paramedian Pontine Reticular Formation Ocular Motor Apraxia Combined Unilateral Conjugate Gaze Palsy and Internuclear Abnormal Eye Movements and Dementia Ophthalmoplegia (One-and-a-Half Syndrome) Ocular Motor Manifestations of Seizures Slow Saccades from Pontine Lesions Eye Movements in Stupor and Coma Saccadic Oscillations from Pontine Lesions OCULAR MOTOR DYSFUNCTION AND MULTIPLE OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN SCLEROSIS THE MESENCEPHALON OCULAR MOTOR MANIFESTATIONS OF SOME METABOLIC Sites and Manifestations of Lesions DISORDERS Neurologic Disorders that Primarily Affect the Mesencephalon EFFECTS OF DRUGS ON EYE MOVEMENTS In this chapter, we survey clinicopathologic correlations proach, although we also discuss certain metabolic, infec- for supranuclear ocular motor disorders. The presentation tious, degenerative, and inflammatory diseases in which su- follows the schema of the 1999 text by Leigh and Zee (1), pranuclear and internuclear disorders of eye movements are and the material in this chapter is intended to complement prominent. -
The Locked-In Syndrome: a Review and Presentation of Two Chronic Cases
Paraplegia28 (1990) 5-16 0031-1758/90/0028-0005$10,00 © 1990 International Medical Society ofParapiegia Paraplegia The Locked-in Syndrome: A Review and Presentation of Two Chronic Cases P. Dollfus, MD,l P. L. Milos, MD,(th A. Chapuis, MD,l P. Real, MD,2 M. Orenstein, MD,2 J. W. Soutter, MD2 lCentre de Readaptation, 57 rue Albert Camus, 68093 Mulhouse Cedex, France, 2Centre Hospitalier de Mulhouse, B.P. 1070,68051 Mulhouse Cede x, France. Summary The locked-in syndrome (LIS) is a state of an upper motor neurone quadriplegia involving the cranial nerve pairs with usually a lateral gaze palsy, paralytic mutism, full consciousness and awareness by the patient of his environment. A his torical presentation of the LIS is given as well as a short description of the clinicoana tomic lesion causing LIS. The usual cause is vascular and corresponds to a pontine infarction due to an obstruction of the basilar artery but other lesions in the brain stem can also be the cause. Non-vascular aetiologies, especially traumatic, are reviewed. The use of electroencephalography (EEG), brain auditory evoked poten tials (BAEP) and somesthesic evoked potentials (SEP) are discussed as well as the use in the acute stage of computed tomography (CT), angiography, and magnetic resonance imagery (MR/). The last method may show well delineated ischaemic lesions some time after the event. The communication disability is probably the most difficult to overcome. Two cases of LIS are presented. Key words: Tetraplegia; Locked-in Syndrome; Pontine Infarction; Communica tion Disability. The locked-in syndrome (LIS), a term which has been finally adopted since the publication by Plum and Posner in 1966, was, in fact, described more than 100 years ago, by Alexandre Dumas (father) who depicted in 1846 quite accur ately in his novel'T he Count of Monte Cristo', Monsieur Noirtier as a'corpse with living eyes'. -
Abadie's Sign Abadie's Sign Is the Absence Or Diminution of Pain Sensation When Exerting Deep Pressure on the Achilles Tendo
A.qxd 9/29/05 04:02 PM Page 1 A Abadie’s Sign Abadie’s sign is the absence or diminution of pain sensation when exerting deep pressure on the Achilles tendon by squeezing. This is a frequent finding in the tabes dorsalis variant of neurosyphilis (i.e., with dorsal column disease). Cross References Argyll Robertson pupil Abdominal Paradox - see PARADOXICAL BREATHING Abdominal Reflexes Both superficial and deep abdominal reflexes are described, of which the superficial (cutaneous) reflexes are the more commonly tested in clinical practice. A wooden stick or pin is used to scratch the abdomi- nal wall, from the flank to the midline, parallel to the line of the der- matomal strips, in upper (supraumbilical), middle (umbilical), and lower (infraumbilical) areas. The maneuver is best performed at the end of expiration when the abdominal muscles are relaxed, since the reflexes may be lost with muscle tensing; to avoid this, patients should lie supine with their arms by their sides. Superficial abdominal reflexes are lost in a number of circum- stances: normal old age obesity after abdominal surgery after multiple pregnancies in acute abdominal disorders (Rosenbach’s sign). However, absence of all superficial abdominal reflexes may be of localizing value for corticospinal pathway damage (upper motor neu- rone lesions) above T6. Lesions at or below T10 lead to selective loss of the lower reflexes with the upper and middle reflexes intact, in which case Beevor’s sign may also be present. All abdominal reflexes are preserved with lesions below T12. Abdominal reflexes are said to be lost early in multiple sclerosis, but late in motor neurone disease, an observation of possible clinical use, particularly when differentiating the primary lateral sclerosis vari- ant of motor neurone disease from multiple sclerosis. -
A Rare Case of Creutzfeldt-Jakob Disease in an 80-Year-Old Male
Open Access Case Report DOI: 10.7759/cureus.10038 A Rare Case of Creutzfeldt-Jakob Disease in an 80-Year-Old Male Mario Dervishi 1 , Travis Lambert 1 , Maria Markosyan Karapetyan 2 , Nader Warra 3 , Ziyad Iskenderian 2 1. Internal Medicine, American University of the Caribbean School of Medicine, Cupecoy, SXM 2. Internal Medicine, Ascension Providence Hospital, Southfield, USA 3. Neurology, Ascension Providence Hospital, Southfield, USA Corresponding author: Mario Dervishi, [email protected] Abstract Creutzfeldt-Jakob disease (CJD) is a rare, rapid and fatal human prion disease that causes neurodegeneration. Rapidly progressive dementia, quick involuntary muscle jerking and specific radiographic and laboratory findings are characteristic of the disease. CJD should not be ruled even if the clinical presentation is outside the common age range. Herein we present a case of an 80-year-old man with probable diagnosis of CJD. The absolute diagnosis of CJD can only be confirmed post-mortem with a brain biopsy. Categories: Internal Medicine, Neurology Keywords: creutzfeldt-jakob disease, prion diseases, neurodegenerative disorders Introduction Prion diseases are a cluster of neurodegenerative pathologies caused by misfolding of proteins called prion [1]. Creutzfeldt-Jakob disease (CJD) is the most common form and accounts for more than 90% of human prion diseases, although it is still rare with 350 cases per year reported in the United States [2]. This disease typically presents with rapid course of symptomatology and the unfortunate, inevitable fate is death. Amongst subtypes (sporadic, familial, iatrogenic and variant), sporadic CJD is the most common form seen in 85%-90% of cases. Disease most commonly affects people of ages 50-70 years, with both genders equally affected [3]. -
26 Aphasia, Memory Loss, Hemispatial Neglect, Frontal Syndromes and Other Cerebral Disorders - - 8/4/17 12:21 PM )
1 Aphasia, Memory Loss, 26 Hemispatial Neglect, Frontal Syndromes and Other Cerebral Disorders M.-Marsel Mesulam CHAPTER The cerebral cortex of the human brain contains ~20 billion neurons spread over an area of 2.5 m2. The primary sensory and motor areas constitute 10% of the cerebral cortex. The rest is subsumed by modality- 26 selective, heteromodal, paralimbic, and limbic areas collectively known as the association cortex (Fig. 26-1). The association cortex mediates the Aphasia, Memory Hemispatial Neglect, Frontal Syndromes and Other Cerebral Disorders Loss, integrative processes that subserve cognition, emotion, and comport- ment. A systematic testing of these mental functions is necessary for the effective clinical assessment of the association cortex and its dis- eases. According to current thinking, there are no centers for “hearing words,” “perceiving space,” or “storing memories.” Cognitive and behavioral functions (domains) are coordinated by intersecting large-s- cale neural networks that contain interconnected cortical and subcortical components. Five anatomically defined large-scale networks are most relevant to clinical practice: (1) a perisylvian network for language, (2) a parietofrontal network for spatial orientation, (3) an occipitotemporal network for face and object recognition, (4) a limbic network for explicit episodic memory, and (5) a prefrontal network for the executive con- trol of cognition and comportment. Investigations based on functional imaging have also identified a default mode network, which becomes activated when the person is not engaged in a specific task requiring attention to external events. The clinical consequences of damage to this network are not yet fully defined. THE LEFT PERISYLVIAN NETWORK FOR LANGUAGE AND APHASIAS The production and comprehension of words and sentences is depen- FIGURE 26-1 Lateral (top) and medial (bottom) views of the cerebral dent on the integrity of a distributed network located along the peri- hemispheres. -
Balin Bhatia Gadolinium Deposition Basal Ganglia
T1 weighted basal ganglia hyperintensities due to gadolinium deposition – a cautionary note Bettina Balint, MD1,2 and Kailash P. Bhatia, MD, FRCP1 1 Sobell Department of Motor Neuroscience and Movement Disorders UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom 2 Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany Corresponding author: Prof Kailash P. Bhatia Sobell Department of Motor Neuroscience and Movement Disorders UCL Institute of Neurology Queen Square WC1G 3BG London U.K. Tel: +44 02034488723 Email: [email protected] Correspondence Word count: 585; Character count title: 91; number of references: 5; number of figures: 0; Supplemental Data: 0 Disclosures: Dr Balint reports no conflict of interest. Prof Bhatia reports no conflict of interest. Full disclosures for the past 12 months unrelated to the present manuscript: K.P.B. receives royalties from Oxford University Press and a stipend for MDCP editorship, holds grants from NIHR RfPB, MRC Welcome Strategic grant (WT089698), PD UK (Ref. no.: G-1009) and Horizon 2020 EC grant Propag- Aging. He has received honoraria/financial support to speak/attend meetings or serve on advisory boards from Ipsen, Merz, Allergan, Teva Lundbeck pharmaceutical companies. Gadolinium-based contrast agents (GBCAs) have been widely used in clinical MR imaging since the late 1980ies. Overall, they were considered safe, apart from the well-known risk of nephrogenic systemic fibrosis, which could be counteracted by limitation of their use in patients with renal insufficiency. Now however, there have been a number of publications describing the dose-dependent deposition of Gadolinium in the brain, manifesting as high signal intensities on non-enhanced T1-weighted images particularly in the dentate nucleus and globus pallidus, but also in the thalamus and the pons.1-3 Gadolinium is a rare-earth metal. -
Definition of Stroke/Brain Attack
Definition of Stroke/Brain Attack Stroke II: • A syndrome caused by disruption in the flow of Diagnosis, Evaluation, and Prevention blood to part of the brain due to either: – occlusion of a blood vessel • ischemic stroke Lenore N. Joseph, MD – rupture of a blood vessel Neurology Service Chief, McGuire VAMC • hemorrhagic stroke Assistant Professor of Neurology • The interruption in blood flow deprives the brain VCU Health System of nutrients and oxygen resulting in injury to cells Medical College of Virginia in the affected vascular territory of the brain 1 2 Stroke: The Problem Stroke: The Problem • Third leading cause of death in US • Among 6 month or longer survivors: – after heart disease and cancer – 48% have a hemiparesis • 740,000 new strokes each year – 22% cannot walk • 4.5 million stroke survivors – 24-53% report complete or partial • Leading cause of disability in adults in US dependence for activities • $45.5 billion per year in the USA – 12-18% are aphasic • 1 of 6 Americans will be affected – 32% are clinically depressed – only 10% fully recover 3 4 Symptoms of Brain Attack: Symptoms of Brain Attack: Teach your patients! Teach your patients! • Sudden weakness, paralysis, or numbness of: • Sudden unexplained dizziness –face – especially when associated with other – arm and the leg on one or both sides of the neurologic symptoms body – unsteadiness • Sudden loss of speech, or difficulty speaking or – sudden falls understanding speech • Sudden severe headache and/or loss of • Sudden dimness or loss of vision consciousness – -
Akinetic Mutism As a Classification Criterion for the Diagnosis Of
524 J Neurol Neurosurg Psychiatry 1998;64:524–528 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.64.4.524 on 1 April 1998. Downloaded from Akinetic mutism as a classification criterion for the diagnosis of Creutzfeldt-Jakob disease Anke Otto, Inga Zerr, Maria Lantsch, Kati Weidehaas, Christian Riedemann, Sigrid Poser Abstract damage among which are processes of brain Objectives—Among the classification cri- degeneration and circumscribed cerebral le- teria for the diagnosis of Creutzfeldt- sions, above all bilateral frontal and mesodien- Jakob disease, akinetic mutism is cephalic lesions. Several authors suggested described as a symptom which helps to that, when describing a complex symptomatol- establish the diagnosis as possible or ogy including dementia and a disturbance of probable. Akinetic mutism has been ana- consciousness, the diagnosis of “akinetic mut- tomically divided into two forms—the ism” should be waived and instead be replaced mesencephalic form and the frontal form. by the term “apallic syndrome”.2–3 Another The aim of this study was to delimit the approach is to use the term of akinetic mutism symptom of akinetic mutism in patients and to consider it as just one of several stages with Creutzfeldt-Jakob disease from the within a process leading to an apallic complex of symptoms of an apallic syn- syndrome.4 Akinetic mutism has been a solid drome and to assign it to the individual classification criterion for the diagnosis of pos- forms. sible and probable Creutzfeldt-Jakob disease Methods—Between April and December used by the European Creutzfeldt-Jakob dis- 1996, 25 akinetic and mute patients with ease surveillance unit since 1993. -
Why Do Neurologists Miss Catatonia in Neurology Emergency? a Case
Clinical Neurology and Neurosurgery 184 (2019) 105375 Contents lists available at ScienceDirect Clinical Neurology and Neurosurgery journal homepage: www.elsevier.com/locate/clineuro Why do neurologists miss catatonia in neurology emergency? A case series T and brief literature review ⁎ Sucharita Ananda, Vimal Kumar Paliwala, , Laxmi S Singha, Ravi Uniyalb a Department of Neurology, SGPGIMS, Raebareli road, Lucknow, UP, India b Department of Neurology, King George Medical University, Lucknow, UP, India ARTICLE INFO ABSTRACT Keywords: Catatonia is a well-described clinical syndrome characterized by features that range from mutism, negativism Catatonia and stupor to agitation, mannerisms and stereotype. Causes of catatonia may range from organic brain disorders Extrapyramidal disorder to psychiatric conditions. Despite a characteristic syndrome, catatonia is grossly under diagnosed. The reason for Parkinsonism missed diagnosis of catatonia in neurology setting is not clear. Poor awareness is an unlikely cause because Major depression catatonia is taught among conditions with deregulated consciousness like vegetative state, locked-in state and Schizophrenia akinetic mutism. We determined the proportion of catatonia patients correctly identified by neurology residents in neurology emergency. We also looked at the alternate diagnosis they received to identify catatonia mimics. Twelve patients (age 22–55 years, 7 females) of catatonia were discharged from a single unit of neurology department from 2007 to 2017. In the emergency department, -
Coma, Delirium, and Cognitive Dysfunction in Critical Illness Robert D
Crit Care Clin 22 (2007) 787–804 Coma, Delirium, and Cognitive Dysfunction in Critical Illness Robert D. Stevens, MD*, Paul A. Nyquist, MD, MPH Departments of Anesthesiology/Critical Care Medicine, Neurology, Neurological Surgery, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD 21287, USA Syndromes of global cerebral dysfunction associated with critical illness include acute disorders such as coma and delirium, and chronic processes namely cognitive impairment. These syndromes can result from direct cere- bral injury, but in many instances develop as a complication of a systemic in- sult such as cardiac arrest, hypoxemia, sepsis, metabolic derangements, and pharmacological exposures. Coma frequently evolves into phenomenologi- cally distinct disorders of consciousness such as the vegetative state and the minimally conscious state, and it must be differentiated from conditions in which consciousness is preserved, as in the locked-in state. Coma and de- lirium are independently associated with increased short-term mortality, while cognitive impairment has been linked to the poor long term functional status and quality of life observed in critical illness survivors. Advances have been made in defining, scoring, and delineating the epidemiology of cerebral dysfunction in the intensive care unit, but research is needed to elucidate underlying mechanisms, with the goal of identifying targets for prevention and therapy. Acute brain dysfunction A high proportion of patients who are admitted to the ICU develops a global alteration in cognitive function that is associated with an underlying cerebral process that can be structural or metabolic [1,2]. Terms that are used commonly to describe these disturbances include coma, delirium, encephalop- athy, acute confusional state, organic brain syndrome, acute organic reaction, * Corresponding author.