Phosphorylation of Tau Could Induce Postoperative Cognitive Dysfunction of Propofol-Anesthetized Rats

Total Page:16

File Type:pdf, Size:1020Kb

Phosphorylation of Tau Could Induce Postoperative Cognitive Dysfunction of Propofol-Anesthetized Rats European Review for Medical and Pharmacological Sciences 2017; 21: 3577-3585 Hyperphosphorylation of protein Tau in hippocampus may cause cognitive dysfunction of propofol-anesthetized rats H.-B. ZHENG1, Y.-T. FU2,3, G. WANG4, L.-H. SUN1, Y.-Y. FAN1, T.-W. YANG1 1Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China 2Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China 3Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, China 4Department of Anesthesiology, Jilin Provence People’s Hospital, Changchun, China Abstract. – OBJECTIVE: We aimed to explore anesthesia or several weeks or months after sur- the effect of hyperphosphorylation of Tau on gery. It is one of the postoperative complica- cognitive function of propofol-anesthetized rats. tions of central nervous system and belongs to MATERIALS AND METHODS: Thirty 2-month- mild neurocognition disturbance, which is often old male Wistar rats weighing 180-220 g were ran- manifested as decreased cognitive abilities, im- domly divided into 3 groups (n=10): group of treat- ing with saline (C group), group of treating with paired memory, personality changes, and men- propofol for 1 hour (P1) and 24 h (P24 group). The tal disorders. In severe conditions patients may cognitive function of rats was tested by Morris wa- even experience dementia1,2. Most patients can ter maze before and 1 h or 24 h after drug admin- self-recover from POCD and generally return istration. The rats were then sacrificed. The pro- to normal within 3 months after surgery. Howe- tein and mRNA expression levels of GSK-3β, total ver, there are still some patients faced with and phosphorylated Tau, cyclin D1, p27kip1 and long-term or permanent cognitive impairment. c-caspase 3 in hippocampus were determined by Western blot and reverse transcriptase-poly- Therefore, POCD has a great destructive effect merase chain reaction (RT-PCR), respectively. on patients’ postoperative recovery and quality RESULTS: Compared with group C, the incuba- of life3,4. At present, it is generally believed that tion period of P1 group and P24 group was pro- POCD is induced by surgery or anesthesia and longed, and the target quadrant retention time formed by a variety of factors. It may be related was shortened (p<0.05). There was no statistical to many factors such as age, type of surgery, difference between P1 and P24 group (p>0.05). anesthetic methods, drugs, hypoxia, hypoten- Immunohistochemistry showed that compared 5 6,7 with group C, p-Tau in hippocampus of P1 group sion, and education level . Researches have and P24 group was highly expressed, with sta- demonstrated that elderly patients over 60 are tistical difference (p<0.05). Western blot and more likely to suffer from cognitive impair- RT-PCR showed that protein and mRNA expres- ment after receiving surgery, while a higher sions of GSK-3β, phosphorylated Tau, cyclin D1 level of education plays a protective role in and c-caspase 3 in hippocampus of P1 and P24 postoperative cognitive function. The relation- groups were up-regulated (p<0.05). CONCLUSIONS: Propofol-induced cognitive ship between anesthetic methods and POCD 8 dysfunction in rats may be related to the hy- remains controversial so far. Literature review perphosphorylation of Tau that causes neuro- shows that spinal anesthesia does not reduce nal cells to re-enter the cell cycle, thus leading the prevalence of POCD compared to general to apoptosis. anesthesia. In recent years, numerous papers9-11 have shown that general anesthetics are one of Key Words: Propofol, Anesthesia, Cognitive function, Tau protein. the definitive factors that affect postoperative cognitive function. Tau protein is a highly soluble microtubu- Introduction le-associated protein which is mainly found in central nervous cells. Tau mainly combi- Postoperative cognitive dysfunction (POCD) nes with tubulin to promote its polymeriza- refers to cognitive decline that occurs during tion to form microtubules, which are impor- Corresponding Author: Yantao Fu, MD; e-mail: [email protected] 3577 H.-B. Zheng, Y.-T. Fu, G. Wang, L.-H. Sun, Y.-Y. Fan, T.-W. Yang tant structures that maintain the integrity of Morris Water Maze Test the neural cytoskeleton and the transport of substances in axons17. When Tau protein is ab- Positioning Navigation Training normally phosphorylated, glycosylated or ubi- (Acquired Training) quitinated, it loses its stabilizing effect on the Rats were put into the water pool with their microtubules, while can make the nerve fibers heads toward the water in a random position lose their normal biological functions. Neuro- (east, west, south and north). The time each rat fibrillary tangles caused by abnormally pho- used to find the platform was recorded as the sphorylated Tau protein are considered to be time to escape from the incubation period. If a one of the major pathogenesis of Alzheimer’s rat failed to find a platform within 60 s, it could disease (AD) or protein-related diseases. In- to be guided to the platform where it was kept for vestigations18-20 have shown that general ane- 10 s, and the time (escape latency) was recorded sthetics can cause abnormal phosphorylation as 60 s. Each rat was trained four times a day of Tau protein in the hippocampus, which is (four quadrants in each of the east, west, south, closely related to degenerative changes in cen- and north) and trained for 5 consecutive days. tral nervous system21,22, suggesting that the This study was approved by the Animal Ethics abnormal phosphorylation of Tau protein cau- Committee of Jilin University Animal Center.. sed by general anesthetics is one of the major causes of POCD. Nykanen et al23 suggested Space Exploration Training that activation of GABAA receptor could indu- After the positioning navigation training, the ce the activation of cyclin-dependent kinase 5 platform was removed, and the rats were placed (Cdk5) and reduce the binding of Tau protein into the water from the target quadrant. The time to protein phosphatases-2A (PP2A), which may that the rat stayed in the target quadrant within change the degree of phosphorylation of Tau 60 s and the number of times it entered the pla- protein. However, whether the high level of tform area were recorded. Tau protein phosphorylation after activation of GABAA receptors can be reversed or reduced Dosage Administration by its antagonists or inverse agonists, has not C Group: tail vein injection of normal saline been elucidated yet. (3.0 mL/kg); P1 Group: tail vein injection of pro- In this study, rats were anesthetized with pofol (30 mg/kg); P24 group: tail vein injection propofol to observe the expression levels of of propofol (30 mg/kg). Propofol was injected phosphorylated Tau (p-Tau) and total protein slowly at 15 mg/kg via the tail vein until the Tau (Tau-5) in the hippocampus. We aimed at rat’s righting reflex disappeared, followed by exploring the effects of Tau hyperphosphoryla- injection for 30 min at a speed of 30 mg/kg/h. tion on cognitive function of propofol-anesthe- The total amount was 30 mg/kg. Rats were kept tized rats. with their spontaneous breathing when admini- stered with drug. After awaking from the ane- sthesia, rats were placed in the cage alone and allowed to free drink. Materials and Methods Quadratic Behavioral Testing Experimental Animals and Grouping (Morris Water Maze Test) 30 healthy male adult Wistar rats of speci- In group C, the secondary water maze was trai- fic-pathogen-free (SPF) grade, with a weight of ned 1 h after injection of saline. In the P1 group, 180-220 g, were selected in our experiment. 5 the second water maze training was performed 1 rats were put in one cage, with quiet breeding h after the injection of propofol. In the P24 group, environment, 12 h lighting/12 h darkness, 22- the second water maze training was performed 24 24°C of room temperature, 55% of humidity, hours after the injection of propofol. free drinking water, and daily replacement lit- ter. Using a random number table method, they Immunohistochemical Staining were randomly divided into 3 groups (n = 10): The tissue slides were subjected to normal saline group (C group), 1 h of propofol-anesthe- gradients of ethanol, washed with phospha- tized group (P1 group), and 24 h of propofol-a- te-buffered saline (PBS) for 3 times, and incu- nesthetized group (P24 group). bated with phosphor-Thr231 polyclonal antibody 3578 Phosphorylation of Tau could induce postoperative cognitive dysfunction of propofol-anesthetized rats and Tau-5 monoclonal antibody in a 4°C freezer 17 (SPSS Inc., Chicago, IL, USA). Measured for 24 hours. On the next day, the slices were data were expressed as mean±standard devia- washed 3 times with PBS and incubated with the tion. Paired t-test was used to compare beha- secondary antibody for 10 min at room tempera- vioral test data within the group. Differences ture. After that, the slices underwent a series of between groups were analyzed using factorial staining such as diaminobenzidine (DAB) colo- variance analysis. p<0.05 was considered stati- ration, hematoxylin counterstaining and sealed stically significant. with gum. Under the microscope, the positive cells stained by the phosphor-Thr231 antibody showed brownish yellow cell nucleus. Three sli- Results ces were randomly selected from each specimen. 6 random fields with non-overlapped fields in the Behavioral Tests hippocampal CAI region in each slice were se- There was no statistically significant differen- lected for capturing images under an inverted ce in the number of incubation periods and the microscope. number of access to the original platform in each group, (Figure 1A-1C). After drug administra- Western Blot Analysis tion, both of P1 and P24 group showed prolonged Expression level of GSK-3β, total Tau (Tau- incubation period and shortened target quadrant 5), phosphorylated Tau (phosphorylated-Thr231 retention time compared with those before tre- site, phosphor-Thr231), cyclin D1, p27kip1, and atment (p<0.05), (Figure 1B).
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0224012 A1 Suvanprakorn Et Al
    US 2004O224012A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0224012 A1 Suvanprakorn et al. (43) Pub. Date: Nov. 11, 2004 (54) TOPICAL APPLICATION AND METHODS Related U.S. Application Data FOR ADMINISTRATION OF ACTIVE AGENTS USING LIPOSOME MACRO-BEADS (63) Continuation-in-part of application No. 10/264,205, filed on Oct. 3, 2002. (76) Inventors: Pichit Suvanprakorn, Bangkok (TH); (60) Provisional application No. 60/327,643, filed on Oct. Tanusin Ploysangam, Bangkok (TH); 5, 2001. Lerson Tanasugarn, Bangkok (TH); Suwalee Chandrkrachang, Bangkok Publication Classification (TH); Nardo Zaias, Miami Beach, FL (US) (51) Int. CI.7. A61K 9/127; A61K 9/14 (52) U.S. Cl. ............................................ 424/450; 424/489 Correspondence Address: (57) ABSTRACT Eric G. Masamori 6520 Ridgewood Drive A topical application and methods for administration of Castro Valley, CA 94.552 (US) active agents encapsulated within non-permeable macro beads to enable a wider range of delivery vehicles, to provide longer product shelf-life, to allow multiple active (21) Appl. No.: 10/864,149 agents within the composition, to allow the controlled use of the active agents, to provide protected and designable release features and to provide visual inspection for damage (22) Filed: Jun. 9, 2004 and inconsistency. US 2004/0224012 A1 Nov. 11, 2004 TOPCAL APPLICATION AND METHODS FOR 0006 Various limitations on the shelf-life and use of ADMINISTRATION OF ACTIVE AGENTS USING liposome compounds exist due to the relatively fragile LPOSOME MACRO-BEADS nature of liposomes. Major problems encountered during liposome drug Storage in vesicular Suspension are the chemi CROSS REFERENCE TO OTHER cal alterations of the lipoSome compounds, Such as phos APPLICATIONS pholipids, cholesterols, ceramides, leading to potentially toxic degradation of the products, leakage of the drug from 0001) This application claims the benefit of U.S.
    [Show full text]
  • Chronic Exposure of Rats to Cognition Enhancing Drugs Produces a Neuroplastic Response Identical to That Obtained by Complex Environment Rearing
    Neuropsychopharmacology (2006) 31, 90–100 & 2006 Nature Publishing Group All rights reserved 0893-133X/06 $30.00 www.neuropsychopharmacology.org Chronic Exposure of Rats to Cognition Enhancing Drugs Produces a Neuroplastic Response Identical to that Obtained by Complex Environment Rearing ,1 1 1 1 Keith J Murphy* , Andrew G Foley , Alan W O’Connell and Ciaran M Regan 1 Department of Pharmacology, Applied Neurotherapeutics Research Group, Conway Institute, University College Dublin, Belfield, Dublin, Ireland Recent data suggest that Alzheimer’s patients who discontinue treatment with cholinesterase inhibitors have a significantly delayed cognitive decline as compared to patients receiving placebo. Such observations suggest cholinesterase inhibitors to provide a disease- modifying effect as well as symptomatic relief and, moreover, that this benefit remains after drug withdrawal. Consistent with this suggestion, we now demonstrate that chronic administration of tacrine, nefiracetam, and deprenyl, drugs that augment cholinergic function, increases the basal frequency of dentate polysialylated neurons in a manner similar to the enhanced neuroplasticity achieved through complex environment rearing. While both drug-treated and complex environment reared animals continue to exhibit memory- associated activation of hippocampal polysialylated neurons, the magnitude is significantly reduced suggesting that such interventions induce a more robust memory pathway that can acquire and consolidate new information more efficiently. This hypothesis is
    [Show full text]
  • Multidrug Treatment with Nelfinavir and Cepharanthine Against COVID-19
    Supplemental Information Multidrug treatment with nelfinavir and cepharanthine against COVID-19 Hirofumi Ohashi1,2,¶, Koichi Watashi1,2,3,4*, Wakana Saso1,5.6,¶, Kaho Shionoya1,2, Shoya Iwanami7, Takatsugu Hirokawa8,9,10, Tsuyoshi Shirai11, Shigehiko Kanaya12, Yusuke Ito7, Kwang Su Kim7, Kazane Nishioka1,2, Shuji Ando13, Keisuke Ejima14, Yoshiki Koizumi15, Tomohiro Tanaka16, Shin Aoki16,17, Kouji Kuramochi2, Tadaki Suzuki18, Katsumi Maenaka19, Tetsuro Matano5,6, Masamichi Muramatsu1, Masayuki Saijo13, Kazuyuki Aihara20, Shingo Iwami4,7,21,22,23, Makoto Takeda24, Jane A. McKeating25, Takaji Wakita1 1Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan, 2Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan, 3Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan, 4MIRAI, JST, Saitama 332-0012, Japan, 5The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan, 6AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan, 7Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan, 8Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan, 9Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan, 10Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Japan, 11Faculty of Bioscience, Nagahama Institute
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Marrakesh Agreement Establishing the World Trade Organization
    No. 31874 Multilateral Marrakesh Agreement establishing the World Trade Organ ization (with final act, annexes and protocol). Concluded at Marrakesh on 15 April 1994 Authentic texts: English, French and Spanish. Registered by the Director-General of the World Trade Organization, acting on behalf of the Parties, on 1 June 1995. Multilat ral Accord de Marrakech instituant l©Organisation mondiale du commerce (avec acte final, annexes et protocole). Conclu Marrakech le 15 avril 1994 Textes authentiques : anglais, français et espagnol. Enregistré par le Directeur général de l'Organisation mondiale du com merce, agissant au nom des Parties, le 1er juin 1995. Vol. 1867, 1-31874 4_________United Nations — Treaty Series • Nations Unies — Recueil des Traités 1995 Table of contents Table des matières Indice [Volume 1867] FINAL ACT EMBODYING THE RESULTS OF THE URUGUAY ROUND OF MULTILATERAL TRADE NEGOTIATIONS ACTE FINAL REPRENANT LES RESULTATS DES NEGOCIATIONS COMMERCIALES MULTILATERALES DU CYCLE D©URUGUAY ACTA FINAL EN QUE SE INCORPOR N LOS RESULTADOS DE LA RONDA URUGUAY DE NEGOCIACIONES COMERCIALES MULTILATERALES SIGNATURES - SIGNATURES - FIRMAS MINISTERIAL DECISIONS, DECLARATIONS AND UNDERSTANDING DECISIONS, DECLARATIONS ET MEMORANDUM D©ACCORD MINISTERIELS DECISIONES, DECLARACIONES Y ENTEND MIENTO MINISTERIALES MARRAKESH AGREEMENT ESTABLISHING THE WORLD TRADE ORGANIZATION ACCORD DE MARRAKECH INSTITUANT L©ORGANISATION MONDIALE DU COMMERCE ACUERDO DE MARRAKECH POR EL QUE SE ESTABLECE LA ORGANIZACI N MUND1AL DEL COMERCIO ANNEX 1 ANNEXE 1 ANEXO 1 ANNEX
    [Show full text]
  • Cognitive Enhancers
    Cognitive enhancers Memory enhancers are often referred to as "smart drugs", "study drugs",[1] "smart nutrients", "cognitive enhancers", "brain enhancers" or in the scientific literature as nootropics.[2] They are drugs that are purported to improve human cognitive abilities.[3][4] The term covers a broad range of substances including drugs, nutrients and herbs with purported cognitive enhancing effects. The word nootropic was coined in 1964 by Dr. Corneliu E. Giurgea, derived from the Greek words noos, or "mind," and tropein meaning "to bend/turn". Typically, nootropics are thought to work by altering the availability of the brain's supply of neurochemicals (neurotransmitters, enzymes, and hormones), by improving the brain's oxygen supply, or by stimulating nerve growth. However the efficacy of nootropic substances in most cases has not been conclusively determined. This is complicated by the difficulty of defining and quantifying cognition and intelligence. Contents 1 Availability 2 Examples 2.1 Stimulants 2.2 Replenishing and increasing neurotransmitters 2.2.1 Cholinergics 2.2.1.1 Piracetam 2.2.1.2 Aniracetam 2.2.1.3 Other cholinergics 2.2.1.4 Acetylcholinesterase inhibitors 2.2.2 Dopaminergics 2.2.3 Serotonergics 2.3 Anti-depression, adaptogenic (antistress), and mood stabilization 2.4 Brain function and improved oxygen supply 2.5 Purported memory enhancement and learning improvement 2.6 Nerve growth stimulation and brain cell protection 2.7 Recreational drugs with purported nootropic effects 2.8 Dietary nootropics 2.9 Other nootropics 2.9.1 Contentious or possibly unsafe nootropics 3 See also 3.1 Brain and neurology 3.2 Thought and thinking (what nootropics are used for) 3.3 Health 4 References 5 External links Availability Currently there are several drugs on the market that improve memory, concentration, planning and reduce impulsive behavior.
    [Show full text]
  • World of Cognitive Enhancers
    ORIGINAL RESEARCH published: 11 September 2020 doi: 10.3389/fpsyt.2020.546796 The Psychonauts’ World of Cognitive Enhancers Flavia Napoletano 1,2, Fabrizio Schifano 2*, John Martin Corkery 2, Amira Guirguis 2,3, Davide Arillotta 2,4, Caroline Zangani 2,5 and Alessandro Vento 6,7,8 1 Department of Mental Health, Homerton University Hospital, East London Foundation Trust, London, United Kingdom, 2 Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom, 3 Swansea University Medical School, Institute of Life Sciences 2, Swansea University, Swansea, United Kingdom, 4 Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy, 5 Department of Health Sciences, University of Milan, Milan, Italy, 6 Department of Mental Health, Addictions’ Observatory (ODDPSS), Rome, Italy, 7 Department of Mental Health, Guglielmo Marconi” University, Rome, Italy, 8 Department of Mental Health, ASL Roma 2, Rome, Italy Background: There is growing availability of novel psychoactive substances (NPS), including cognitive enhancers (CEs) which can be used in the treatment of certain mental health disorders. While treating cognitive deficit symptoms in neuropsychiatric or neurodegenerative disorders using CEs might have significant benefits for patients, the increasing recreational use of these substances by healthy individuals raises many clinical, medico-legal, and ethical issues. Moreover, it has become very challenging for clinicians to Edited by: keep up-to-date with CEs currently available as comprehensive official lists do not exist. Simona Pichini, Methods: Using a web crawler (NPSfinder®), the present study aimed at assessing National Institute of Health (ISS), Italy Reviewed by: psychonaut fora/platforms to better understand the online situation regarding CEs.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr
    US008158152B2 (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr. 17, 2012 (54) LYOPHILIZATION PROCESS AND 6,884,422 B1 4/2005 Liu et al. PRODUCTS OBTANED THEREBY 6,900, 184 B2 5/2005 Cohen et al. 2002fOO 10357 A1 1/2002 Stogniew etal. 2002/009 1270 A1 7, 2002 Wu et al. (75) Inventor: Nageswara R. Palepu. Mill Creek, WA 2002/0143038 A1 10/2002 Bandyopadhyay et al. (US) 2002fO155097 A1 10, 2002 Te 2003, OO68416 A1 4/2003 Burgess et al. 2003/0077321 A1 4/2003 Kiel et al. (73) Assignee: SciDose LLC, Amherst, MA (US) 2003, OO82236 A1 5/2003 Mathiowitz et al. 2003/0096378 A1 5/2003 Qiu et al. (*) Notice: Subject to any disclaimer, the term of this 2003/OO96797 A1 5/2003 Stogniew et al. patent is extended or adjusted under 35 2003.01.1331.6 A1 6/2003 Kaisheva et al. U.S.C. 154(b) by 1560 days. 2003. O191157 A1 10, 2003 Doen 2003/0202978 A1 10, 2003 Maa et al. 2003/0211042 A1 11/2003 Evans (21) Appl. No.: 11/282,507 2003/0229027 A1 12/2003 Eissens et al. 2004.0005351 A1 1/2004 Kwon (22) Filed: Nov. 18, 2005 2004/0042971 A1 3/2004 Truong-Le et al. 2004/0042972 A1 3/2004 Truong-Le et al. (65) Prior Publication Data 2004.0043042 A1 3/2004 Johnson et al. 2004/OO57927 A1 3/2004 Warne et al. US 2007/O116729 A1 May 24, 2007 2004, OO63792 A1 4/2004 Khera et al.
    [Show full text]
  • EVIDENCE-BASED REVIEW of STROKE REHABILITATION (18Th
    EVIDENCE-BASED REVIEW OF STROKE REHABILITATION (18th Edition) Robert Teasell MD1, Andreea Cotoi MSc1, Jeffrey Chow MSc1, Joshua Wiener BHSc1, Alice Iliescu BSc1, Norhayati Hussein MBBS, Norine Foley MSc, Katherine Salter PhD (cand.) 1Collaboration of Rehabilitation Research Institute, Parkwood Institute Research, Lawson Health Research Institute, St. Joseph’s Health Care London, London, Ontario Executive Summary The Stroke Rehabilitation Evidence-Based Review (SREBR) reviews techniques, therapies, devices, procedures and medications associated with stroke rehabilitation. The purpose of the Evidence-Based Review of Stroke Rehabilitation was to fulfil the 12th recommendation of The Stroke Rehabilitation Consensus Panel Report that supported the continuing review of stroke rehabilitation research with the “purpose of maintaining timely and accurate information on effective stroke rehabilitation, identifying ideas for further research, supporting continuous peer-review and encouraging improved evidence-based practice.” The aim of the SREBR was to: • Be an up-to-date review of the current evidence in stroke rehabilitation. • Provide a comprehensive and accessible review to facilitate best-practice. • Provide specific conclusion based on evidence that could be used to help direct stroke care at the bedside and at home. Since its original publication in April 2002, the SREBR has undergone eighteen major revisions and now includes articles published up to December 2016. To date, we have included over 2,300 randomized controlled trials (RCTs). Methods For the first edition of the SREBR a literature search using multiple databases (MEDLINE, EBASE, MANTIS, PASCAL, and Sci Search) was conducted to identify all potential trials published from 1970- 2001, regardless of study design. The search was restricted to the English language and excluded animal studies.
    [Show full text]
  • WHO Drug Information Vol. 04, No. 4, 1990
    WHO DRUG INFORMATION VOLUME 4 • NUMBER 4 • 1990 PROPOSED INN LIST 64 INTERNATIONAL NONPROPRIETARY NAMES FOR PHARMACEUTICAL SUBSTANCES WORLD HEALTH ORGANIZATION • GENEVA WHO Drug Information WHO Drug Information provides an cerned with the rational use of overview of topics relating to drug drugs. In effect, the journal seeks development and regulation that to relate regulatory activity to are of current relevance and im­ therapeutic practice. It also aims to portance, and will include the lists provide an open forum for debate. of proposed and recommended In­ Invited contributions will portray a ternational Nonproprietary Names variety of viewpoints on matters of for Pharmaceutical Substances general policy with the aim of (INN). Its contents reflect, but do stimulating discussion not only in not present, WHO policies and ac­ these columns but wherever rel­ tivities and they embrace socio­ evant decisions on this subject economic as well as technical mat­ have to be taken. ters. WHO Drug Information is pub­ The objective is to bring issues that lished 4 times a year in English are of primary concern to drug and French. regulators and pharmaceutical manufacturers to the attention of a Annual subscription: Sw.fr. 50.— wide audience of health profes­ Airmail rate: Sw.fr. 60.— sionals and policy-makers con­ Price per copy: Sw.fr. 15.— © World Health Organization 1990 Authors alone are responsible for views expressed Publications of the World Health Organization in signed contributions. enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal The mention of specific companies or of certain Copyright Convention. For rights of reproduc­ manufacturers' products does not imply that they are tion or translation, in part or in toto, applica­ endorsed or recommended by the World Health tion should be made to: Chief, Office of Organization in preference to others of a similar na­ Publications, World Health Organization, ture which are not mentioned.
    [Show full text]
  • Epileptogenesis and Epilepsy
    Epileptogenesis and Epilepsy Asla Pitkänen and Xavier Ekolle Ndode-Ekane A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland www.tocris.com The word “epilepsy” is derived from the Greek verb ἐπιλαμβάνειν (or epilambánein) meaning “to be seized”, “to be taken hold of”, or “to be attacked”. Hippocrates (400 BC) was the first to suggest that epilepsy is a Products available from Tocris disease of the brain that must be treated. According to the WHO, globally 60 million people have epilepsy, and an estimated 2.4 million are diagnosed with epilepsy each year. There are more than 20 anti-seizure drugs Ca2+-Activated Potassium Channels on market, but in about 30% of people with epilepsy, seizures are not controlled by medication. Apamin, 1-EBIO Ca2+-ATPase Paxilline, Thapsigargin Terminology Molecular, Cellular and Neuronal Network Pathologies CB1 Receptors ACEA, AM 251, (-)-Cannabidiol, Seizure A transient occurrence of signs and/or symptoms due to abnormal excessive Epileptogenesis can be initiated, for example, by an “epilepsy gene”, various types of acute SR141716A or synchronous neuronal activity in the brain. Seizures are categorized according to brain insults or chronic neurodegenerative diseases. The entire epileptogenic process is Cyclooxygenase the International League Against Epilepsy (ILAE) classification into three types: modulated by an individual’s genetic background, microbiota, and exposome (non-genetic Celecoxib, Resveratrol generalized onset; focal onset (previously known as partial seizures); and unknown exposures of an individual in a lifetime, e.g., life-style, medications etc.). Epileptogenesis Gap Channels onset. Epilepsy gene Genetic background continues after epilepsy diagnosis (i.e., occurrence of the first unprovoked seizure) and leads Gap19 to various outcomes (SUDEP, sudden unexpected death; QoL, quality-of-life; Rx, treatment).
    [Show full text]