Evolution of a New Sense for Wind in Flying Phasmids? Afferents and Interneurons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insecta: Phasmatodea) and Their Phylogeny
insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y. -
Methane Production in Terrestrial Arthropods (Methanogens/Symbiouis/Anaerobic Protsts/Evolution/Atmospheric Methane) JOHANNES H
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 5441-5445, June 1994 Microbiology Methane production in terrestrial arthropods (methanogens/symbiouis/anaerobic protsts/evolution/atmospheric methane) JOHANNES H. P. HACKSTEIN AND CLAUDIUS K. STUMM Department of Microbiology and Evolutionary Biology, Faculty of Science, Catholic University of Nijmegen, Toernooiveld, NL-6525 ED Nimegen, The Netherlands Communicated by Lynn Margulis, February 1, 1994 (receivedfor review June 22, 1993) ABSTRACT We have screened more than 110 represen- stoppers. For 2-12 hr the arthropods (0.5-50 g fresh weight, tatives of the different taxa of terrsrial arthropods for depending on size and availability of specimens) were incu- methane production in order to obtain additional information bated at room temperature (210C). The detection limit for about the origins of biogenic methane. Methanogenic bacteria methane was in the nmol range, guaranteeing that any occur in the hindguts of nearly all tropical representatives significant methane emission could be detected by gas chro- of millipedes (Diplopoda), cockroaches (Blattaria), termites matography ofgas samples taken at the end ofthe incubation (Isoptera), and scarab beetles (Scarabaeidae), while such meth- period. Under these conditions, all methane-emitting species anogens are absent from 66 other arthropod species investi- produced >100 nmol of methane during the incubation pe- gated. Three types of symbiosis were found: in the first type, riod. All nonproducers failed to produce methane concen- the arthropod's hindgut is colonized by free methanogenic trations higher than the background level (maximum, 10-20 bacteria; in the second type, methanogens are closely associated nmol), even if the incubation time was prolonged and higher with chitinous structures formed by the host's hindgut; the numbers of arthropods were incubated. -
Phasmatodea) Species
Eur. J. Entomol. 112(3): 409–418, 2015 doi: 10.14411/eje.2015.061 ISSN 1210-5759 (print), 1802-8829 (online) A survey of Wolbachia, Spiroplasma and other bacteria in parthenogenetic and non-parthenogenetic phasmid (Phasmatodea) species MAR PÉREZ-RUIZ 1, PALOMA MARTÍNEZ-RODRÍGUEZ 1, *, JESÚS HERRANZ 2 and JOSÉ L. BELLA1 1 Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, E28049 Madrid, Spain; e-mails: [email protected]; [email protected]; [email protected] 2 Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, E28049 Madrid, Spain; e-mail: [email protected] Key words. Wolbachia, Spiroplasma, bacterial endosymbionts, parthenogenesis, phasmids, phasmid microbiota Abstract. The ecological and genetic mechanisms that determine Phasmatodea reproductive biology are poorly understood. The order includes standard sexual species, but also many others that display distinct types of parthenogenesis (tychoparthenogenesis, automixis, apomixis, etc.), or both systems facultatively. In a preliminary survey, we analysed Wolbachia and Spiroplasma infection in 244 indi- viduals from 28 species and 24 genera of stick insects by bacterial 16S rRNA gene amplification. Our main aim was to determine wheth- er some of the bacterial endosymbionts involved in distinct reproductive alterations in other arthropods, including parthenogenesis and male killing, are present in phasmids. We found no Wolbachia infection in any of the phasmid species analysed, but confirmed the pres- ence of Spiroplasma in some sexual, mixed and asexual species. Phylogenetic analysis identified these bacterial strains as belonging to the Ixodetis clade. Other bacteria genera were also detected. The possible role of these bacteria in Phasmatodea biology is discussed. -
Neuronal Innervation of the Exocrine Defence Glands in Stick Insects Konrad Stolz1†, Christoph-Rüdiger Von Bredow1†, Yvette M
Stolz et al. Frontiers in Zoology (2015) 12:29 DOI 10.1186/s12983-015-0122-0 RESEARCH Open Access Neurons of self-defence: neuronal innervation of the exocrine defence glands in stick insects Konrad Stolz1†, Christoph-Rüdiger von Bredow1†, Yvette M. von Bredow1†, Reinhard Lakes-Harlan2, Tina E. Trenczek1* and Johannes Strauß2* Abstract Background: Stick insects (Phasmatodea) use repellent chemical substances (allomones) for defence which are released from so-called defence glands in the prothorax. These glands differ in size between species, and are under neuronal control from the CNS. The detailed neural innervation and possible differences between species are not studied so far. Using axonal tracing, the neuronal innervation is investigated comparing four species. The aim is to document the complexity of defence gland innervation in peripheral nerves and central motoneurons in stick insects. Results: In the species studied here, the defence gland is innervated by the intersegmental nerve complex (ISN) which is formed by three nerves from the prothoracic (T1) and suboesophageal ganglion (SOG), as well as a distinct suboesophageal nerve (Nervus anterior of the suboesophageal ganglion). In Carausius morosus and Sipyloidea sipylus, axonal tracing confirmed an innervation of the defence glands by this N. anterior SOG as well as N. anterior T1 and N. posterior SOG from the intersegmental nerve complex. In Peruphasma schultei, which has rather large defence glands, only the innervation by the N. anterior SOG was documented by axonal tracing. In the central nervous system of all species, 3-4 neuron types are identified by axonal tracing which send axons in the N. anterior SOG likely innervating the defence gland as well as adjacent muscles. -
Downloaded and Searched Using
bioRxiv preprint doi: https://doi.org/10.1101/453514; this version posted November 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Bacterial contribution to genesis of the novel germ line determinant oskar 2 3 Authors: Leo Blondel1, Tamsin E. M. Jones2,3 and Cassandra G. Extavour1,2* 4 5 Affiliations: 6 1. Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, 7 Cambridge MA, USA 8 2. Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity 9 Avenue, Cambridge MA, USA 10 3. Current address: European Bioinformatics Institute, EMBL-EBI, Wellcome Genome 11 Campus, Hinxton, Cambridgeshire, UK 12 13 * Correspondence to [email protected] 14 15 Abstract: New cellular functions and developmental processes can evolve by modifying 16 existing genes or creating novel genes. Novel genes can arise not only via duplication or 17 mutation but also by acquiring foreign DNA, also called horizontal gene transfer (HGT). Here 18 we show that HGT likely contributed to the creation of a novel gene indispensable for 19 reproduction in some insects. Long considered a novel gene with unknown origin, oskar has 20 evolved to fulfil a crucial role in insect germ cell formation. Our analysis of over 100 insect 21 Oskar sequences suggests that Oskar arose de novo via fusion of eukaryotic and prokaryotic 22 sequences. This work shows that highly unusual gene origin processes can give rise to novel 23 genes that can facilitate evolution of novel developmental mechanisms. -
Newsletter 019.Pdf
/ FROM Dept. of Biology The Open University Walton Hall, MILTON KEYNl:S NEWSLETTER No. 19 May 1984 The Open Un iversity has an Open Day on 23rd June. Ther e will be displays i n most of the Departments , t he BBC studios will be open etc. I hope to have a display in t he Bi ology Depar tment featuring Aplopus (No.48), the sub ject of t he latest of our species descriptions. Two year s ago t he Phasmid display gener a t ed a lot of i nt er es t and I hope to repeat t ha t success this year. On Sunday 5th August there will be a meet i ng of t he PSG hos t ed by Peter Cur r i e at t he Centr e for Life Studi es , Regen ts Park , London. Ther e is no formal agenda at present, and t he starting time of 1~ . O O am i s not mandatory! We hope t hat as many of you as pos6ihle will drop in to the Cent r e s ome t ime during the day. The committee will probably hold a short meet ing, s o i f you have any points t hat you think t hey should discuss could you let Judith Marshall (Cha irman) know, preferably beforehand. Her add~e6s is Dept. of Entomo logy ,British Mus eum (Natural History), Cr omwel l Road , London SW7 SED. I hope t hat those of you who ha ve s ur plus spec i mens will br i ng them along and exchange them wi t h (or donate them to) other members. -
Phasmid Studies, 2(1&2)
ISSN 0966-0011 PHASMID STUDIES. volume 2, numbers 1 & 2. June & December 1993. Editor: P.E. Bragg. Published by the Phasmid Study Group. Phasmid Studies ISSN 0966-0011 volume 2, numbers 1 & 2. Contents The World of Stick and Leaf-Insects in Books, some general remarks Paul D . Brock . A very pretty phasmid : Parectatosoma hystrix J. Roget . 7 Looking at Baculum eggs John Sellick . .. 10 Keeping and breeding Haani ella species successfully Ian Abercrombie . 14 List of stick and leaf-insect (Phasmatod ea = Phasmida) type material in the Natural History Museum, published since Kirby's 1904 Cat alogue Paul D. Brock . .. 17 A survey of the distribution of the unarmed stick insect Acanthoxyla inermis in Port Gaverne and Port Isaac, North Cornwall in 1992 Malcolm Lee. .. 25 The Phasmid Database: changes to version 1 P.E . Bragg 33 Reviews and Abstracts Phasmid Abstracts . .. 35 PSG 121 , Phenac ephorus spinulosus (Haus1eithner) P .E . Bragg . .. 41 Pharnacia serratipes (Gray) Frank Hennemann . ... 45 Phena cocephalus coronatus Werner P.E. Bragg . 51 The leaf-piercing eggs of Asceles John Sellick . 54 Defensive and flying behaviour in Sipyloidea sp. (PSG 103) R .P. Bradburne 56 A new Libethra from Ecuador Wim Potvin . 59 Some notes on Din ophasma gutti gera (Westwood) from Borneo P.E. Bragg . 62 Revi ews and Abstracts Pha smid Abstracts . 66 Publications not ed . 67 Cover illustration: Female Phenacephorus spinulosus (Hausleithner) by P.E . Bragg. The World of Stick and Leaf-Insects in Books, some general remarks. Paul D. Brock, "Papillon , 40, Thorndike Road , Slough, SU ISR. UK. Key words Stick and Leaf Insects, Books. -
Defensive Spiroketals from Asceles Glaber (Phasmatodea): Absolute Configuration and Effects on Ants and Mosquitoes
J Chem Ecol (2012) 38:1105–1115 DOI 10.1007/s10886-012-0183-x Defensive Spiroketals from Asceles glaber (Phasmatodea): Absolute Configuration and Effects on Ants and Mosquitoes Aaron T. Dossey & John M. Whitaker & Maria Cristina A. Dancel & Robert K. Vander Meer & Ulrich R. Bernier & Marco Gottardo & William R. Roush Received: 31 January 2012 /Revised: 16 May 2012 /Accepted: 23 June 2012 /Published online: 14 September 2012 # Springer Science+Business Media, LLC 2012 Abstract Insects are the largest and most diverse group of effect of this compound and its enantiomer on both fire ants organisms on earth, with over 1,000,000 species identified to (Solenopsis invicta) and mosquitoes (Aedes aegypti). date. Stick insects (“walkingsticks” or “phasmids”, Order Phasmatodea) are known for and name-derived from their Keywords Spiroketal . Phasmatodea . Asceles glaber . camouflage that acts as a primary line of defense from preda- Solenopsis invicta . Aedes aegypti . Defense . Phasmatodea. tion. However, many species also possess a potent chemical defense spray. Recently we discovered that the spray of Asceles glaber contains spiroketals [a confirmed major com- Introduction ponent: (2S,6R)-(−)(E)-2-methyl-1,7-dioxaspiro[5.5]unde- cane, and a tentatively identified minor component: 2-ethyl- Insects are known for their utilization of chemistry in com- 1,6-dioxaspiro[4.5]decane] and glucose. In this paper, we: 1) munication and defense (Blum, 1981; Eisner et al., 2005; illustrate the identification of spiroketals and glucose in the Laurent et al., -
Evolutionary Morphology of the Antennal Heart in Stick and Leaf Insects (Phasmatodea) and Webspinners (Embioptera) (Insecta: Eukinolabia)
Zoomorphology https://doi.org/10.1007/s00435-021-00526-4 ORIGINAL PAPER Evolutionary morphology of the antennal heart in stick and leaf insects (Phasmatodea) and webspinners (Embioptera) (Insecta: Eukinolabia) Benjamin Wipfer1 · Sven Bradler2 · Sebastian Büsse3 · Jörg Hammel4 · Bernd R. Müller5 · Günther Pass6 Received: 28 January 2021 / Revised: 15 April 2021 / Accepted: 27 April 2021 © The Author(s) 2021 Abstract The morphology of the antennal hearts in the head of Phasmatodea and Embioptera was investigated with particular refer- ence to phylogenetically relevant key taxa. The antennal circulatory organs of all examined species have the same basic construction: they consist of antennal vessels that are connected to ampullae located in the head near the antenna base. The ampullae are pulsatile due to associated muscles, but the points of attachment difer between the species studied. All examined Phasmatodea species have a Musculus (M.) interampullaris which extends between the two ampullae plus a M. ampulloaorticus that runs from the ampullae to the anterior end of the aorta; upon contraction, all these muscles dilate the lumina of both ampullae at the same time. In Embioptera, only the australembiid Metoligotoma has an M. interampullaris. All other studied webspinners instead have a M. ampullofrontalis which extends between the ampullae and the frontal region of the head capsule; these species do not have M. ampulloaorticus. Outgroup comparison indicates that an antennal heart with a M. interampullaris is the plesiomorphic character state among Embioptera and the likely ground pattern of the taxon Eukinolabia. Antennal hearts with a M. ampullofrontalis represent a derived condition that occurs among insects only in some embiopterans. -
Sipyloidea Sipylus (Westwood) Using Amphibian Preda Tors Patrice Bouch Ard and Chia-Chi Hsiung
ISSN 0966-0011 PHASMID STUDIES. volume 5, numbers 1 & 2. June & December 1996. Editor : P.E. Bragg. ,: ... ' , .' .:. Published by the Phasmid Study Group. Phasmid Studies ISSN 0966-0011 volume 5, numbers 1 & 2. Contents PSG 103, Sipyloidea sp. from Thailand Rober t Graham . Further morphologica l variations in Bornean phasmids: Carausius cristatus Brunner, and Lonchodes haematomus Westwood Francis Seo w-Choen 7 A report on Gratidia sp. from Zaire (PSG 141) , and a study of the hatching of the eggs Ingo Fr itzsche 13 A pre liminary study of defence behaviour of Sipyloidea sipylus (Westwood) using amphibian preda tors Patrice Bouch ard and Chia-Chi Hsiung . .. 18 Changes of taxonomy in giant stick-insects Paul D. Brock 25 Redesc riptions , synonyms , and distribution of two species of Loncho dinae from Borneo: Lonchodes catori Kirby and Lonchodes hosei (Kirby) P. E. Bragg 32 Reviews and Abstracts Book Reviews 46 Phasmid Abstracts . 47 The influence of a cold peri od in the development of the embryo of Clonopsis gallica (Cha rpentier). W. Potvin . .. 55 A new culture of the subfa mily Pachymorphi nae from Thai land Mark BusheJl . 59 Parthenogenesis exp lained Ewan More 62 Reviews and Abstracts Mee ting / Conference Reports 70 Book Review . .. 70 Pha smid Abstracts . .. 71 Cover illustration: Female Presbistus marginatus Redtenbacher by P.E. Bragg PSG 103, Sipyloidea sp, from Thailand. Robert Graham, 6 Groesrrord Fach. Uwyn Mrredydd. Carmarthen, Dyfed, SAJI IEB, U.K. Note OD cu lture o~io and identily by P.E. Bragg . A_act This paper describes the male and female adults of SipyloidM sp. -
Erstellung Einer Warnliste in Deutschland Noch Nicht Vorkommender Invasiver Tiere Und Pflanzen
Wolfgang Rabitsch, Stephan Gollasch, Maike Isermann, Uwe Starfinger und Stefan Nehring Erstellung einer Warnliste in Deutschland noch nicht vorkommender invasiver Tiere und Pflanzen BfN-Skripten 331 2013 Erstellung einer Warnliste in Deutschland noch nicht vorkommender invasiver Tiere und Pflanzen Ergebnisse aus dem F+E-Vorhaben (FKZ 3510 86 0500) Wolfgang Rabitsch Stephan Gollasch Maike Isermann Uwe Starfinger Stefan Nehring Titelbild: Vier in Deutschland noch nicht vorkommende invasive Arten der Schwarzen Liste – Warnliste (v.l.o.n.r.u.): Die südamerikanische Wasserhyazinthe (Eichhornia crassipes), das nordamerikanische Grauhörnchen (Sciurus carolinensis), der nordamerikanische Viril- Flusskrebs (Orconectes virilis) und die ostasiatische Fingerblättrige Akebie (Akebia quina- ta). (© S. Nehring). Adresse der Autorin und Autoren: Dr. Wolfgang Rabitsch: Umweltbundesamt, Abt. Biologische Vielfalt & Naturschutz, Spittelauer Lände 5, 1090 Wien; E-Mail: [email protected] Dr. Stephan Gollasch GoConsult, Grosse Brunnenstrasse 61, 22763 Hamburg; E-Mail: [email protected] PD Dr. Maike Isermann Universität Bremen, Vegetationsökologie und Naturschutz- biologie, Leobener Strasse, 28359 Bremen; E-Mail: [email protected] Dr. Uwe Starfinger Königsberger Strasse 17, 12207 Berlin; E-Mail: [email protected] Dr. Stefan Nehring Bundesamt für Naturschutz, Konstantinstrasse 110, 53179 Bonn; E-Mail: [email protected] Fachbetreuung im BfN: Dr. Stefan Nehring FG II 1.2 „Botanischer Artenschutz“ Das Vorhaben wurde -
The Stick Insect “Tip Exchange” 5
The Phasmid Study Group JUNE 2015 NEWSLETTER No 134 ISSN 0268-3806 Phyllium ericoriai see Page 21. Photo: Chris Wilson. Phyllium giganteum, see Page 21. Argosarchus horridus female - at 15 cm it is the longest New Zealand species! Read more on Page 10. Photo: Paul D. Brock. Photo: Chris Wilson. INDEX Page Content Page Content 2. Editorial 14. Stick Talk 2. PSG Summer Meeting 2015 15. Planning a Community Cage 2. The PSG Committee 16. Phasmids in the News 3. Agenda for PSG Summer Meeting 2015 16. Phobaeticus chani or Chan’s Megastick 4. Livestock Report 16. PSG 160 Trachythorax maculicollis 4. The Disappearing Stick Insects 18. The Stick Insect “Tip Exchange” 5. A Comprehensive Guide to Insects of Britain & Ireland 19. My Five Tips and Tricks for Improving Your Macro 5. Beach Huts and Stick Insects! Photography 6. AGM & PSG Winter Meeting 24th January 2015 21. Macro Photography 7. The Midland Entomological Fayre 22. Stick & Leaf Insects of Australia - Book 8. Illustrated Notes on Paronchestus charon in Queensland, Australia 22. Insect Man at Prances 26.4.15 10. Phasmids of New Zealand 1 – the Wellington Area 23. Phasmid Food 13. An Updated checklist of New Zealand Phasmids 24. Diapherodes gigantea Female Moulting It is to be directly understood that all views, opinions or theories, expressed in the pages of "The Newsletter“ are those of the author(s) concerned. All announcements of meetings, and requests for help or information, are accepted as bona fide. Neither the Editor, nor Officers of "The Phasmid Study Group", can be held responsible for any loss, embarrassment or injury that might be sustained by reliance thereon.