Using the Solid Density to Assess Data Quality

Total Page:16

File Type:pdf, Size:1020Kb

Using the Solid Density to Assess Data Quality Materials and Structures DOI 10.1617/s11527-015-0767-3 ORIGINAL ARTICLE Porosities of building limestones: using the solid density to assess data quality Christopher Hall . Andrea Hamilton Received: 15 June 2015 / Accepted: 16 December 2015 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract A good knowledge of the volume-fraction the solid density should always be calculated for this porosity is essential in any technical work on porous purpose when the Archimedes method is used. This materials. In construction materials the porosity is check can be useful also when porosities are measured commonly measured by the Archimedes buoyancy by helium pycnometry or by mercury intrusion method, from which the bulk density of the test porosimetry. specimen is also obtained. The porosity and the bulk density together fix the solid density of the specimen, Keywords Porosity Á Density Á Archimedes method Á as only two of the three quantities are independent. Limestone Á Calcite The solid density, although rarely discussed, is determined by the mineralogy of the specimen, and therefore can provide a valuable check on the accuracy 1 Introduction of porosity and bulk density measurements. Our analysis of published data on calcitic limestones Most inorganic construction materials, including the shows that the solid density is generally close to the main building stones, are porous. In research on ideal crystallographic density of calcite. Small devi- mechanics, transport, and durability in these materials, ations can often be traced to variations in mineral the porosity is often used as an explanatory (indepen- composition. However some published porosity–den- dent) variable, and so it is measured and reported as a sity data are inconsistent with the known mineralogy. material property. The porosity appears as a parameter Deviations which cannot be ascribed to composition in many technical calculations in building physics. may be assumed to arise from measurement errors. We There are now hundreds of publications containing show the value of using the solid density as a quality porosity data, stretching back to the early method check on the measured porosity. We recommend that papers of Purdy and Moore [1], and of Washburn and his collaborators [2–4]. The data on construction materials form a subset of the larger resource that & C. Hall ( ) includes related work in geology, petrophysics, and School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK industrial ceramics. e-mail: [email protected] Unfortunately, reported porosity data are not always of high quality. Porosity values are sometimes incon- A. Hamilton sistent with the stated bulk densities and the known Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK mineral compositions, and are therefore probably e-mail: [email protected] inaccurate. In this paper, we examine some published Materials and Structures data on the porosities of limestones, a group of building Vs ¼ðwd À wAÞ=qw; ð4Þ materials where the material composition is often known, or can be assumed to lie within narrow limits. and We aim to show that estimating the solid density from Vb ¼ðwsat À wAÞ=q ; ð5Þ porosity and bulk-density data provides a simple w quality check on the measured specimen porosity. where Vs, Vb are the solid and bulk volumes of the specimen. Of the quantitities qs, qb and f, any two are independent (knowing two, the third is fixed). In 2 Measuring the porosity publications providing porosity data, the bulk density is sometimes also reported. Surprisingly, the solid 2.1 The Archimedes method density is rarely given. Even if given, it is rarely the subject of much comment. The porosity of building stones is usually measured by The Archimedes method is conceptually simple, the long-established Archimedes buoyancy method— but in practice prone to error. In measuring wA and see [5, 6] for practical descriptions of such tests, wsat, it requires care to achieve complete saturation of and [7] for a recent discussion. Test procedures can be the specimen using vacuum apparatus. To obtain wd, found in EN 1936 [8], which is the basis of many the specimen must be completely dried without European national standards. Similar methods are thermal alteration of the material composition or described in EN 772 [9]. No equivalent American structure. In measuring wsat liquid may be lost from the standard method exists for porosity in natural stone. In specimen by evaporation, or sometimes by drainage ASTM C97 [10] the bulk density is determined by a from low-suction cavities and cracks. buoyancy method, but the porosity is not calculated. Equations 1–3 show how these three sources of In the Archimedes method three quantities are mea- measurement error affect the estimates of f, qb, and qs. suredonasinglespecimen:wd, the weight of the dry (1) When the test specimen is not completely dried wd specimen; wsat, the weight in air of the specimen fully is too high. It then follows that qb is overestimated, saturated with a liquid (usually water); and wA, the while both f and qs are underestimated, as shown weight of the saturated specimen suspended and fully schematically in Fig. 1. (2) As discussed in [7], failing immersed in the saturating liquid. The last of these, to saturate the specimen completely leaves the value wA, is known as the Archimedes weight. From these of qb unchanged, but leads to underestimates of both f three quantities, the bulk density qb, the solid density and qs. (3) Any loss of water from the surface of the qs, and the volume-fraction porosity f of the specimen saturated specimen before it is weighed in air means can be calculated from the following equations: that wsat is too low. This causes the bulk volume Vb to w q be underestimated, and as a result qb is overestimated, q ¼ d w ; b ð1Þ and f underestimated, while the value of qs is correct. wsat À wA None of these three measurement errors causes the wdqw solid density to be overestimated. qs ¼ ; ð2Þ wd À wA A serious practical problem in implementing the Archimedes method is that reference materials of wsat À wd qb f ¼ ¼ 1 À : ð3Þ certified porosity are not available. This makes traceable w À w q sat A s calibration difficult. The published literature also shows Here qw is the density of the saturating liquid at the a wide variation in the estimates of uncertainty used by temperature of the measurement. Strictly, the quantity different authors in reporting porosity and density. f is the open porosity, the pore-space accessible to the saturating liquid. Any closed pores are treated as part 2.1.1 Effects of measurement errors on porosity of the solid material, and the solid density qs is and density estimates accordingly the density of the impermeable matrix, including any closed pores. We have indicated qualitatively how the calculated Equations 2 and 3 follow from the Archimedes values of the bulk density, solid density and porosity buoyancy relations are affected by the various measurement errors. In the Materials and Structures closed porosity (although the evidence for this is not Complete drying clear). The total porosity fT is then calculated from Eq. 3: fT ¼ 1 À qb=qr. It is unusual however for laboratories using the procedures of EN 1936 to report f Incomplete both open and total porosity. When both are deter- s ρ drying mined, the difference f À f is used as a measure of f , Complete T c drying the volume-fraction closed porosity, although as the small difference of two experimental quantities it may Solid density be of low accuracy. Detecting and measuring closed porosity in stones and other porous inorganic materials Volume fraction porosity is a difficult matter, for which there are no satisfactory Incomplete general methods. drying 2.3 Variants and alternatives Bulk density ρ (kg/m3) Bulk density ρ (kg/m3) b b In a variant of the Archimedes method, used when the Fig. 1 A schematic to show the effect of incomplete drying on the estimates of bulk density, porosity, and solid density. Lines specimen is in the form of a regular cylinder or a are calculated from Eqs. 1–3. If the drying is incomplete, the rectangular block, the bulk volume Vb is calculated bulk density is overestimated while the porosity and the solid directly from the specimen dimensions. The bulk density are underestimated density is then calculated from the formula qb ¼ wd=Vb, and the porosity from the formula f ¼ 1À Appendix we give the exact relations between the ðwd À wAÞ=ðqwVbÞ. The saturated weight wsat is not relative errors in the dry weight or in the saturated required, although the specimen must be fully satu- weight and the associated relative errors in the rated in order to measure the Archimedes weight wA. calculated quantities. The relative errors in the poros- This variant eliminates errors arising from problems in ity and the solid density may sometimes be consider- weighing the saturated specimen in air. These may be ably larger than the relative errors in the measured severe in specimens with coarse porosity which lose weights. For example, in the case of incomplete liquid by drainage. saturation in a specimen with a solid density of An alternative to the standard Archimedes method 2500 kg/m3 and porosity 0.2, a -1 % relative error in is to obtain the open porosity f by helium pycnome- the saturated weight wsat leads to a -11 % relative try [11], a technique often used in petrophysics but error in the porosity. In a test in which the specimen is rarely for building materials. The solid volume Vs of incompletely dried, a ?1 % relative error in the dry the specimen is measured directly by expanding a weight leads also to a -11 % relative error in the known volume of helium gas into the open pores.
Recommended publications
  • Highly Derived Eutherian Mammals from the Earliest Cretaceous of Southern Britain
    Editors' choice Highly derived eutherian mammals from the earliest Cretaceous of southern Britain STEVEN C. SWEETMAN, GRANT SMITH, and DAVID M. MARTILL Sweetman, S.C., Smith, G., and Martill, D.M. 2017. Highly derived eutherian mammals from the earliest Cretaceous of southern Britain. Acta Palaeontologica Polonica 62 (4): 657–665. Eutherian mammals (Placentalia and all mammals phylogenetically closer to placentals than to marsupials) comprise the vast majority of extant Mammalia. Among these there is a phenomenal range of forms and sizes, but the origins of crown group placentals are obscure. They lie within the generally tiny mammals of the Mesozoic, represented for the most part by isolated teeth and jaws, and there is strongly conflicting evidence from phenomic and molecular data as to the date of origin of both Eutheria and Placentalia. The oldest purported eutherians are Juramaia from the Upper Jurassic of China, and Eomaia and Acristatherium from the Lower Cretaceous, also of China. Based on dental characters and analyses of other morphological and molecular data, doubt has recently been cast on the eutherian affinities of the Chinese taxa and consequently on the date of emergence of Eutheria. Until now, the only tribosphenic mammal recorded from the earliest Cretaceous (Berriasian) Purbeck Group of Britain was the stem tribosphenidan Tribactonodon. Here we document two new tribosphenic mammals from the Purbeck Group, Durlstotherium gen. nov. and Durlstodon gen. nov., showing highly derived eutherian molar characters that support the early emergence of this clade, prior to the Cretaceous. Key words: Mammalia, Eutheria, dentition, Early Cretaceous, Purbeck Group, Britain, UK. Steven C. Sweetman [[email protected]], Grant Smith [[email protected]], and David M.
    [Show full text]
  • 1 GEOLOGICAL CONTROLS on RADON POTENTIAL in ENGLAND Scheib, C1, Appleton J. D.1, Miles J. C. H. 2*, .Hodgkinson, E 1British Geol
    GEOLOGICAL CONTROLS ON RADON POTENTIAL IN ENGLAND Scheib, C1, Appleton J. D.1, Miles J. C. H. 2*, .Hodgkinson, E1† 1British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK. 2Health Protection Agency-Radiation Protection Division, Chilton, Didcot, Oxon OX11 0RQ, UK. *Present Address: 49 Nobles Close, Grove, Oxfordshire OX12 0NR, UK †Present Address: 87 Orchard Road, Birstall, Leicester LE4 4GD Corresponding author: Cathy Scheib British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK. Email: [email protected] Tel: +44(0)115 936 3038 Fax: +44(0)115 936 3200 1 Abstract Radon exposure is a chronic and serious geohazard but with the correct knowledge of its distribution provided by an accurate radon potential map, this risk to human health can be reduced through well directed radon testing programmes and building control regulations. The radon potential map presented here, produced by mapping radon concentrations in homes, grouped by underlying geology, provides the most detailed and accurate assessment of radon in England. Bedrock and superficial geology associated with the most radon prone areas are investigated using the joint HPA-BGS radon potential dataset, geological information and, where available, soil geochemistry, airborne radiometric or laboratory analysis. Some of the geological units associated with high radon potential are well known, such as the granite intrusions in south west England, the Carboniferous limestones of Derbyshire and the Jurassic ironstones in Northamptonshire. This study provides a more comprehensive description of the main bedrock geological units associated with intermediate to high radon potential in England including: granites and associated uranium mineralisation in south west England; Devonian, Carboniferous, Permian and Jurassic limestones and dolomites; Devonian, Carboniferous, Jurassic and Cretaceous sandstones; Silurian, Devonian, Lower Carboniferous and Jurassic mudstones; Jurassic ironstones; and some Triassic breccias and conglomerates.
    [Show full text]
  • Geological Sights! Southwest England Harrow and Hillingdon Geological Society
    Geological Sights! Southwest England Harrow and Hillingdon Geological Society @GeolAssoc Geologists’ Association www.geologistsassociation.org.uk Southwest England Triassic Mercia Mudstone & Penarth Groups (red & grey), capped with Early Jurassic Lias Group mudstones and thin limestones. Aust Cliff, Severn Estuary, 2017 Triassic Mercia Mudstone & Penarth Groups, with Early Jurassic Lias Group at the top. Looking for coprolites Gypsum at the base Aust Cliff, Severn Estuary, 2017 Old Red Sandstone (Devonian) Portishead, North Somerset, 2017 Carboniferous Limestone – Jurassic Inferior Oolite unconformity, Vallis Vale near Frome Mendip Region, Somerset, 2014 Burrington Oolite (Carboniferous Limestone), Burrington Combe Rock of Ages, Mendip Hills, Somerset, 2014 Whatley Quarry Moon’s Hill Quarry Carboniferous Limestone Silurian volcanics Volcaniclastic conglomerate in Moon’s Hill Quarry Mainly rhyodacites, andesites and tuffs - England’s only Wenlock-age volcanic exposure. Stone Quarries in the Mendips, 2011 Silurian (Wenlock- age) volcaniclastic conglomerates are seen here above the main faces. The quarry’s rock types are similar to those at Mount St Helens. Spheroidal weathering Moons Hill Quarry, Mendips, Somerset, 2011 Wave cut platform, Blue Lias Fm. (Jurassic) Kilve Mercia Mudstone Group (Triassic) Kilve St Audrie’s Bay West Somerset, 2019 Watchet Blue Lias Formation, Jurassic: Slickensiding on fault West Somerset, 2019 Triassic, Penarth Group Triassic, Mercia Mudstone Blue Anchor Fault, West Somerset, 2019 Mortehoe, led by Paul Madgett. Morte Slates Formation, Devonian (Frasnian-Famennian). South side of Baggy Point near Pencil Rock. Ipswichian interglacial dune sands & beach deposit (125 ka) upon Picton Down Mudstone Formation (U. Devonian) North Devon Coast, 1994 Saunton Down End. ‘White Rabbit’ glacial erratic (foliated granite-gneiss). Baggy Headland south side.
    [Show full text]
  • From the Portland and Purbeck Groups (Tithonian–Berriasian) of Dorset, United Kingdom
    New thoracican cirripedes (Crustacea) from the Portland and Purbeck Groups (Tithonian–Berriasian) of Dorset, United Kingdom Andy Galea aSchool of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL, United Kingdom E-mail: [email protected] Abstract. The first cirripedes from the Portland and Purbeck groups of southern England are described, and referred to two new species, Loriolepas whytei sp. nov and Etcheslepas portlandensis sp. nov. They constitute the first records of cirripedes from the upper Tithonian (uppermost Jurassic) and Berriasian (lowermost Cretaceous) of western Europe. A new family, the Archaeolepadidae, is introduced for the extinct genera Archaeolepas and Loriolepas. Key words. Jurassic, Cretaceous, stalked barnacles, southern England Introduction In 1928, Thomas Withers described the meagre cirripede material from the British Upper Jurassic, consisting of a small number of mostly broken valves washed from the Kimmeridge Clay of Buckinghamshire. In the Lower Cretaceous, the marine pre-Aptian strata had yielded only a single species from the Speeton Clay (Hauterivian) of Speeton, Yorkshire. Recent discoveries by Steve Etches (Etches Collection, Kimmeridge) of magnificently preserved, and locally abundant, cirripedes from the Kimmeridge Clay in Dorset have considerably improved our understanding of the taxonomy, phylogeny and palaeoecology of Late Jurassic forms (Gale 2014, 2018), but they remained unknown from the overlying Portland Group. In 2015, during a field excursion for students of the University of Portsmouth to Freshwater, on the Isle of Portland (Fig. 1) I collected a number of cirripede valves from the Cherty Member of the Portland Stone Formation, and further specimens on a subsequent visit.
    [Show full text]
  • This Walk Has Been Commissioned by Artangel As Part of A
    Urban Geology in London No. 29 This walk has been commissioned by Artangel as part of a programme of events surrounding artist Katrina Palmer’s project on the Isle of Portland and on BBC Radio 4, End Matter. This takes place in April-May 2015. The walk took place on 30th May 2015. London does not have a good local building stone. The Roman and Medieval city was built of Kentish Ragstone and Reigate Stone. Later, the abundant clays and brickearths of the local geology were exploited and stock brick became the city’s main building material. Bath Stone was brought in for some structures. However monumental buildings befitting of a capital required something special, and Portland Stone from Dorset became popular in the early 17th Century and remains London’s iconic stone to this day. There are thousands of buildings in London built of Portland Stone and many others in the maJor cities of the British Isles. One may consider St Paul’s Cathedral, the maJority of the buildings on Whitehall including the Cenotaph and the Banqueting House, The Royal Naval College at Greenwich, The Bank of England, The British Museum, The National Gallery and indeed my home institution, University College London. The stone has also been exported world-wide, mainly to commonwealth countries and the USA. Here we may count amongst several Portland Stone structures the United Nations Building (1952) in New York City. Auckland’s War Memorial Museum in New Zealand probably represents the use of this material most distant from the source. Portland Stone is also the standard for the Commonwealth war grave memorials.
    [Show full text]
  • 137. Isle of Portland Area Profile: Supporting Documents
    National Character 137. Isle of Portland Area profile: Supporting documents www.gov.uk/natural-england 1 National Character 137. Isle of Portland Area profile: Supporting documents Introduction National Character Areas map As part of Natural England’s responsibilities as set out in the Natural Environment White Paper,1 Biodiversity 20202 and the European Landscape North 3 North Convention, we are revising profiles for England’s 159 National Character Areas East (NCAs). These are areas that share similar landscape characteristics, and which follow natural lines in the landscape rather than administrative boundaries, Yorkshire making them a good decision-making framework for the natural environment. & The North Humber NCA profiles are guidance documents which can help communities to inform West their decision-making about the places that they live in and care for. The information they contain will support the planning of conservation initiatives at a East landscape scale, inform the delivery of Nature Improvement Areas and encourage Midlands broader partnership working through Local Nature Partnerships. The profiles will West also help to inform choices about how land is managed and can change. Midlands East of England Each profile includes a description of the natural and cultural features that shape our landscapes, how the landscape has changed over time, the current key drivers for ongoing change, and a broad analysis of each London area’s characteristics and ecosystem services. Statements of Environmental South East Opportunity (SEOs) are suggested, which draw on this integrated information. South West The SEOs offer guidance on the critical issues, which could help to achieve sustainable growth and a more secure environmental future.
    [Show full text]
  • BGS Report, Single Column Layout
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NERC Open Research Archive Model metadata report for HS2 Area 4 Geology and Regional Geophysics Programme Open Report OR/15/035 BRITISH GEOLOGICAL SURVEY GEOLOGY AND REGIONAL GEOPHYSICS PROGRAMME OPEN REPORT OR/15/035 Model metadata report for HS2 The National Grid and other Ordnance Survey data © Crown Area 4 Copyright and database rights 2014. Ordnance Survey Licence No. 100021290. J Thompson Keywords Report; keywords. National Grid Reference SW corner 450072,241758 NE corner 447441,260924 Map Sheet 94, 114 and 115, 1:50 000 scale, Warwick, Banbury and Towcester Front cover 3D View of modelled volumes. Bibliographical reference THOMPSON, J. 2015. Model metadata report for HS2 Area 4. British Geological Survey Open Report, OR/15/035. 41pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. 3D images BGS © NERC 2014 using GSI3D methodology and software. Maps and diagrams in this book use topography based on Ordnance Survey mapping. © NERC 2014. All rights reserved Keyworth, Nottingham British Geological Survey 2014 BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS shops at British Geological Survey offices Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or shop online at www.geologyshop.com BGS Central Enquiries Desk Tel 0115 936 3143 Fax 0115 936 3276 The London Information Office also maintains a reference collection of BGS publications, including maps, for consultation.
    [Show full text]
  • A Stratigraphical Framework for the Lower Cretaceous of England
    A stratigraphical framework for the Lower Cretaceous of England Research Report RR/08/03 HOW TO NAVIGATE THIS DOCUMENT Bookmarks The main elements of the table of contents are book- marked enabling direct links to be followed to the principal section headings and sub- headings, figures, plates and tables irrespective of which part of the document the user is viewing. In addition, the report contains links: from the principal section and subsection headings back to the contents page, from each reference to a figure, plate or table directly to the corresponding figure, plate or table, from each figure, plate or table caption to the first place that figure, plate or table is mentioned in the text and from each page number back to the contents page. RETURN TO CONTENTS PAGE BRITISH GEOLOGICAL SURVEY RESEARCH REPORT RR/08/03 The National Grid and other Ordnance Survey data are used with the permission of the Controller of Her Majesty’s Stationery Office. Licence No: 100017897/2008. Keywords A stratigraphical framework for the United Kingdom, England, Yorkshire, Lincolnshire, East Anglia, Southern England. Lower Cretaceous of England Geology, Stratigraphy, Lower Cretaceous, Early Cretaceous. P M Hopson, I P Wilkinson and M A Woods Front cover Ferruginous Sand Formation exposed above a significant landslide founded in the Atherfield Clay Formation, Red Cliff, Sandown Bay, Isle of Wight (P683788). Bibliographical reference HOPSON , P M, WILKINSON , I P, and WOODS , M A. 2008. A stratigraphical framework for the Lower Cretaceous of England. British Geological Survey. British Geological Survey Research Report, RR/08/03. ISBN 0 85272 623 5 Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work.
    [Show full text]
  • Index to the Geologic Names of North America
    Index to the Geologic Names of North America GEOLOGICAL SURVEY BULLETIN 1056-B Index to the Geologic Names of North America By DRUID WILSON, GRACE C. KEROHER, and BLANCHE E. HANSEN GEOLOGIC NAMES OF NORTH AMERICA GEOLOGICAL SURVEY BULLETIN 10S6-B Geologic names arranged by age and by area containing type locality. Includes names in Greenland, the West Indies, the Pacific Island possessions of the United States, and the Trust Territory of the Pacific Islands UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.G. - Price 60 cents (paper cover) CONTENTS Page Major stratigraphic and time divisions in use by the U.S. Geological Survey._ iv Introduction______________________________________ 407 Acknowledgments. _--__ _______ _________________________________ 410 Bibliography________________________________________________ 410 Symbols___________________________________ 413 Geologic time and time-stratigraphic (time-rock) units________________ 415 Time terms of nongeographic origin_______________________-______ 415 Cenozoic_________________________________________________ 415 Pleistocene (glacial)______________________________________ 415 Cenozoic (marine)_______________________________________ 418 Eastern North America_______________________________ 418 Western North America__-__-_____----------__-----____ 419 Cenozoic (continental)___________________________________
    [Show full text]
  • An Urban Geologist's Guide to the Fossils of the Portland Stone
    Urban Geology in London No. 30 An Urban Geologist’s Guide to the Fossils of the Portland Stone The Portland seas were warm, full of nutrients and therefore full of life, and plenty of evidence for this can be seen on the walls of London’s buildings. Good reviews and discussion of the geology of the Portland Stone are to be found in the excellent web pages created by Ian West (West, 2013, 2014) and in Cope (2012). An excellent treatise on Portland Stone as a building material has recently been published by Hackman (2014). The unit of uppermost Jurassic age, the Tithonian which is known locally as the Portlandian (Cope, 2012). Therefore these rocks are ~ 150 million years old. Stratigraphically, the building stones form the upper part of the Portland Limestone Formation and are called the Freestone Member. Marine reptiles such as pliosaurs and ichthyosaurs would have swam these seas, though their remains are rarely encountered in the stone. Varieties of bivalves are most frequently observed, along with coquinas of marine snail (gastropod) shells. The waters were relatively shallow, but tidal, they were lagoon-type environments. This environment brings about the formation of particles of carbonate sand known as ooids or ooliths. Ooids are spheroidal grains which form around kernals of fine sand grains or shell fragments. In the warm, tropical lagoons, tidal currents roll the grains backwards and forwards, and therefore the carbonate is precipitated concentrically to form ooids. These have a maximum size of around 1 mm diameter, and are often visible with the aid of a hand lens, and sometimes the naked eye.
    [Show full text]
  • The Prospectivity of the English Channel
    2013 2010 2011 2012 The prospectivity of the Promote English Channel United Kingdom 2015 Abstract This poster summarises the hydrocarbon geology of the English Channel from Prawle Point (Devon) in the west to the Straits of Dover (Kent) in the east and as far south as the UK-France median line. This Atlantic area of 23,000 km² forms part of Strategic Environmental Assessment SEA8. Apart from a coastal strip Margin between Portland Bill and the Isle of Wight (Fig. 3), the offshore area is unlicensed. The study area is transected by a sparse grid of 2D seismic data, the most recent of which were shot in the 1990s. A total of 23 wells have been drilled since 1978. Mesozoic strata, which form the only proven petroleum system in the area, occur in the offshore continuation of the Weald Basin and in the Central English Channel Basin, which lies south of the major North Purbeck-Isle of Wight structure. Sea Source rocks occur in the Lias, Oxford Clay and Kimmeridge Clay (all Jurassic), while the principal reservoirs comprise the Sherwood Sandstone (Triassic) and Bridport Sands (Lias) in the Central English Channel Basin and the Great Oolite (Middle Jurassic) in the offshore Weald Basin. At present hydrocarbon discoveries are restricted to the area north of the Purbeck-Isle of Wight structure, and include the offshore extension of the Wytch Farm Oil Field (Sherwood and Bridport ScotlandUK Sandstone reservoirs) and the 98/11-2 Sherwood Sandstone discovery. Across the Central English Channel Basin the wells contain numerous minor indications of oil and gas, but a viable structure has yet to be found.
    [Show full text]
  • Ig UIDE to GROUNDWATER VULNERABILITY MAPPING in ENGLAND and WALES National Rivers Authority
    NRA Water Resources 28 Ig UIDE TO GROUNDWATER VULNERABILITY MAPPING IN ENGLAND AND WALES National Rivers Authority GUIDE TO GROUNDWATER VULNERABILITY MAPPING IN ENGLAND AND WALES R C Palmer, I P Holman (Soil Survey and Land Research Centre, Cranfield University) N S Robins, M A Lewis (British Geological Survey) The Information Centre National Rivers Authority Waterside Drive © National Rivers Authority, 1995. Applications for reproduction should be to HMSO Copyright Unit, St Crispins, Norwich NR3 1PD First edition 1995 ISBN 0 11 310103 1 ISSN 1358-328X This Guide was produced for the NRA by the Soil Survey and Land Research Centre (SSLRC) and The British Geological Survey (BGS) under a contract constituting part of the NRA’s Research and Development programme. Designed by HMSO Graphic Design Cover and text printed on recycled materials (HMSO Recycled Register — Score 60.0) FOREWORD In 1992 the National Rivers Authority published its Policy and Practice for the Protection of Groundwater. The implementation of the policy depends upon the definition of groundwater source protection zones and on the preparation of vulnerability maps. This guide is one of two volumes which provide the background to the production and use of these two policy tools and complement the original policy document. The companion volume to this Guide is the Guide to Groundwater Protection Zones in England and Wales. GUIDE TO GROUNDWATER VULNERABILITY MAPPING IH ENGLAND AND WALES CONTENTS 1 INTRODUCTION 1 1.1 Aims of the guide 1 1.2 Background 1 1.3 Groundwater vulnerability
    [Show full text]