BGS Report, Single Column Layout

Total Page:16

File Type:pdf, Size:1020Kb

BGS Report, Single Column Layout View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NERC Open Research Archive Model metadata report for HS2 Area 4 Geology and Regional Geophysics Programme Open Report OR/15/035 BRITISH GEOLOGICAL SURVEY GEOLOGY AND REGIONAL GEOPHYSICS PROGRAMME OPEN REPORT OR/15/035 Model metadata report for HS2 The National Grid and other Ordnance Survey data © Crown Area 4 Copyright and database rights 2014. Ordnance Survey Licence No. 100021290. J Thompson Keywords Report; keywords. National Grid Reference SW corner 450072,241758 NE corner 447441,260924 Map Sheet 94, 114 and 115, 1:50 000 scale, Warwick, Banbury and Towcester Front cover 3D View of modelled volumes. Bibliographical reference THOMPSON, J. 2015. Model metadata report for HS2 Area 4. British Geological Survey Open Report, OR/15/035. 41pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. 3D images BGS © NERC 2014 using GSI3D methodology and software. Maps and diagrams in this book use topography based on Ordnance Survey mapping. © NERC 2014. All rights reserved Keyworth, Nottingham British Geological Survey 2014 BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS shops at British Geological Survey offices Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or shop online at www.geologyshop.com BGS Central Enquiries Desk Tel 0115 936 3143 Fax 0115 936 3276 The London Information Office also maintains a reference collection of BGS publications, including maps, for consultation. email [email protected] We publish an annual catalogue of our maps and other publications; this catalogue is available online or from any of the Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG BGS shops. Tel 0115 936 3241 Fax 0115 936 3488 email [email protected] The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the Murchison House, West Mains Road, Edinburgh EH9 3LA surrounding continental shelf, as well as basic research projects. Tel 0131 667 1000 Fax 0131 668 2683 It also undertakes programmes of technical aid in geology in email [email protected] developing countries. The British Geological Survey is a component body of the Natural Environment Research Council. Natural History Museum, Cromwell Road, London SW7 5BD Tel 020 7589 4090 Fax 020 7584 8270 Tel 020 7942 5344/45 email [email protected] Columbus House, Greenmeadow Springs, Tongwynlais, Cardiff CF15 7NE Tel 029 2052 1962 Fax 029 2052 1963 Maclean Building, Crowmarsh Gifford, Wallingford OX10 8BB Tel 01491 838800 Fax 01491 692345 Geological Survey of Northern Ireland, Colby House, Stranmillis Court, Belfast BT9 5BF Tel 028 9038 8462 Fax 028 9038 8461 www.bgs.ac.uk/gsni/ Parent Body Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU Tel 01793 411500 Fax 01793 411501 www.nerc.ac.uk Website www.bgs.ac.uk Shop online at www.geologyshop.com Foreword This is an internal metadata report on the creation of a 3D geological model in the software package GSI3D for a sector (Area 4) of the proposed High Speed 2 railway line. OR/15/035; Draft 0.1 Last modified: 2016/01/21 09:43 Contents Foreword ........................................................................................................................................ 4 Contents .......................................................................................................................................... 2 Summary ........................................................................................................................................ 3 1 Modelled volume, purpose and scale .................................................................................... 3 2 Modelled surfaces/volumes .................................................................................................... 4 3 Modelled faults ....................................................................................................................... 5 4 Model datasets ........................................................................................................................ 6 4.1 GVS and GLEG files ...................................................................................................... 6 4.2 Digital Terrain Model ..................................................................................................... 6 4.3 Borehole data .................................................................................................................. 6 4.4 Geology and other shapefiles ......................................................................................... 6 4.5 Cross-sections ................................................................................................................. 7 5 Model development log .......................................................................................................... 7 6 Model workflow ...................................................................................................................... 7 7 Model assumptions, geological rules used etc ...................................................................... 7 7.1 Outcrop changes ............................................................................................................. 7 7.2 Marlstone Rock Formation ............................................................................................. 8 8 Model limitations .................................................................................................................... 8 9 Model images .......................................................................................................................... 9 Appendix 1 ................................................................................................................................... 11 Appendix 2 – Project GVS.......................................................................................................... 14 Appendix 3 – Project GLEG ...................................................................................................... 23 References .................................................................................................................................... 10 FIGURES Figure 1: Map of model area showing boreholes used and cross sections ...................................... 4 Figure 2: Cross sections constructed for the model ........................................................................ 9 Figure 3: Cross sections including those from areas 3 and 5 that are used in the model calculation. ................................................................................................................................ 9 Figure 4: Exploded view of HS2 Area 4 Model............................................................................ 10 2 OR/15/035; Draft 0.1 Last modified: 2016/01/21 09:43 TABLES Table 1: List of modelled units ....................................................................................................... 4 Summary This report describes the 3D geological model of HS2 (High Speed 2 rail link) Area 4 (Thorpe Mandeville to Ladbroke), created by Jo Thompson with support from Steve Thorpe. 1 Modelled volume, purpose and scale This model is of the bedrock and superficial geology of an area along the proposed route of the High Speed Rail link between London and Birmingham (HS2). It covers the section of the HS2 route between Thorpe Mandeville in Northamptonshire and Ladbroke in Warwickshire. The bedrock geology of this section of the route comprises Triassic to Middle Jurassic strata, together with superficial deposits of glacigenic and fluvial origin. This is one of nine models along the proposed route. It is suitable for use at scales between 1:100,000-1:10,000, down to a depth of 30 m below OD. Prior to the modelling work, an assessment of the quality and availability of the digital geological linework and existing 3D models of the whole HS2 route between London and Birmingham was undertaken (Barron et al., 2012). As a consequence of this review, the geological mapping of this sector was deemed to be adequate, dating from the 1950’s to the 2000’s. Thus this 3D model is based on geological line work from existing 1:10 000 and 1:50 000 scale DiGMapGB data. 3 OR/15/035; Draft 0.1 Last modified: 2016/01/21 09:43 Figure 1: Map of model area showing boreholes used and cross sections. Contains Ordnance Survey data © Crown Copyright and database rights 2014. 2 Modelled surfaces/volumes Table 1: List of modelled units Geological unit Age Model Name Alluvium Quaternary ALV-XCZSV Head Quaternary HEAD-XCZSV Glaciofluvial deposits Mid Mid Pleistocene GFDMP-XSV Pleistocene Till Mid Pleistocene TILMP-DMTN White Limestone Formation Mid Jurassic WHL-LMST 4 OR/15/035; Draft 0.1 Last modified: 2016/01/21 09:43 Rutland Formation Mid Jurassic RLD1-MDST Taynton Limestone Formation Mid Jurassic TY-LMOOL Wellingborough
Recommended publications
  • Strategic Stone Study a Building Stone Atlas of Cambridgeshire (Including Peterborough)
    Strategic Stone Study A Building Stone Atlas of Cambridgeshire (including Peterborough) Published January 2019 Contents The impressive south face of King’s College Chapel, Cambridge (built 1446 to 1515) mainly from Magnesian Limestone from Tadcaster (Yorkshire) and Kings Cliffe Stone (from Northamptonshire) with smaller amounts of Clipsham Stone and Weldon Stone Introduction ...................................................................................................................................................... 1 Cambridgeshire Bedrock Geology Map ........................................................................................................... 2 Cambridgeshire Superficial Geology Map....................................................................................................... 3 Stratigraphic Table ........................................................................................................................................... 4 The use of stone in Cambridgeshire’s buildings ........................................................................................ 5-19 Background and historical context ........................................................................................................................................................................... 5 The Fens ......................................................................................................................................................................................................................... 7 South
    [Show full text]
  • Using the Solid Density to Assess Data Quality
    Materials and Structures DOI 10.1617/s11527-015-0767-3 ORIGINAL ARTICLE Porosities of building limestones: using the solid density to assess data quality Christopher Hall . Andrea Hamilton Received: 15 June 2015 / Accepted: 16 December 2015 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract A good knowledge of the volume-fraction the solid density should always be calculated for this porosity is essential in any technical work on porous purpose when the Archimedes method is used. This materials. In construction materials the porosity is check can be useful also when porosities are measured commonly measured by the Archimedes buoyancy by helium pycnometry or by mercury intrusion method, from which the bulk density of the test porosimetry. specimen is also obtained. The porosity and the bulk density together fix the solid density of the specimen, Keywords Porosity Á Density Á Archimedes method Á as only two of the three quantities are independent. Limestone Á Calcite The solid density, although rarely discussed, is determined by the mineralogy of the specimen, and therefore can provide a valuable check on the accuracy 1 Introduction of porosity and bulk density measurements. Our analysis of published data on calcitic limestones Most inorganic construction materials, including the shows that the solid density is generally close to the main building stones, are porous. In research on ideal crystallographic density of calcite. Small devi- mechanics, transport, and durability in these materials, ations can often be traced to variations in mineral the porosity is often used as an explanatory (indepen- composition. However some published porosity–den- dent) variable, and so it is measured and reported as a sity data are inconsistent with the known mineralogy.
    [Show full text]
  • Dinosaurs British Isles
    DINOSAURS of the BRITISH ISLES Dean R. Lomax & Nobumichi Tamura Foreword by Dr Paul M. Barrett (Natural History Museum, London) Skeletal reconstructions by Scott Hartman, Jaime A. Headden & Gregory S. Paul Life and scene reconstructions by Nobumichi Tamura & James McKay CONTENTS Foreword by Dr Paul M. Barrett.............................................................................10 Foreword by the authors........................................................................................11 Acknowledgements................................................................................................12 Museum and institutional abbreviations...............................................................13 Introduction: An age-old interest..........................................................................16 What is a dinosaur?................................................................................................18 The question of birds and the ‘extinction’ of the dinosaurs..................................25 The age of dinosaurs..............................................................................................30 Taxonomy: The naming of species.......................................................................34 Dinosaur classification...........................................................................................37 Saurischian dinosaurs............................................................................................39 Theropoda............................................................................................................39
    [Show full text]
  • EGU2014-10476-5, 2014 EGU General Assembly 2014 © Author(S) 2014
    Geophysical Research Abstracts Vol. 16, EGU2014-10476-5, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License. The stratigraphy and palaeoenvironment of the Bathonian “Great Oolite Group” of Woodeaton Quarry, Oxfordshire. Ronald Guthrie (1), Stephen Stukins (2), and Tim Raub (1) (1) Department of Earth and Environmental Sciences, University of St Andrews, St Andrews, KY16 9AL, Scotland, United Kingdom, (2) Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom Woodeaton Quarry, Oxfordshire, represents the most continuously exposed section of the Upper Bathonian “Great Oolite Group” in the United Kingdom. Like most of the British Bathonian, it is lacking in reliable ammonite zonation from which to define a chronostratigraphy. The sedimentology of the succession can be broken up into two broad facies types: 1. A clay rich, brackish lagoonal environment with intermixed freshwater-influenced flora and fauna; 2. A marginal marine calcareous succession of an oolitic nature with periodic mud-drape intervals. The marginal marine depositional setting, the completeness of the Upper Bathonian stratigraphy and lack of biostratigraphically important macrofauna has motivated this study into the micropalaeontology of Woodeaton. The primary aims of this study are to use foraminifera and ostracods to reconstruct the palaeoenvironments and to refine the biostratigraphy of the Upper Bathonian. The studied succession commences at the top of the Taynton Limestone Formation, which fines upwards into the clay-rich Rutland Formation. Several species of marine ostracods known from the Mid-Upper Bathonian are recovered from the base of the Rutland Formation, such as Praeschuleridea confossa and Angliaecytherldea calvata, as well as fragments of fish scales and elasmobranch teeth.
    [Show full text]
  • Environmental Character Assessment and Key Issues
    ENVIRONMENTAL CHARACTER ASSESSMENT AND KEY ISSUES ‘LANDMARKS AND SIGNS’ COGENHOE PHOTO-CONSTRUTION 8’ X ‘4 JOHN HARPER 2005 CONTENTS 1.0 PREFACE 03 1.1 Introduction 03 1.2 Linking People and Place 04 1.3 Uses of the ECA 05 1.4 Key Issues 05 2.0 INTRODUCTION 06 2.1 Appointment and Brief 06 2.2 Characterisation in Practice 07 2.3 Approach and Methodology 07 3.0 NORTHAMPTONSHIRE’S ENVIRONMENTAL CHARACTER 08 3.1 Introduction 08 3.2 Northamptonshire’s Environmental Character Areas 08 1. East Northamptonshire Claylands 09 2. Collyweston Plateau 12 3. Rockingham Forest 14 4. Welland Valley 19 5. Lower Nene (Aldwincle to Wansford) 22 6. Middle Nene (Northampton to Aldwincle) 25 7. Upper Nene Catchment and Watford Gap 28 8. Central Northamptonshire Plateaux and Valleys 31 9. Yardley Chase and Salcey Forest 35 10. Whittlewood 38 11. Tove and Ouse Catchment 40 12. Croughton Plateau 43 13. West Northamptonshire Uplands 45 14. Cherwell Valley 48 15. Vale of Rugby 50 ACKNOWLEDGEMENTS 53 ENVIRONMENTAL CHARACTER ASSESSMENT AND KEY ISSUES 1.0 PREFACE 1.1 Introduction The county of Northamptonshire extends over an area of approximately 2360 km2 and has a population of more than half a million people. It is located in the East Midlands Region, and includes seven District and Borough Council Administrative Authorities. The greater part of the county retains a strong rural character, and comprises agricultural land and isolated villages, hamlets, and country estates. The landscape bears the marks of changes which have taken place over many hundreds of years, with evidence of agricultural improvement, transport infrastructure, settlement, industry, mining and woodland management.
    [Show full text]
  • Highly Derived Eutherian Mammals from the Earliest Cretaceous of Southern Britain
    Editors' choice Highly derived eutherian mammals from the earliest Cretaceous of southern Britain STEVEN C. SWEETMAN, GRANT SMITH, and DAVID M. MARTILL Sweetman, S.C., Smith, G., and Martill, D.M. 2017. Highly derived eutherian mammals from the earliest Cretaceous of southern Britain. Acta Palaeontologica Polonica 62 (4): 657–665. Eutherian mammals (Placentalia and all mammals phylogenetically closer to placentals than to marsupials) comprise the vast majority of extant Mammalia. Among these there is a phenomenal range of forms and sizes, but the origins of crown group placentals are obscure. They lie within the generally tiny mammals of the Mesozoic, represented for the most part by isolated teeth and jaws, and there is strongly conflicting evidence from phenomic and molecular data as to the date of origin of both Eutheria and Placentalia. The oldest purported eutherians are Juramaia from the Upper Jurassic of China, and Eomaia and Acristatherium from the Lower Cretaceous, also of China. Based on dental characters and analyses of other morphological and molecular data, doubt has recently been cast on the eutherian affinities of the Chinese taxa and consequently on the date of emergence of Eutheria. Until now, the only tribosphenic mammal recorded from the earliest Cretaceous (Berriasian) Purbeck Group of Britain was the stem tribosphenidan Tribactonodon. Here we document two new tribosphenic mammals from the Purbeck Group, Durlstotherium gen. nov. and Durlstodon gen. nov., showing highly derived eutherian molar characters that support the early emergence of this clade, prior to the Cretaceous. Key words: Mammalia, Eutheria, dentition, Early Cretaceous, Purbeck Group, Britain, UK. Steven C. Sweetman [[email protected]], Grant Smith [[email protected]], and David M.
    [Show full text]
  • Mineral Resource Report | Leicestershire and Rutland (Comprising City of Leicester, Leicestershire and Rutland)
    Mineral Resource Information in Support of National, Regional and Local Planning Leicestershire and Rutland (comprising City of Leicester, Leicestershire and Rutland) BGS Commissioned Research Report CR/02/24/N D J Harrison, P J Henney, D G Cameron, N A Spencer, D J Evans, G K Lott, K A Linley and D E Highley, Keyworth, Nottingham 2002 BRITISH GEOLOGICAL SURVEY TECHNICAL REPORT CR/02/24/N Mineral Resources Series Mineral Resource Information for Development Plans: Leicestershire and Rutland (comprising City of Leicester, Leicestershire and Rutland) D J Harrison, P J Henney, D G Cameron, N A Spencer, D J Evans, G K Lott, K A Linley and D E Highley, This report accompanies the 1:100 000 scale map: Leicestershire and Rutland (comprising City of Leicester, Leicestershire and Rutland) Cover Photograph Bibliographical reference: Harrison, D J, Henney, P J, Cameron, D G, Spencer, N A, Evans, D J, Lott, G K, Linley, K A and Highley, D E 2002. Mineral Resource Information in Support of National, Regional and Local Planning: Leicestershire and Rutland (comprising City of Leicester, Leicestershire and Rutland). BGS Commissioned Report CR/02/24/N. All photographs copyright © NERC BRITISH GEOLOGICAL SURVEY The full range of Survey publications is available from the BGS British Geological Survey Offices Sales Desk at the Survey headquarters, Keyworth, Nottingham. The more popular maps and books may be purchased from BGS- Keyworth, Nottingham NG12 5GG approved stockists and agents and over the counter at the 0115–936 3100 Fax 0115–936 3200 Bookshop, Gallery 37, Natural History Museum (Earth Galleries), e-mail: sales @bgs.ac.uk www.bgs.ac.uk Cromwell Road, London.
    [Show full text]
  • 1 GEOLOGICAL CONTROLS on RADON POTENTIAL in ENGLAND Scheib, C1, Appleton J. D.1, Miles J. C. H. 2*, .Hodgkinson, E 1British Geol
    GEOLOGICAL CONTROLS ON RADON POTENTIAL IN ENGLAND Scheib, C1, Appleton J. D.1, Miles J. C. H. 2*, .Hodgkinson, E1† 1British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK. 2Health Protection Agency-Radiation Protection Division, Chilton, Didcot, Oxon OX11 0RQ, UK. *Present Address: 49 Nobles Close, Grove, Oxfordshire OX12 0NR, UK †Present Address: 87 Orchard Road, Birstall, Leicester LE4 4GD Corresponding author: Cathy Scheib British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK. Email: [email protected] Tel: +44(0)115 936 3038 Fax: +44(0)115 936 3200 1 Abstract Radon exposure is a chronic and serious geohazard but with the correct knowledge of its distribution provided by an accurate radon potential map, this risk to human health can be reduced through well directed radon testing programmes and building control regulations. The radon potential map presented here, produced by mapping radon concentrations in homes, grouped by underlying geology, provides the most detailed and accurate assessment of radon in England. Bedrock and superficial geology associated with the most radon prone areas are investigated using the joint HPA-BGS radon potential dataset, geological information and, where available, soil geochemistry, airborne radiometric or laboratory analysis. Some of the geological units associated with high radon potential are well known, such as the granite intrusions in south west England, the Carboniferous limestones of Derbyshire and the Jurassic ironstones in Northamptonshire. This study provides a more comprehensive description of the main bedrock geological units associated with intermediate to high radon potential in England including: granites and associated uranium mineralisation in south west England; Devonian, Carboniferous, Permian and Jurassic limestones and dolomites; Devonian, Carboniferous, Jurassic and Cretaceous sandstones; Silurian, Devonian, Lower Carboniferous and Jurassic mudstones; Jurassic ironstones; and some Triassic breccias and conglomerates.
    [Show full text]
  • Geological Sights! Southwest England Harrow and Hillingdon Geological Society
    Geological Sights! Southwest England Harrow and Hillingdon Geological Society @GeolAssoc Geologists’ Association www.geologistsassociation.org.uk Southwest England Triassic Mercia Mudstone & Penarth Groups (red & grey), capped with Early Jurassic Lias Group mudstones and thin limestones. Aust Cliff, Severn Estuary, 2017 Triassic Mercia Mudstone & Penarth Groups, with Early Jurassic Lias Group at the top. Looking for coprolites Gypsum at the base Aust Cliff, Severn Estuary, 2017 Old Red Sandstone (Devonian) Portishead, North Somerset, 2017 Carboniferous Limestone – Jurassic Inferior Oolite unconformity, Vallis Vale near Frome Mendip Region, Somerset, 2014 Burrington Oolite (Carboniferous Limestone), Burrington Combe Rock of Ages, Mendip Hills, Somerset, 2014 Whatley Quarry Moon’s Hill Quarry Carboniferous Limestone Silurian volcanics Volcaniclastic conglomerate in Moon’s Hill Quarry Mainly rhyodacites, andesites and tuffs - England’s only Wenlock-age volcanic exposure. Stone Quarries in the Mendips, 2011 Silurian (Wenlock- age) volcaniclastic conglomerates are seen here above the main faces. The quarry’s rock types are similar to those at Mount St Helens. Spheroidal weathering Moons Hill Quarry, Mendips, Somerset, 2011 Wave cut platform, Blue Lias Fm. (Jurassic) Kilve Mercia Mudstone Group (Triassic) Kilve St Audrie’s Bay West Somerset, 2019 Watchet Blue Lias Formation, Jurassic: Slickensiding on fault West Somerset, 2019 Triassic, Penarth Group Triassic, Mercia Mudstone Blue Anchor Fault, West Somerset, 2019 Mortehoe, led by Paul Madgett. Morte Slates Formation, Devonian (Frasnian-Famennian). South side of Baggy Point near Pencil Rock. Ipswichian interglacial dune sands & beach deposit (125 ka) upon Picton Down Mudstone Formation (U. Devonian) North Devon Coast, 1994 Saunton Down End. ‘White Rabbit’ glacial erratic (foliated granite-gneiss). Baggy Headland south side.
    [Show full text]
  • Stratigraphical Framework for the Middle Jurassic Strata of Great
    Stratigraphical framework for the Middle Jurassic strata of Great Britain and the adjoining continental shelf Geology and Landscape Programme Research Report RR/11/06 BRITISH GEOLOGICAL SURVEY RESEARCH REPORT RR/11/06 The National Grid and other Stratigraphical framework for the Ordnance Survey data © Crown copyright and database rights 2012. Ordnance Survey Licence Middle Jurassic strata of Great No. 100021290 Britain and the adjoining Key words Geology, stratigraphy, lithostratigraphy, Inferior Oolite continental shelf Group, Great Oolite Group, Ravenscar Group, Great Estuarine Group, Sutherland Group, Ancholme Group, Jurassic. A J M Barron, G K Lott, J B Riding Front cover Hilltop Quarry, Leckhampton Hill, Cheltenham, Glos.: the Birdlip Limestone Formation overlain by the Aston Limestone Formation. (P775213, A J M Barron) Bibliographical reference BARRON, A J M, LOTT, G K, AND RIDING, J B. 2012. Stratigraphical framework for the Middle Jurassic strata of Great Britain and the adjoining continental shelf. British Geological Survey Research Report, RR/11/06. 187pp. ISBN 978 0 85272 695 2 Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided
    [Show full text]
  • Studies of Possible Controls on the Variability of Radon Potential of Two East Midlands Ironstones
    Studies of possible controls on the variability of radon potential of two East Midlands ironstones Chemical and Biological Hazards Programme Internal Report IR/06/128 BRITISH GEOLOGICAL SURVEY CHEMICAL AND BIOLOGICAL HAZARDS PROGRAMME INTERNAL REPORT IR/06/128 Studies of possible controls on the variability of radon potential of two East Midlands ironstones E S Hodgkinson, C Scheib, D G Jones, and J Davis The National Grid and other Ordnance Survey data are used with the permission of the Controller of Her Majesty’s Stationery Office. Ordnance Survey licence number Licence No:100017897/2012. Keywords Radon; ironstone; gamma spectrometry; autoradiography; radon emanation. Bibliographical reference HODGKINSON, E S, SCHEIB, C, JONES, D G AND DAVIS, J. 2012. Studies of possible controls on the variability of radon potential of two East Midlands ironstones. British Geological Survey Internal Report, IR/06/128. 104pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected] You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. © NERC 2012. All rights reserved Keyworth, Nottingham British Geological Survey 2012 BRITISH GEOLOGICAL SURVEY The full range of Survey publications is available from the BGS British Geological Survey offices Sales Desks at Nottingham, Edinburgh and London; see contact details below or shop online at www.geologyshop.com Keyworth, Nottingham NG12 5GG The London Information Office also maintains a reference 0115-936 3241 Fax 0115-936 3488 collection of BGS publications including maps for consultation.
    [Show full text]
  • From the Portland and Purbeck Groups (Tithonian–Berriasian) of Dorset, United Kingdom
    New thoracican cirripedes (Crustacea) from the Portland and Purbeck Groups (Tithonian–Berriasian) of Dorset, United Kingdom Andy Galea aSchool of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL, United Kingdom E-mail: [email protected] Abstract. The first cirripedes from the Portland and Purbeck groups of southern England are described, and referred to two new species, Loriolepas whytei sp. nov and Etcheslepas portlandensis sp. nov. They constitute the first records of cirripedes from the upper Tithonian (uppermost Jurassic) and Berriasian (lowermost Cretaceous) of western Europe. A new family, the Archaeolepadidae, is introduced for the extinct genera Archaeolepas and Loriolepas. Key words. Jurassic, Cretaceous, stalked barnacles, southern England Introduction In 1928, Thomas Withers described the meagre cirripede material from the British Upper Jurassic, consisting of a small number of mostly broken valves washed from the Kimmeridge Clay of Buckinghamshire. In the Lower Cretaceous, the marine pre-Aptian strata had yielded only a single species from the Speeton Clay (Hauterivian) of Speeton, Yorkshire. Recent discoveries by Steve Etches (Etches Collection, Kimmeridge) of magnificently preserved, and locally abundant, cirripedes from the Kimmeridge Clay in Dorset have considerably improved our understanding of the taxonomy, phylogeny and palaeoecology of Late Jurassic forms (Gale 2014, 2018), but they remained unknown from the overlying Portland Group. In 2015, during a field excursion for students of the University of Portsmouth to Freshwater, on the Isle of Portland (Fig. 1) I collected a number of cirripede valves from the Cherty Member of the Portland Stone Formation, and further specimens on a subsequent visit.
    [Show full text]