Water on Mars and the Prospect of Martian Life
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planetary Report Report
The PLANETARYPLANETARY REPORT REPORT Volume XXIX Number 1 January/February 2009 Beyond The Moon From The Editor he Internet has transformed the way science is On the Cover: Tdone—even in the realm of “rocket science”— The United States has the opportunity to unify and inspire the and now anyone can make a real contribution, as world’s spacefaring nations to create a future brightened by long as you have the will to give your best. new goals, such as the human exploration of Mars and near- In this issue, you’ll read about a group of amateurs Earth asteroids. Inset: American astronaut Peggy A. Whitson who are helping professional researchers explore and Russian cosmonaut Yuri I. Malenchenko try out training Mars online, encouraged by Mars Exploration versions of Russian Orlan spacesuits. Background: The High Rovers Project Scientist Steve Squyres and Plane- Resolution Camera on Mars Express took this snapshot of tary Society President Jim Bell (who is also head Candor Chasma, a valley in the northern part of Valles of the rovers’ Pancam team.) Marineris, on July 6, 2006. Images: Gagarin Cosmonaut Training This new Internet-enabled fun is not the first, Center. Background: ESA nor will it be the only, way people can participate in planetary exploration. The Planetary Society has been encouraging our members to contribute Background: their minds and energy to science since 1984, A dust storm blurs the sky above a volcanic caldera in this image when the Pallas Project helped to determine the taken by the Mars Color Imager on Mars Reconnaissance Orbiter shape of a main-belt asteroid. -
Review of the MEPAG Report on Mars Special Regions
THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/21816 SHARE Review of the MEPAG Report on Mars Special Regions DETAILS 80 pages | 8.5 x 11 | PAPERBACK ISBN 978-0-309-37904-5 | DOI 10.17226/21816 CONTRIBUTORS GET THIS BOOK Committee to Review the MEPAG Report on Mars Special Regions; Space Studies Board; Division on Engineering and Physical Sciences; National Academies of Sciences, Engineering, and Medicine; European Space Sciences Committee; FIND RELATED TITLES European Science Foundation Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions Committee to Review the MEPAG Report on Mars Special Regions Space Studies Board Division on Engineering and Physical Sciences European Space Sciences Committee European Science Foundation Strasbourg, France Copyright National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This study is based on work supported by the Contract NNH11CD57B between the National Academy of Sciences and the National Aeronautics and Space Administration and work supported by the Contract RFP/IPL-PTM/PA/fg/306.2014 between the European Science Foundation and the European Space Agency. -
PUTTING LIFE on MARS: Using Computer Graphics to Render a Living Mars
InSight: RIVIER ACADEMIC JOURNAL, VOLUME 9, NUMBER 1, SPRING 2013 PUTTING LIFE ON MARS: Using Computer Graphics to Render a Living Mars Kevin M. Gill ‘11G* Senior Software Engineer, Thunderhead.com, Manchester, NH Keywords: Computer Graphics, Mars, Life, Planetary Science, OpenGL Abstract This article describes the software, algorithms & decisions that went into the development of the Living Mars image project. This includes topics related to computer graphics, software development, astronomy, & planetary science. The purpose of the project was to create a visualization of the planet Mars as could look with a living biosphere. This makes no distinction as to whether this biosphere would represent an ancient or future, possibly terraformed planet. 1 Background Mars, named for the Roman god of war. Ancient civilizations have forever associated the planet with fear, war, and destruction. It is the color of blood, and “one of a handful of planets visible to the naked eye, and the only one of marked color, so the planet demanded attention (Pyle, 2012).” Ever since man has noticed it, there have been dreams and visions of life on Mars, from Giovanni Schiaparelli and Percival Lowell describing channels and canals to Robert A. Heinlein’s science fiction. Lowell, in particular famous for fantastic writings of Mars, asked “are physical forces alone at work there, or has evolution begotten something more complex, something not unakin to what we know on Earth as life?” (Lowell, 1895) Even more recent discoveries by NASA’s Curiosity rover have found proof that liquid water once flowed billions of years ago positing an environment that could have served host to life (Brown, 2013). -
Companion Q&A Fact Sheet: What Mars Reveals About Life in Our
What Mars Reveals about Life in Our Universe Companion Q&A Fact Sheet Educators from the Smithsonian’s Air and Space and Natural History Museums assembled this collection of commonly asked questions about Mars to complement the Smithsonian Science How webinar broadcast on March 3, 2021, “What Mars Reveals about Life in our Universe.” Continue to explore Mars and your own curiosities with these facts and additional resources: • NASA: Mars Overview • NASA: Mars Robotic Missions • National Air and Space Museum on the Smithsonian Learning Lab: “Wondering About Astronomy Together” Guide • National Museum of Natural History: A collection of resources for teaching about Antarctic Meteorites and Mars 1 • Smithsonian Science How: “What Mars Reveals about Life in our Universe” with experts Cari Corrigan, L. Miché Aaron, and Mariah Baker (aired March 3, 2021) Mars Overview How long is Mars’ day? Mars takes 24 hours and 38 minutes to spin around once, so its day is very similar to Earth’s. How long is Mars’ year? Mars takes 687 days, almost two Earth years, to complete one orbit around the Sun. How far is Mars from Earth? The distance between Earth and Mars changes as both planets move around the Sun in their orbits. At its closest, Mars is just 34 million miles from the Earth; that’s about one third of Earth’s distance from the Sun. On the day of this program, March 3, 2021, Mars was about 135 million miles away, or four times its closest distance. How far is Mars from the Sun? Mars orbits an average of 141 million miles from the Sun, which is about one-and-a-half times as far as the Earth is from the Sun. -
Operation and Performance of the Mars Exploration Rover Imaging System on the Martian Surface
Operation and Performance of the Mars Exploration Rover Imaging System on the Martian Surface Justin N. Maki Jet Propulsion Laboratory California Institute of Technology Pasadena, CA USA [email protected] Todd Litwin, Mark Schwochert Jet Propulsion Laboratory California Institute of Technology Pasadena, CA USA Ken Herkenhoff United States Geological Survey Flagstaff, AZ USA Abstract - The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. The acquisition of hundreds of panoramas and tens of thousands of stereo pairs has enabled the rovers to explore Mars at a level of detail unprecedented in the history of space exploration. In addition to providing scientific value, the images also play a key role in the daily tactical operation of the rovers. The mobile nature of the MER surface mission requires extensive use of the imaging system for traverse planning, rover localization, remote sensing instrument targeting, and robotic arm placement. Each of these activity types requires a different set of data compression rates, surface Figure 1. The Mars Exploration Spirit Rover, as viewed by coverage, and image acquisition strategies. An overview the Navcam shortly after lander egress early in the mission. of the surface imaging activities is provided, along with a presents an overview of the operation and performance of summary of the image data acquired to date. the MER Imaging System. Keywords: Imaging system, cameras, rovers, Mars, 1.2 Imaging System Design operations. The MER cameras are classified into five types: Descent cameras, Navigation cameras (Navcam), Hazard Avoidance 1 Introduction cameras (Hazcam), Panoramic cameras (Pancam), and Microscopic Imager (MI) cameras. -
Prospects for Life on Mars Without Doubt, Mars Is the Planet That Has Inspired the Most Speculation About Life Outside Earth. It
Prospects for Life on Mars Without doubt, Mars is the planet that has inspired the most speculation about life outside Earth. It has also starred in more science fiction stories than all other non-Earth planets put together. In this lecture we will have some fun exploring the history of these notions, as well as the entirely serious pursuit of life on Mars that is an ongoing focus of NASA. Lowell and the canals Fascination with Mars has probably occurred since the dawn of humans. Its bright red aspect draws attention, and it is probably no accident that multiple civilizations identified it with the god of war. We take our tradition in this respect from the Romans. Mars, the fourth planet from the Sun, is the second smallest of the terrestrial planets. It has about 1/10 of the mass of the Earth and 1/3 of Earth’s surface gravity, with the consequence that it has difficulty holding onto gases and thus has an atmosphere with only about 1% of the density of Earth’s. The atmosphere itself is mostly carbon dioxide; the oxygen that was in the atmosphere has combined with the iron in the crust to make rust, which is why the planet is red. Mars has no detectable magnetic field, which suggests to some people that it is solid throughout: for comparison, the Earth’s molten interior combined with its rotation (which is similar to that of Mars) generates our magnetic field. Nonetheless, Mars has some spectacular surface features including the largest volcano in the Solar System, Olympus Mons, which rises an amazing 25 km above the surface and is 600 km wide at its base. -
Magnetite Biomineralization and Ancient Life on Mars Richard B Frankel* and Peter R Buseckt
Magnetite biomineralization and ancient life on Mars Richard B Frankel* and Peter R Buseckt Certain chemical and mineral features of the Martian meteorite with a mass distribution unlike terrestrial PAHs or those from ALH84001 were reported in 1996 to be probable evidence of other meteorites; thirdly, bacterium-shaped objects (BSOs) ancient life on Mars. In spite of new observations and up to several hundred nanometers long that resemble fos interpretations, the question of ancient life on Mars remains silized terrestrial microorganisms; and lastly, 10-100 nm unresolved. Putative biogenic, nanometer magnetite has now magnetite (Fe304), pyrrhotite (Fel_xS), and greigite (Fe3S4) become a leading focus in the debate. crystals. These minerals were cited as evidence because of their similarity to biogenic magnetic minerals in terrestrial Addresses magnetotactic bacteria. *Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407, USA; e-mail: [email protected] The ancient life on Mars hypothesis has been extensively tDepartments of Geology and Chemistry/Biochemistry, Arizona State challenged, and alternative non-biological processes have University, Tempe, Arizona 85287-1404, USA; e-mail: [email protected] been proposed for each of the four features cited by McKay et al. [4]. In this paper we review the current situa tion regarding their proposed evidence, focusing on the Abbreviations putative biogenic magnetite crystals. BCM biologically controlled mineralization BIM biologically induced mineralization BSO bacterium-shaped object Evidence for and against ancient Martian life PAH polycyclic aromatic hydrocarbon PAHs and BSOs Reports of contamination by terrestrial organic materials [5°,6°] and the similarity of ALH84001 PAHs to non-bio genic PAHs in carbonaceous chondrites [7,8] make it Introduction difficult to positively identify PAHs of non-terrestrial, bio A 2 kg carbonaceous stony meteorite, designated genic origin. -
Case Study: Rio Tinto Iron Ore (Pilbara Iron) Centralized Monitoring Solution
Case Study: Rio Tinto Iron Ore (Pilbara Iron) Centralized Monitoring Solution of 2007, seven mines all linked by the world’s largest privately owned rail network. CHALLENGES To meet the growing demand for their iron ore, particularly from the ever-growing Chinese market, Pilbara Iron were faced with the challenge of increasing production from their mining operations, or more importantly preventing stoppages in production, while maintaining quality. It was recognized that the process control systems at their processing plants were critical assets required to be available and reliable while keeping the plant within the optimal production limits. At the same time the mining industry, like most industries, was and is facing a worldwide shortage of skilled labor to operate and maintain their plants. Rio Tinto Iron Ore Figure 1. Pilbara Iron’s operations has the added burden of very remote mining operations, making it even harder to attract and retain experienced and skilled labor, PROFILE particularly control and process engineers. The mining operations of Rio Tinto Iron Ore (Pilbara Iron) in Australia are located in the Pilbara Region, In order to offer the benefits of living in a a remote outback area in northwest Western modern thriving city, a group of process control Australia, some 1200 kilometers from Perth. Pilbara professionals was established in Perth. Iron has three export port facilities and, by the end The members of this team came from Rio Tinto A WEB-BASED SOLUTION Asset Utilization, a corporate support group To meet this need a centralized monitoring solution established within Rio Tinto at the time to address was established, with data collection performed at performance improvement across all operations the sites and analysis and diagnosis undertaken worldwide, and Pilbara Iron itself. -
Pre-Mission Insights on the Interior of Mars Suzanne E
Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1). -
Evolution of Mars As a Planet, Possible Life on Mars
EVOLUTION OF MARS LECTURE 18 NEEP 533 HARRISON H. SCHMITT NASA HST IMAGE N THARSIS HELLAS S ANDESITE OR WEATHERED SOIL DUST DUST DUST BASALT ~100 KM A C B THEMIS THERMAL IMAGING OF SPIRIT LANDING AREA IN GUSEV CRATER A. SPIRIT LANDING ELLIPSE B. CLOSER VIEW OF SPIRIT LANDING ELLIPSE C. NIGHT IR IMAGE: BRIGHT AREAS ARE MORE ROCKY. ARROW POINTS TO ROCKY SLOPE SPIRIT MOVED TO GUSEV CRATER POSSIBLE LAKE BED IN LARGE BASIN A C B THEMIS THERMAL IMAGING OF OPPORTUNITYLANDING AREA IN MERIDIANI PLANUM A. LANDING ELLIPSE ~120 KM LONG) B. CLOSER VIEW OF LANDING ELLIPSE C. NIGHT IR IMAGE: BRIGHT AREAS ARE MORE ROCKY. ARROW POINTS TO ROCKY SLOPE MAJOR STAGES OF MARS’ EVOLUTION 1 BEGINNING 2 MAGMA OCEAN / CONVECTIVE OVERTURN 3A ? ? CRATERED UPLANDS / VERY LARGE BASINS 3B ? CORE FORMATION/GLOBAL MAGNETIC FIELD 3C 4.5 - 1.3 GLOBAL MAFIC VOLCANISM DENSE WATER / CO2 ATMOSPHERE E ? G 3D EROSION / LAKES / NORTHERN OCEAN A T ? ? S 4 LARGE BASINS CATACLYSM ? THARSIS UPLIFT AND VOLCANISM ? 5 NORTHERN HEMISPHERE BASALTIC / ANDESITIC VOLCANISM ? 1.3 - 0.2 SUBSURFACE HYDROSPHERE / CRYOSPHERE 6 ? PRESENT SURFACE CONDITIONS LUNAR 4.6 4.2? 3.8 ? 5.0 4.0 3.0 2.0 1.0 BILLIONS OF YEARS BEFORE PRESENT ITALICS = SNC DATES RED = MAJOR UNCERTAINTY OLYMPUS TOPOGRAPHY OF MONS THARSIS REGION VALLES MARINERIS THARSIS REGION SHADED RELIEF DETAIL MARS GLOBAL SURVEYOR MOLA OLYMPUS MONS VALLES MARINERIS APOLLO MODEL OF MARS EVOLUTION ELYSIUM MONS ANDESITIC THARSIS EVENTS EXTRUSIONS <3.8 B.Y. THARSIS THICKENING ATMOSPHERE: MAFIC UPPER MANTLE WITH CO2, H20 CRYOSPHERE / INCREASING HYDROSPHERE SI AND FE UPWARDS OLIVINE/ NA- PYROXENE ? ANDESITIC CUMULATE INTRUSIONS? OLIVINE ? CUMULATE RELIC PROTO- GARNET / NA-CPX/ CORE ? NA-BIOTITE?/NA- HORNBLENDE/ ? FExNIySz “RUTILE” (TRANSITION? CORE CUMULATES ? ZONE) RELIC MAGNETIC STRIPING THICKENED SOUTHERN ©Harrison H. -
Acid Mine Drainage Remediation Starts at the Source / DIETER RAMMLMAIR (1) / CHRISTOPH GRISSEMANN (1) / TORSTEN GRAUPNER (1) / JEANNET A
macla. nº 10. noviembre´08 revista de la sociedad española de mineralogía 29 Los residuos mineros distribuidos sobre grandes áreas son importantes peligros para el medioambiente. La enorme superficie que ocupan proporciona acceso a la erosión incontrolable por el viento y la lluvia, la infiltración del agua y el intercambio de aire. La conta- minación de la materia gaseosa, disuelta, coloidal, particulada e incluso orgánica afecta a zonas pequeñas o, en el peor de los casos, a enormes áreas, dependiendo del tamaño de grano, modo de deposición y forma del material depositado. Centrándonos en el estu- dio de los procesos que tienen lugar dentro del propio material acumulado, es necesario un conocimiento básico respecto a la histo- ria de deposición, roca madre, morfología, clima y vegetación. Es crucial elucidar el estatus quo del residuo minero depositado – su química, mineralogía, tamaño de grano, laminación, conductividad hidráulica, modelo de drenaje, química de las soluciones, actividad microbiológica, la relación ácido-base, los frentes de reacción y la formación de hardpan. La interacción de todos los parámetros con- trola el impacto medioambiental en un cierto intervalo de tiempo así como para toda la vida de una escombrera. La atenuación natural de contaminantes puede ser observada en el origen, a lo largo del camino del drenaje, así como debido a la mezcla y dilución con aguas no contaminadas. Un número de aspectos parecen ser relevantes para los procesos de atenuación en el origen. Basado en información del fondo químico, el peor escenario puede ser modelado. Esto puede ser modificado por el potencial de neu- tralización del propio material a corto y largo plazo. -
Possible Evaporite Karst in an Interior Layered Deposit in Juventae
International Journal of Speleology 46 (2) 181-189 Tampa, FL (USA) May 2017 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Possible evaporite karst in an interior layered deposit in Juventae Chasma, Mars Davide Baioni* and Mario Tramontana Planetary Geology Research Group, Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino "Carlo Bo", Campus Scientifico Enrico Mattei, 61029 Urbino (PU), Italy Abstract: This paper describes karst landforms observed in an interior layered deposit (ILD) located within Juventae Chasma a trough of the Valles Marineris, a rift system that belongs to the Tharsis region of Mars. The ILD investigated is characterized by spectral signatures of kieserite, an evaporitic mineral present on Earth. A morphologic and morphometric survey of the ILD surface performed on data of the Orbiter High Resolution Imaging Science Experiment (HiRISE) highlighted the presence of depressions of various shapes and sizes. These landforms interpreted as dolines resemble similar karst landforms on Earth and in other regions of Mars. The observed karst landforms suggest the presence of liquid water, probably due to ice melting, in the Amazonian age. Keywords: Mars, interior layered deposits, karst, climate change Received 21 Octomber 2016; Revised 18 April 2017; Accepted 19 April 2017 Citation: Baioni D. and Tramontana M., 2017. Possible evaporite karst in an interior layered deposit in Juventae Chasma, Mars. International Journal of Speleology, 46 (2), 181-189. Tampa, FL (USA) ISSN 0392-6672 https://doi.org/10.5038/1827-806X.46.2.2085 INTRODUCTION north of Valles Marineris (Catling et al., 2006).