Biological Lectures Delivered at the Marine Biological Laboratory Of

Total Page:16

File Type:pdf, Size:1020Kb

Biological Lectures Delivered at the Marine Biological Laboratory Of BIOLOGICAL LECTURES DELIVERED AT THE MARINE BIOLOGICAL LABORATORY OF WOOD'S HOLL IN THE SUMMER SESSION OF 1890 t^tt%^^^ N^^*° BOSTON, U.S.A. PUBLISHED BY GINN & COMPANY I 89 I Copyright, 1890, Bt GINN & COMPANY. All Rights Reserved. Typography by J. S. Gushing & Co., Boston, U.S.A. Presswork by Ginn & Co., Boston, U.S.A. PREFACE. The addresses and lectures contained in this volume, with two exceptions, were delivered at the Marine Bio- logical Laboratory during the summer session of 1890. They are a continuation of the Evening Lectures begun in the previous session. The educational value which such lectures may be pre- sumed to have, and the consideration that through them the aims, the needs, and the possibilities of biological work might, in some measure, be made better known to the public, especially to those whose liberal benefactions have enabled the Laboratory to carry forward its work, suggested the propriety of publication. This step, how- ever, was not decided upon until late in the session of this year, after most of the lectures here presented had been delivered. The preparation of the Mss. for this purpose has been an extra tax upon the time of the contributors ; and, as this was done at my solicitation, I desire to acknowledge here my great obligation to them for this part of their invaluable co-operation in the work of the Laboratory. There are one or two points in the raisojt d'etre of this course of lectures, which do not lie wholly on the surface, but which deserve to be made clear. It was iii IV PREFACE. hoped, through such a course, to bring speciahsts into mutually helpful and stimulating relations with one another, and at the same time to make their work and thought intelligible and useful to beginners. It was not intended to take the place of systematic lectures, such as are given in the regular courses of instruction ; it stands rather for the higher and the more general needs of the science. Its leading pur- pose, if I may be permitted to define it more with reference to the possibilities of its future development than to its present attainment, was to meet the rapidly growing need of co-operative union among specialists. Specialization has now reached a point where such union appears to be an essential means of progress. Speciali- zation is not science, but merely the method of science. For the sake of greater concentration of effort, we divide the labor ; but this division of the labor leads to interdependence among the laborers, and makes social co-ordination more and more essential. This is the law of progress throughout the social as well as the orgfanic world. An oro^anism travels towards its most perfect state in proportion as its component cell-indi- viduals reach the limit of specialization, and form a whole of mutually dependent parts. Scientific organi- zation obeys the same law. As methods of investiga- tion improve, specialization advances, and at the same time the mutual dependence of specialists increases. Isolation in work becomes more and more unendura- ble. Comparison of results, interchange of views and ideas, and a thousand other advantages of social contact, become of paramount importance to the highest devel- opment. PREFACE. V In such considerations may be found the leading motive for this course of lectures. While directed in the main to the higher needs of investigators, they deal, as a rule, with subjects of present, and quite gen- pains eral interest to beginners ; and considerable has been taken to put them in a form that would be readily understood by such readers. In general, it may be said that the authors undertake to set forth what has been accomplished in their special fields of research, to give the conclusions of the best work and thought, to point out general bearings, and to state the problems that await solution. Obviously, such a course of lectures admits of un- limited development. Those here offered may serve to emphasize our need, and perhaps may contribute some- thing towards the eventual realization of that more perfect organization which we look for in the establish- ment of a permanent station with an endowment equal to our great opportunities for marine biological research. C. O. WHITMAN. — CONTENTS. —•<>• LECTURE ^^^^ I. Specialization and Organization, Companion Principles of All Progress. — The Most Important Need of American Biology. C. O. Whitman i II. The Naturalist's Occupation: i. General Survey. 2. A Special Problem. C. O. Whitman .... 27 III. So>ne Problems of Annelid Morphology. E. B. Wilson, 53 IV. The Gastrcza Theory and its Successors. J. P. McMuRRiCH 79 V. Weismann aud Maupas on the Origin of Death. Edward G. Gardiner 107 V\. Evolution and Heredity. Henry Fairfield Osborn, 130 VII. The Relationships of the Sea-Spiders. T.H.Morgan, 142 168 VIII. On Caryokinesis. S. Watase IX. The Ear of Man: its Past, Present, and Euture. Howard Ayers ^^^ X. The Study of Ocean Temperatures and Currefits. William Libbey, Jr 231 vii FIRST LECTURE. SPECIALIZATION AND ORGANIZATION, COMPANION PRINCIPLES OF ALL PROGRESS. THE MOST IMPORTANT NEED OF AMERICAN BIOLOGY. By C. O. whitman. A HEALTHY faith in the progress of biology pre- supposes a correct understanding of the tendency to speciaUze. It is important to know not only that special- ization is a necessity, but a necessity that need not be feared. It may sound a little paradoxical to assert, that this tendency means union as well as separation ; but it is only a truth illustrated in the most familiar facts of science and of every-day life. Let us look at some of the broader aspects of this tendency, in order to learn whither it is carrying us and what its implications are. Naturalists are long accustomed to the idea that the living body represents a commonwealth of cells. The metaphor is based, not upon superficial or fanciful re- semblances, but upon analogies that lie at the very foundation of organic and social existence. On the same grounds that the sociologist affirms that a society I 2 MARINE BIOLOGICAL LABORATORY. is an organism, the biologist declares that an organism is a society. A society is an organized whole, the unity of which consists in, and is measured by, the mutual dependence of its members. The living body is an organization of individual cells with the same bond of unity. The principle of organization in both cases is the division of labor or function. The primitive social aggregate •— the undifferentiated germ of society — is composed of practically like units, with like simple needs. Every ore 4,8 a factotum, fulfilling all needs in and for himself. I , ill self-dependence and no mutual dependence. 1 he coherence of the whole is so slight that it can break up into as many parts as there are individuals, without the sacrifice of a single tie or condition essential to existence. In course of time, division of labor comes into play, and with it social organization has its beginning. The different members, instead of doing all sorts of work, and aiming only to supply their own individual wants, begin to limit themselves to such work as their tastes, capacities, surroundings, etc., commend to them. This concentration of effort, which Coleridge, in his theory of life, has defined as "the tendency to individuation," both strengthens and improves the productive power, thus enabling a few to do the work of many. Each class of specializers produce in excess of their own needs, and through the exchange of these surplus prod- ucts the needs of all are supplied. The social integration that accompanies such division of labor may best be seen under conditions conceived as simple as possible. Let it be assumed that we have ; SPECIALIZATION AND ORGANIZATION. 5 an aggregate of a hundred individuals, equal in compe- tency and capacity for work, and all living under like conditions. Let us assume that the necessities of exist- ence for each member require ten kinds of labor in equal quantities. Now as long as each individual fulfils all ten needs, there will be no division of labor, but rather a divison of energy and correspondingly inferior products. The aggregate will represent a mere chance collection of independent individuals, not a whole of mutually depend- ent parts. But introduce the division of labor, and see how social integration follows. To take a simple form of division, we will suppose the aggregate divided into ten equal groups, one for each kind of work. We still have the same workers, the same energy expended, the same work accomplished, and the same needs fulfilled ; all we have done is simply to divide the labor instead of the time, and distribute it in such a way that . each person gives his entire time to one work instead of dividing it among ten. The change, in itself considered, looks extremely simple and insignificant but, when measured by the consequences entailed, its importance becomes at once apparent. Each work is now accomplished by ten men instead of a hundred, with the result that each individual fulfils only one-tenth of his own needs, and depends upon his fellows for the rest. Instead of jacks-at-all-trades, we now have specialists working under a social compact, which makes each indi- vidual the indispensable servant of every other. The co-ordination of individuals is such as to maintain a complete consensus of functions; which is the funda- mental trait of a perfectly organized community, and 4 MARINE BIOLOGICAL LABORATORY. its chief distinction from a purely gregarious aggre- gate. If the members of such a community, in adaptation to the conditions it imposes, should become so far differ- entiated as to lose the power of providing for more than one or two of the ten necessities of existence, the social unity would become as inviolable as the physiological unity of the higher organisms.
Recommended publications
  • Volvox Barberi Flocks, Forming Near-Optimal, Two
    bioRxiv preprint doi: https://doi.org/10.1101/279059; this version posted March 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Volvox barberi flocks, forming near-optimal, two-dimensional, polydisperse lattice packings Ravi Nicholas Balasubramanian1 1Harriton High School, 600 North Ithan Avenue, Bryn Mawr, PA 19010, USA Volvox barberi is a multicellular green alga forming spherical colonies of 10000-50000 differentiated somatic and germ cells. Here, I show that these colonies actively self-organize over minutes into “flocks" that can contain more than 100 colonies moving and rotating collectively for hours. The colonies in flocks form two-dimensional, irregular, \active crystals", with lattice angles and colony diameters both following log-normal distributions. Comparison with a dynamical simulation of soft spheres with diameters matched to the Volvox samples, and a weak long-range attractive force, show that the Volvox flocks achieve optimal random close-packing. A dye tracer in the Volvox medium revealed large hydrodynamic vortices generated by colony and flock rotations, providing a likely source of the forces leading to flocking and optimal packing. INTRODUCTION behavior (see, e.g., [8, 9] and references therein) but their interactions are often dominated by viscous forces (e.g. fluid drag) unlike larger organisms which are The remarkable multicellular green alga Volvox barberi dominated by inertial forces. Here, I show that V. [1] forms spherical colonies of 10,000 to 50,000 cells barberi colonies, which are themselves composed of many embedded in a glycol-protein based extra cellular matrix individual cells acting together, show collective behavior (ECM) and connected by cytoplasmic bridges that may at a higher level of organization.
    [Show full text]
  • Introduction to the Cell Cell History Cell Structures and Functions
    Introduction to the cell cell history cell structures and functions CK-12 Foundation December 16, 2009 CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright ©2009 CK-12 Foundation This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Contents 1 Cell structure and function dec 16 5 1.1 Lesson 3.1: Introduction to Cells .................................. 5 3 www.ck12.org www.ck12.org 4 Chapter 1 Cell structure and function dec 16 1.1 Lesson 3.1: Introduction to Cells Lesson Objectives • Identify the scientists that first observed cells. • Outline the importance of microscopes in the discovery of cells. • Summarize what the cell theory proposes. • Identify the limitations on cell size. • Identify the four parts common to all cells. • Compare prokaryotic and eukaryotic cells. Introduction Knowing the make up of cells and how cells work is necessary to all of the biological sciences. Learning about the similarities and differences between cell types is particularly important to the fields of cell biology and molecular biology.
    [Show full text]
  • Algae of the Genus Volvox (Chlorophyta) in Sub-Extreme Habitats T A.G
    Short Communication T REPRO N DU The International Journal of Plant Reproductive Biology 12(2) July, 2020, pp.156-158 LA C P T I F V O E B Y T I DOI 10.14787/ijprb.2020 12.2. O E I L O C G O S I S T E S H Algae of the genus Volvox (Chlorophyta) in sub-extreme habitats T A.G. Desnitskiy Department of Embryology, Saint-Petersburg State University, Saint-Petersburg, 199034, Universitetskaya nab. 7/9, Russia e-mail: [email protected]; [email protected] Received: 18. 05. 2020; Revised: 08. 06. 2020; Accepted and Published online: 15. 06. 2020 ABSTRACT Literature data on the life of green colonial algae of the genus Volvox (Chlorophyta) in sub-extreme habitats (polar, sub-polar and mountain regions) are critically considered. Very few species (primarily homothallic Volvox aureus) are able to thrive in such conditions. Keywords : Geographical distribution, reproduction, sub-extreme habitats, Volvox. The genus Volvox Linnaeus (Volvocaceae, Chlorophyta) Peru (South America) at the elevation of more than five includes more than 20 species of freshwater flagellate algae thousand meters above sea level seems to be doubtful. The (Nozaki et al. 2015), providing an opportunity to study the illustration from this article (which focuses mainly on developmental mechanisms in a relatively simple system diatoms) shows a spherical colony with a diameter of about 14 consisting of two cellular types (somatic and reproductive). μm, consisting of several hundred very small cells (Fritz et al. Volvox carteri f. nagariensis Iyengar is a valuable model of 2015, p.
    [Show full text]
  • Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
    City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I.
    [Show full text]
  • And Development Could Be Examined in Detail. Prior to Darden's Work
    CELLULAR DiFPERLENTIA TION IN VOLVOX* BY RICHARD C. STARR DEPARTMENT OF BOTANY, INDIANA UNIVERSITY, BLOOMINGTON Communicated by R. E. Cleland, January 29, 1968 MIicroorganiisms have become important research materials in the study of differentiation at all levels of organization from the molecular to the cellular, but there remains a wealth of species whose potential has not as yet been realized due to problems of isolation, cultivation, or manipulation of the various phases of the life cycle. In this latter group the green alga Volvox has for many years been recognized as having aspects of organization and development that would make it a prime species for investigation of differentiation at the cellular level. The Volvox individual is a spheroid in which the biflagellate cells are arranged in a single peripheral layer. Two types of cells are always present: somatic cells which characteristically make up the bulk of the organism; and reproductive cells which occur in small numbers and which may be differentiated as gonidia, i.e., asexual cells capable of reproducing new individuals without fertilization, or sexual cells capable of becoming eggs, or of forming packets of sperm cells. It is of special interest that many of the species of Volvox were delimited by such early workers as Powers' and Shaw2 using as taxonomic criteria the type and degree of differentiation, and the time at which such differentiation occurred during the development of the young individuals. The pioneering work by Darden3 on Volvox aureus showed the possibility of studying the control of the reproductive cells in cultured material where growth and development could be examined in detail.
    [Show full text]
  • ACTA PROTOZOOLOGICA Redaktor Naczelny: Zastępca Redaktora Naczelnego: Sekretarz Redakcji ZDZISŁAW RAABE STANISŁAW DRYL STANISŁAW L
    PROTOZOOLOGICAACTA ''V.' i -XhM'i- i i ' ; m % & . / M ' J.JsSw. v.. w...... A .. ..sSSL. ..3 . - ,«.. REDACTORU M CONSILIUM S. DRYL (WARSZAWA), A. GRĘBECKI (WARSZAWA), O. JlROVEC (PRAHA), G. I. POLJANSKY (LENINGRAD), Z. RAABE (WARSZAWA), K. M. SUKHANOVA (LENINGRAD) VOLUMEN Vir Fasciculi: 1 — 10 WARSZAWA 19 6 9 http://rcin.org.pl INSTYTUT BIOLOGII DOŚWIADCZALNEJ IM. M. NENCKIEGO POLSKIEJ AKADEMII NAUK ACTA PROTOZOOLOGICA Redaktor Naczelny: Zastępca Redaktora Naczelnego: Sekretarz Redakcji ZDZISŁAW RAABE STANISŁAW DRYL STANISŁAW L. KAZUBSKI NOTICE TO AUTHORS Acta Protozoologica is intended as a journal serving for the publication of original papers embodying the results of experimental or theoretical research in ail fields of protozoology with the exception of purely clinical reports. The papers must be concise and will not be accepted if they have been previously published elswhere. After acceptance by the Editors papers will be printed in the order as they have been received, in the possibly shortest time. Papers are accepted in English, French, German and Russian. Every paper should begin with the name and postal address of the laboratory, name and the surname of the author, title in the language of the text, and translation of the title into the author's own language. The paper should be accompanied by a sum- mary in the language of the text, not exceeding 100 words, also the translation into the author's own language. The authors speaking English, French, German, or Russian should translate the title and the summary into another one of the 4 lan- guages accepted in the Journal. In the Russian texts also the name and the postal address of the laboratory, legends of tables, plates and text-illustrations must be translated, the translation of the summary may be somewhat more extensive, and the name of the author should be given additionally also in the Latin characters.
    [Show full text]
  • Volvox Barberi Flocks, Forming Near-Optimal, Two-Dimensional
    bioRxiv preprint doi: https://doi.org/10.1101/279059; this version posted April 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Volvox barberi flocks, forming near-optimal, two-dimensional, polydisperse lattice packings Ravi Nicholas Balasubramanian1 1Harriton High School, 600 North Ithan Avenue, Bryn Mawr, PA 19010, USA Volvox barberi is a multicellular green alga forming spherical colonies of 10000-50000 differentiated somatic and germ cells. Here, I show that these colonies actively self-organize over minutes into “flocks" that can contain more than 100 colonies moving and rotating collectively for hours. The colonies in flocks form two-dimensional, irregular, \active crystals", with lattice angles and colony diameters both following log-normal distributions. Comparison with a dynamical simulation of soft spheres with diameters matched to the Volvox samples, and a weak long-range attractive force, show that the Volvox flocks achieve optimal random close-packing. A dye tracer in the Volvox medium revealed large hydrodynamic vortices generated by colony and flock rotations, providing a likely source of the forces leading to flocking and optimal packing. INTRODUCTION of many individual cells acting together, show collective behavior at a higher level of organization. Entire colonies can dynamically gather into large populations that move The remarkable multicellular green alga Volvox barberi together, even while individual colonies can continue to [1] forms spherical colonies of 10,000 to 50,000 cells rotate separately.
    [Show full text]
  • Biology • Environment • Chemistry MEMORABLE TEACHING MADE EASY!
    3bscientific.com Biology • Environment • ChemistryBiology • Environment NATURAL SCIENCES NATURAL 3B SCIENTIFIC® NATURAL SCIENCES 3bscientific.com 9000953 EN MEMORABLE TEACHING MADE EASY! Dear customer, Discover the variety of possibilities for making your teaching even more memorable and exciting. We have assembled a wide range of products and experiments for you for teaching various course content in biology. We can offer you detailed models, high-quality preparations and realis- tic replicas that illustrate the structures of plants, animals, humans and the earth as well as numerous experiment sets to aid independent study, practicing and learning. From page 104 onwards, you can browse through the selection of products relating to the earth sciences, ecology and chemistry. These include models of the structure of the earth, rock collections, measuring equipment for water and soil analysis, molecule construction kits and chemical measuring instruments. New and worthy of particular mention are the powerful and comprehensive Coach 7 measuring and analysis software, the VinciLab data logger and the €lab lab interface, as well as the numerous sensors for the measurement of biological and chemical para- meters (page 152 onwards). Representing a further innovation in our range are the devices for neurophysiological studies on intact earthworms. You can find these on page 94 onwards. Let yourself be inspired by our wide range. It’s well worth a look! Our competent team will be happy to advise you personally and is looking forward to receiving your suggestions and orders! We look forward to hearing from you! The 3B Scientific team ›NEW IN ZOOLOGY Limbs of various mammals The dissected real limbs enable scientific comparison of the anatomy of the front or rear legs of selected mammals and allow conclusions to be drawn about their walking and running behavior.
    [Show full text]
  • Dancing Volvox: Hydrodynamic Bound States of Swimming Algae
    week ending PRL 102, 168101 (2009) PHYSICAL REVIEW LETTERS 24 APRIL 2009 Dancing Volvox: Hydrodynamic Bound States of Swimming Algae Knut Drescher,1 Kyriacos C. Leptos,1 Idan Tuval,1 Takuji Ishikawa,2 Timothy J. Pedley,1 and Raymond E. Goldstein1 1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom 2Department of Bioengineering and Robotics, Tohoku University, Sendai 980-8579, Japan (Received 14 January 2009; published 20 April 2009) The spherical alga Volvox swims by means of flagella on thousands of surface somatic cells. This geometry and its large size make it a model organism for studying the fluid dynamics of multicellularity. Remarkably, when two nearby Volvox colonies swim close to a solid surface, they attract one another and can form stable bound states in which they ‘‘waltz’’ or ‘‘minuet’’ around each other. A surface-mediated hydrodynamic attraction combined with lubrication forces between spinning, bottom-heavy Volvox explains the formation, stability, and dynamics of the bound states. These phenomena are suggested to underlie observed clustering of Volvox at surfaces. DOI: 10.1103/PhysRevLett.102.168101 PACS numbers: 47.63.Gd, 87.17.Jj, 87.18.Ed Long after he made his great contributions to micros- dance. Both dances can last many tens of minutes or even copy and started a revolution in biology, Antony several hours. Although the orbiting component of the van Leeuwenhoek peered into a drop of pond water and waltzing is reminiscent of vortex pairs in inviscid fluids, discovered one of nature’s geometrical marvels [1]. This the attraction and the minuet are not, and as the Reynolds was the freshwater alga which, years later, in the very last number is 0:03, inertia is negligible.
    [Show full text]
  • Prepared Microscope Slides in Sets
    Prepared Microscope Slides Sets and Series 15 PREPARED MICROSCOPE SLIDES The microscope is an essential in- strument for modern biological stud- ies in schools, colleges and universi- ties. The well prepared microscope slide is a most important means of Nr. 519c Mais . Zea mays demonstration which can be exam- Nr. 610d Stengel, quer onokotyledonen- Honigbiene M m ellifica ined at different magnifications so stam Apis m kend-saugende, lec erkzeuge that increasing amount of detail can Mundw at be resolved. In this sense it is inex- Totalpräpar haustible. LIEDER PREMIUM PREPARED Nr. 626c Dünndarm MICROSCOPE SLIDES are made der Katze Felis domestica in our laboratories in Ludwigsburg/ Querschnitt Germany under rigourous scientific control. They are the product of long experience combined with the most up to date techniques. The prerequisite for excellent preparations is good material, well preserved and fixed so that the finer structures are retained in as life-like a way as possible. Microtome sections are cut from this material by our highly skilled and experienced staff. They are of a thickness which will finally result in slides from which the maximum reso- lution of the structural components can be obtained. Particular attention is paid to the staining technique and in each case the selected method for a particular specimen will ensure the best possible differentiation com- bined with clear definition and permanency of staining. LIEDER prepared microscope slides are delivered on best glasses with fine ground edges of the size 26 x 76 mm (1'’ x 3'’) and are mailed in solid boxes of different sizes and prices.
    [Show full text]
  • On the EVOLUTION of SELF DURING the TRANSITION to MULTICELLULARITY 27
    CHAPTER 2 THE EVOLUTION OF SELF DURING THE TRANSITION TO MULTICELLULARITY Aurora M. Nedelcu University of New Brunswick, Biology Department, Fredericton, New Brunswick, Canada Email: [email protected] Abstract: The notion of “self” is intrinsically linked to the concepts of identity and individuality. During evolutionary transitions in individuality—such as, for instance, during the origin of the first cell, the origin of the eukaryotic cell and the origin of multicellular individuals—new kinds of individuals emerged from the interaction of previously independent entities. The question discussed here is: How can new types of individuals with qualities that cannot be reduced to the properties of their parts be created at a higher level? This question is addressed in the context of the transition to multicellularity and using the volvocine green algae—a group of closely related unicellular and multicellular species with various degrees of physiological and reproductive unity—as a model system. In this chapter, we review our framework to addressing the evolution of individuality during the transition to multicellularity, focusing on the reorganization of general life‑traits and cellular processes and the cooption of environmentally‑induced responses. INTRODUCTION In philosophy, “self” is broadly defined as the essential qualities that make a person distinct from all others; the particular characteristics of the self determine its identity. The notion of “self” is, thus, intrinsically linked to the concepts of identity and individuality. Individuals
    [Show full text]
  • Prepared Microscope Slides in Systematic Order 49 PREPARED MICROSCOPE SLIDES in SYSTEMATIC ORDER
    Prepared Microscope Slides in Systematic Order 49 PREPARED MICROSCOPE SLIDES IN SYSTEMATIC ORDER The list of the available microscopic specimens was also revised and further essentially completed. Their systematic arrangement facilitates the finding of slides necessary to compile series for special use. A detailed list of contents is found on page 76. Helpful for orientation are the • marked slides of important specimens which are characteristic and representative of the taxonomic group or of the subject. Various slides are available only in small number or have a long delivery period, as their material is either rare or causes unusual difficulties in processing. This applies particularly to the slides marked with an asterisk * in the catalogue, for which we cannot guarantee delivery. Abbreviations: t.s. transverse or cross section l.s. longitudinal section w.m. whole mount or entire specimen Pr2114d Phacus, flat heart-shaped cells w.m. Pr2115e Trachelomonas, a free swimming species of PROTOZOA the Euglenophyta Pr212c • Ceratium hirundinella, a fresh water di- Rhizopoda (Sarcodina) noflagellate w.m. Pr2121c Ceratium, slide showing different marine forms Pr112e • Amoeba proteus, showing nucleus, endo- w.m. plasm, ectoplasm, food vacuoles, pseudopodia Pr2123d Peridinium, a fresh water dinoflagellate w.m. Pr112e Pr211c w.m. Pr213d • Noctiluca miliaris, a large marine flagellate Pr113f Amoeba proteus, section through specimens causing the phosphorescence of the sea, w.m. Pr114f • Entamoeba histolytica, causes amebic dys- Pr225h Chilomastix
    [Show full text]