Repeat Steroids Can Be Justified in Certain Cases

Total Page:16

File Type:pdf, Size:1020Kb

Repeat Steroids Can Be Justified in Certain Cases 10 Obstetrics O B .GYN. NEWS • July 15, 2005 D RUGS, PREGNANCY, Expert: Repeat Steroids Can A ND L ACTATION Be Justified in Certain Cases Antihyperlipidemic Agents he antihyperlipidemic class of drugs chromosome defect. The remaining two BY SHERRY BOSCHERT teroid group. With weekly corticosteroids, Tcan be subdivided into bile acid se- cases involved unilateral cleft lip and a San Francisco Bureau 33% developed RDS, and 12% had severe questrants, HMG-CoA reductase in- clubfoot, neither of which appear to be RDS, compared with 41% and 20%, re- hibitors, fibric acid derivatives, ezetim- attributable to simvastatin. S AN F RANCISCO — Three random- spectively, in the placebo group. ibe, and niacin. With the possible A 2004 reference described 178 cases ized, controlled trials now show evidence The need for oxygen or mechanical exception of familial hypercholes- of first-trimester exposure to statins re- of beneficial effects from a limited num- ventilation fell less dramatically in the terolemia, there appears to be no ma- ported to the Food and Drug Adminis- ber of repeat courses of prenatal corti- weekly corticosteroids group, compared ternal benefit for treating hyperlipi- tration. Among the 52 cases suitable for costeroids for fetuses at risk of preterm with placebo, but it was not clear whether demia in gestation. Nearly all reported evaluation, there were 20 major malfor- delivery, according to Julian T. Parer, these differences were significant. pregnancy exposures have occurred ac- mations, some thought to be consistent M.D. There were no significant differences cidentally. If treatment is required, only with inhibition of cholesterol biosyn- Those aren’t necessarily the official between groups in the need for intensive bile acid sequestrants are considered thesis. All defects involved a lipophilic conclusions of the studies, however, he care, duration of intensive care, rates of compatible in pregnancy and lactation. statin (atorvastatin, cerivastatin [Baycol], acknowledged at a meeting on antepar- chronic lung disease or severe intraven- Ezetimibe (Zetia) ap- lovastatin, or simvastatin). tum and intra- tricular hemor- pears to be low risk in ges- No defects were reported partum manage- rhage, or maternal tation, but not in lactation. with pravastatin, a hy- ment sponsored by With weekly outcomes. Because most drug-in- drophilic agent with low the University of steroids, 33% Although birth duced adverse effects in tissue penetration that is California, San developed RDS, weights were nursing infants have been not associated with ani- Francisco. compared somewhat lower in reported during the first mal developmental toxic- Two of the three with 41% in the the steroid group, month after birth, delay- ity. Because all statins are studies found no placebo group. the weight differ- ing treatment of a nursing probably excreted into overall benefit ences between mother until after this pe- milk, women taking these from repeat prena- DR. PARER groups resolved by riod appears to be the best drugs should not breast- tal steroids but re- the time of hospital course. feed. ported significantly less respiratory dis- discharge, he said. Average neonatal length Cholesterol is the pre- BY GERALD G. Among fibric acid de- tress and morbidity in babies born at and head circumference did not differ be- cursor of bile acids that BRIGGS, B.PHARM. rivatives, only gemfibrozil younger gestational ages if they got more tween groups. are excreted from the liv- (Lopid) has some human than one course of betamethasone pre- No harmful effects of repeat corticos- er and gallbladder into the intestine to data. The other agent, fenofibrate (Tri- natally. teroids were noted. Of those women aid in the digestion of fat. Bile acid se- Cor), has no human data. The animal The third study showed a benefit from who received repeat courses, 24% re- questrants—cholestyramine (Questran data (developmental toxicity in two an- repeat prenatal steroids, but the investi- ceived at least four courses. The investi- and various other names), colestipol imal species at doses up to 10 times the gators will not draw conclusions about gators declined to present a conclusion (Colestid), and colesevelam (WelChol)— human dose) for each drug suggest there the results until after a 2-year follow-up until they’ve completed 2 years of neu- are anion exchange resins that form in- may be a risk to the human embryo or period, said Dr. Parer, who is professor of rodevelopmental follow-up, he said at soluble complexes with bile acids in the fetus. The safest course is to avoid these ob.gyn. at the university. the meeting. intestine. The complexes are then ex- drugs in pregnancy (both are risk factor Dr. Parer said he has no financial rela- A separate study, which was reported creted in the feces, removing cholesterol C). Although there are no data, the drugs tionships with companies that make cor- at the Society of Maternal and Fetal from the system. are probably excreted into milk, and ticosteroids. Medicine meeting in 2004, randomized Cholestyramine has been used as a women on these agents should not A consensus statement issued in 2000 by 495 women after an initial course of pre- treatment for intrahepatic cholestasis of breast-feed. the National Institutes of Health says that natal corticosteroids to weekly courses pregnancy and as an antidote for some Ezetimibe (risk factor C) selectively repeat courses of corticosteroids should or placebo. types of diarrhea, chlordecone pesticide inhibits the intestinal absorption of cho- not be used routinely due to insufficient The study was stopped prematurely at poisoning, and digitalis toxicity. Because lesterol and related phytosterols. At data from randomized clinical trials. 23% of its expected enrollment due to bile acid sequestrants are not absorbed doses up to 10 times the human dose, Data from these three more recent stud- concerns about birth weights, and no into the systemic circulation, they do the drug is teratogenic in rats but not in ies, however, support the administration of signs of a substantial reduction in over- not represent a direct risk to the embryo rabbits. Human pregnancy exposures more than one course of prenatal corti- all morbidity in the steroid group. or fetus and are considered compatible have not been reported. If therapy dur- costeroids for women who are at at high The investigators concluded that there with pregnancy (all are rated risk factor ing pregnancy is mandated, ezetimibe risk of delivering before 28 weeks, Dr. Par- was no benefit to repeated courses of B) and lactation. However, the resins appears to be a better choice than er said. corticosteroids, but Dr. Parer highlighted also bind fat-soluble vitamins (vitamins statins. There are no data on use during “It is possible to justify repeating at the “much more impressive” results in in- A, D, E, and K) in the gut, and defi- lactation, but the drug is probably ex- least a single course in those patients, fants delivered at less than 32 weeks. ciencies of these vitamins may result. creted into milk. Nursing infants should particularly if given at a 2-week interval,” These babies had significantly less bron- The six HMG-CoA reductase in- be monitored for headache, diarrhea, he said. chopulmonary dysplasia and less need for hibitors (statins) are atorvastatin (Lipi- arthralgia, pharyngitis, sinusitis, and Dr. Parer relayed results of the third, mechanical ventilation or continuous pos- tor), fluvastatin (Lescol), lovastatin other adverse effects observed in adults. and most recent, study that he heard pre- itive airway pressure if they had received (Mevacor, Altocor), pravastatin (Prava- Niacin (nicotinic acid) is converted in sented at a conference in Australia earli- repeat corticosteroids, he noted. Birth chol), rosuvastatin (Crestor), and sim- vivo to niacinamide, the active form of er this year. That study included 982 weights were lower only in infants who vastatin (Zocor). All are contraindicated vitamin B3. But high doses (up to 2,000 pregnant women at risk for preterm de- had been exposed to more than four in pregnancy (risk factor X). Case reports mg/day) used for hyperlipidemia have livery who had received one course of courses of corticosteroids. and surveillance studies have described not been studied in pregnancy. Because prenatal corticosteroids. A third study that randomized 502 healthy outcomes from a number of niacinamide is actively transported to The women were randomized to women to a single course or weekly cours- pregnancies inadvertently exposed in the fetus, producing higher concentra- weekly corticosteroids or placebo; treat- es of corticosteroids also was stopped ear- the first trimester and later. The largest tions in the fetus and newborn than in ment continued until 32 weeks’ gestation ly and reported no benefit from weekly number of cases (187) were reported the mother, niacin is best avoided dur- only if the risk for preterm delivery con- prenatal steroids (JAMA 2001;286:1581- with simvastatin, with 86 cases that ing pregnancy and lactation. tinued. 7). could be evaluated: 74% had normal The study included singletons, twins, That study also reported a significantly outcomes, 15% resulted in spontaneous MR. BRIGGS is a pharmacist clinical and triplets for a total of 1,100 fetuses lower incidence of RDS in babies born be- abortion, 6% of cases demonstrated specialist, Women’s Pavilion, Miller that were a mean of 28 weeks’ gestation fore 28 weeks whose mothers received re- with congenital anomalies, 4% of cases Children’s
Recommended publications
  • Nustendi, INN-Bempedoic Acid, Ezetimibe
    Summary of risk management plan for Nustendi (Bempedoic acid/Ezetimibe) This is a summary of the risk management plan (RMP) for Nustendi. The RMP details important risks of Nustendi, how these risks can be minimized, and how more information will be obtained about Nustendi's risks and uncertainties (missing information). Nustendi's summary of product characteristics (SmPC) and its package leaflet give essential information to healthcare professionals and patients on how Nustendi should be used. This summary of the RMP for Nustendi should be read in the context of all this information, including the assessment report of the evaluation and its plain-language summary, all which is part of the European Public Assessment Report (EPAR). Important new concerns or changes to the current ones will be included in updates of Nustendi's RMP. I. The Medicine and What It Is Used For Nustendi is authorized for treatment of primary hypercholesterolemia in adults, as an adjunct to diet (see SmPC for the full indication). It contains bempedoic acid as the active substance and it is given by mouth. Further information about the evaluation of Nustendi’s benefits can be found in Nustendi’s EPAR, including in its plain-language summary, available on the EMA website, under the medicine’s webpage https://www.ema.europa.eu/en/medicines/human/EPAR/nustendi II. Risks Associated With the Medicine and Activities to Minimize or Further Characterize the Risks Important risks of Nustendi, together with measures to minimize such risks and the proposed studies for learning
    [Show full text]
  • Statins: Mechanism of Action and Effects
    J.Cell.Mol.Med. Vol 5, No 4, 2001 pp. 378-387 Review Statins: mechanism of action and effects Camelia Stancu, Anca Sima * "Nicolae Simionescu" Institute of Cellular Biology and Pathology, Bucharest, Romania Received: November 12, 2001; Accepted: December 5, 2001 • Introduction • Effects on • Classification of statins - cholesterol esterification and - How they are obtained its accumulation in macrophages - Liver metabolism - endothelial cell function - Physico-chemical properties - inflammatory process - Specific activity - proliferation, migration and • Mechanisms for the action of statins apoptosis of arterial smooth muscle cells - Mechanisms involving lipids - stability of the atherosclerotic plaque - Mechanisms involving intracellular - platelets activation signaling pathways - coagulation process • Beneficial effects of statins • Adverse effects of statins therapy • Conclusions Abstract The beneficial effects of statins are the result of their capacity to reduce cholesterol biosyntesis, mainly in the liver, where they are selectively distributed, as well as to the modulation of lipid metabolism, derived from their effect of inhibition upon HMG-CoA reductase. Statins have antiatherosclerotic effects, that positively correlate with the percent decrease in LDL cholesterol. In addition, they can exert antiatherosclerotic effects independently of their hypolipidemic action. Because the mevalonate metabolism generates a series of isoprenoids vital for different cellular functions, from cholesterol synthesis to the control of cell growth and differentiation, HMG-CoA reductase inhibition has beneficial pleiotropic effects. Consequently, statins reduce significantly the incidence of coronary events, both in primary and secondary prevention, being the most efficient hypolipidemic compounds that have reduced the rate of mortality in coronary patients. Independent of their hypolipidemic properties, statins interfere with events involved in bone formation and impede tumor cell growth.
    [Show full text]
  • Lipobay, INN-Cerivastatin
    ANNEX I LIST OF THE NAMES, PHARMACEUTICAL FORM, STRENGTHS OF THE MEDICINAL PRODUCTS, ROUTE OF ADMINISTRATION, MARKETING AUTHORISATION HOLDERS, PACKAGING AND PACKAGE SIZES IN THE MEMBER STATES EMEA 2002 Reproduction and/or distribution of this document is authorised for non commercial purposes only provided the EMEA is acknowledged ANNEX I Marketing Authorisation Route of Member State Invented name Strength Pharmaceutical Form Packaging Package-size Holder administration Austria Bayer Austria Gesellschaft Lipobay 0.1 mg Film-coated tablet Oral use Blister 14, 20, 28, 30, G.m.b.H. 50, 98, 100 and Lerchenfelder Guertel 9-11 160 tablets A-1164 Wien Austria Bayer Austria Gesellschaft Lipobay 0.2 mg Film-coated tablet Oral use Blister 14, 20, 28, 30, G.m.b.H. 50, 98, 100 and Lerchenfelder Guertel 9-11 160 tablets A-1164 Wien Austria Bayer Austria Gesellschaft Lipobay 0.3 mg Film-coated tablet Oral use Blister 30 tablets G.m.b.H. Lerchenfelder Guertel 9-11 A-1164 Wien Austria Bayer Austria Gesellschaft Lipobay 0.4 mg Film-coated tablet Oral use Blister 30 tablets G.m.b.H. Lerchenfelder Guertel 9-11 A-1164 Wien Austria Bayer Austria Gesellschaft Liposterol 0.4 mg Film-coated tablet Oral use Blister 30 tablets G.m.b.H. Lerchenfelder Guertel 9-11 A-1164 Wien CPMP/811/02 1 EMEA 2002 Belgium Bayer NV Lipobay 0.1 mg Film-coated tablet Oral use Blister 14, 20, 28, 30, Louizalaan 143 50, 98, 100 and B-1050 Brussel 160 tablets Belgium Belgium Bayer NV Lipobay 0.2 mg Film-coated tablet Oral use Blister 14, 20, 28, 30, Louizalaan 143 50, 98, 100 and B-1050 Brussel 160 tablets Belgium Belgium Bayer NV Lipobay 0.3 mg Film-coated tablet Oral use Blister 14, 20, 28, 30, Louizalaan 143 50, 98, 100 and B-1050 Brussel 160 tablets Belgium Belgium Bayer NV Lipobay 0.4 mg Film-coated tablet Oral use Blister 14, 20, 28, 30, Louizalaan 143 50, 98, 100 and B-1050 Brussel 160 tablets Belgium Belgium Fournier Pharma S.A.
    [Show full text]
  • Rosuvastatin
    Rosuvastatin Rosuvastatin Systematic (IUPAC) name (3R,5S,6E)-7-[4-(4-fluorophenyl)-2-(N-methylmethanesulfonamido)-6-(propan- 2-yl)pyrimidin-5-yl]-3,5-dihydroxyhept-6-enoic acid Clinical data Trade names Crestor AHFS/Drugs.com monograph MedlinePlus a603033 Pregnancy AU: D category US: X (Contraindicated) Legal status AU: Prescription Only (S4) UK: Prescription-only (POM) US: ℞-only Routes of oral administration Pharmacokinetic data Bioavailability 20%[1] Protein binding 88%[1] Metabolism Liver (CYP2C9(major) andCYP2C19-mediated; only minimally (~10%) metabolised)[1] Biological half-life 19 hours[1] Excretion Faeces (90%)[1] Identifiers CAS Registry 287714-41-4 Number ATC code C10AA07 PubChem CID: 446157 IUPHAR/BPS 2954 DrugBank DB01098 UNII 413KH5ZJ73 KEGG D01915 ChEBI CHEBI:38545 ChEMBL CHEMBL1496 PDB ligand ID FBI (PDBe, RCSB PDB) Chemical data Formula C22H28FN3O6S Molecular mass 481.539 SMILES[show] InChI[show] (what is this?) (verify) Rosuvastatin (marketed by AstraZenecaas Crestor) 10 mg tablets Rosuvastatin, marketed as Crestor, is a member of the drug class of statins, used in combination with exercise, diet, and weight-loss to treat high cholesterol and related conditions, and to prevent cardiovascular disease. It was developed by Shionogi. Crestor is the fourth- highest selling drug in the United States, accounting for approx. $5.2 billion in sales in 2013.[2] Contents [hide] 1Medical uses 2Side effects and contraindications 3Drug interactions 4Structure 5Mechanism of action 6Pharmacokinetics 7Indications and regulation
    [Show full text]
  • Pharmaceutical Appendix to the Harmonized Tariff Schedule
    Harmonized Tariff Schedule of the United States Basic Revision 3 (2021) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States Basic Revision 3 (2021) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • Rhoa Gtpase Inactivation by Statins Induces Osteosarcoma Cell Apoptosis by Inhibiting P42/P44- Mapks-Bcl-2 Signaling Independently of BMP-2 and Cell Differentiation
    Cell Death and Differentiation (2006) 13, 1845–1856 & 2006 Nature Publishing Group All rights reserved 1350-9047/06 $30.00 www.nature.com/cdd RhoA GTPase inactivation by statins induces osteosarcoma cell apoptosis by inhibiting p42/p44- MAPKs-Bcl-2 signaling independently of BMP-2 and cell differentiation O Fromigue´ 1, E Hay¨ 1, D Modrowski1, S Bouvet1, A Jacquel2, geranylgeranylpyrophosphate; HMG-CoA, 3-hydroxy 3-methyl- P Auberger2 and PJ Marie*,1 glutaryl coenzyme A; MAPKs, mitogen-activated protein kinases; PI3K, phosphoinositide 30 kinase; NO, nitric oxide; RT-PCR, 1 INSERM U606, University Paris 7, IFR 139, Lariboisie`re Hospital, 2 rue reverse transcription-polymerase chain reaction; TBST, tris Ambroise Pare´, 75475 Paris Cedex 10, France hydroxymethylaminomethane buffered saline Tween-20; WT, 2 INSERM U526, Faculty of Medicine Pasteur, Equipe labellise´e LNC, IFR 50, wild-type form; zVAD-fmk, z-Val-Ala-Asp-fluoromethylketone Nice, France * Corresponding author: PJ Marie, INSERM Unit 606, Hoˆpital Lariboisie`re, 2 rue Ambroise Pare´, 75475 Paris cedex 10, France. Tel: þ 33-1-49-95-63-89; Fax: þ 33-1-49-95-84-52; E-mail: [email protected] Introduction Osteosarcoma is the most common primary malignant bone Received 29.8.05; revised 20.12.05; accepted 20.12.05; published online 10.2.06 tumour occuring in children and young adults. Although Edited by SH Kaufmann aggressive chemotherapy has improved the prognosis of osteosarcoma patients, resistance to chemotherapy remains Abstract a major mechanism responsible for the failure of osteo- sarcoma treatment.1 Several studies have established that Osteosarcoma is the most common primary bone tumour apoptotic pathways contribute to the cytotoxic action of in young adults.
    [Show full text]
  • NCEP Drug Treatment
    NCEP Drug Treatment The information contained in this document is taken directly from the National Cholesterol Education Program, Adult Treatment Panel III (NCEP, ATP III) that is published by the National Institutes of Health – National Heart, Lung and Blood Institute. Major Classes of Drugs Available Affecting Lipoprotein Metabolism HMG CoA reductase inhibitors—lovastatin, pravastatin, simvastatin, fluvastatin, atorvastatin Bile acid sequestrants—cholestyramine, colestipol, colesevelam Nicotinic acid—crystalline, timed-release preparations, Niaspan® Fibric acid derivatives (fibrates)—gemfibrozil, fenofibrate, clofibrate Estrogen replacement Omega-3 fatty acids Major Uses and Lipid/ Lipoprotien Effects of Each Drug Class Drug Class Major Use Lipid/ Lipoprotein Effects LDL ↓ 18-55% HMG CoA reductase To lower LDL cholesterol HDL ↑ 5-15% inhibitors (statins) TG ↓ 7-30% LDL ↓ 15-30% Bile acid sequestrants To lower LDL cholesterol HDL ↑ 3-5% TG No effect or increase LDL ↓ 5-25% Useful in most lipid and Nicotinic acid HDL ↑ 15-35% lipoprotein abnormalities TG ↓ 20-50% LDL ↓ 5-20% (in nonhypertriglyceridemic persons); Hypertriglyceridemia; may be increased in hypertriglyceridemic persons Fibric acids Atherogenic dyslipidemia HDL ↑ 10-35% (more in severe hypertriglyceridemia) TG ↓ 20-50% NCEP Drug Treatment The information contained in this document is taken directly from the National Cholesterol Education Program, Adult Treatment Panel III (NCEP, ATP III) that is published by the National Institutes of Health – National Heart, Lung and
    [Show full text]
  • Lipid Lowering Drugs Prescription and the Risk of Peripheral Neuropathy
    1047 J Epidemiol Community Health: first published as 10.1136/jech.2003.013409 on 16 November 2004. Downloaded from RESEARCH REPORT Lipid lowering drugs prescription and the risk of peripheral neuropathy: an exploratory case-control study using automated databases Giovanni Corrao, Antonella Zambon, Lorenza Bertu`, Edoardo Botteri, Olivia Leoni, Paolo Contiero ............................................................................................................................... J Epidemiol Community Health 2004;58:1047–1051. doi: 10.1136/jech.2003.013409 Study objective: Although lipid lowering drugs are effective in preventing morbidity and mortality from cardiovascular events, the extent of their adverse effects is not clear. This study explored the association between prescription of lipid lowering drugs and the risk of peripheral neuropathy. Design: A population based case-control study was carried out by linkage of several automated databases. Setting: Resident population of a northern Italian Province aged 40 years or more. Participants: Cases were patients discharged for peripheral neuropathy in 1998–1999. For each case up See end of article for authors’ affiliations to 20 controls were randomly selected among those eligible. Altogether 2040 case patients and 36 041 ....................... controls were included in the study. Exposure ascertainment: Prescription drug database was used to assess exposure to lipid lowering drugs Correspondence to: Professor G Corrao, at any time in the one year period preceding the index date.
    [Show full text]
  • 2 12/ 35 74Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 22 March 2012 (22.03.2012) 2 12/ 35 74 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/16 (2006.01) A61K 9/51 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 9/14 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP201 1/065959 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 14 September 201 1 (14.09.201 1) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/382,653 14 September 2010 (14.09.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, NANOLOGICA AB [SE/SE]; P.O Box 8182, S-104 20 ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Stockholm (SE).
    [Show full text]
  • Anatomical Classification Guidelines V2020 EPHMRA ANATOMICAL
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2020 Anatomical Classification Guidelines V2020 "The Anatomical Classification of Pharmaceutical Products has been developed and maintained by the European Pharmaceutical Marketing Research Association (EphMRA) and is therefore the intellectual property of this Association. EphMRA's Classification Committee prepares the guidelines for this classification system and takes care for new entries, changes and improvements in consultation with the product's manufacturer. The contents of the Anatomical Classification of Pharmaceutical Products remain the copyright to EphMRA. Permission for use need not be sought and no fee is required. We would appreciate, however, the acknowledgement of EphMRA Copyright in publications etc. Users of this classification system should keep in mind that Pharmaceutical markets can be segmented according to numerous criteria." © EphMRA 2020 Anatomical Classification Guidelines V2020 CONTENTS PAGE INTRODUCTION A ALIMENTARY TRACT AND METABOLISM 1 B BLOOD AND BLOOD FORMING ORGANS 28 C CARDIOVASCULAR SYSTEM 35 D DERMATOLOGICALS 50 G GENITO-URINARY SYSTEM AND SEX HORMONES 57 H SYSTEMIC HORMONAL PREPARATIONS (EXCLUDING SEX HORMONES) 65 J GENERAL ANTI-INFECTIVES SYSTEMIC 69 K HOSPITAL SOLUTIONS 84 L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 92 M MUSCULO-SKELETAL SYSTEM 102 N NERVOUS SYSTEM 107 P PARASITOLOGY 118 R RESPIRATORY SYSTEM 120 S SENSORY ORGANS 132 T DIAGNOSTIC AGENTS 139 V VARIOUS 141 Anatomical Classification Guidelines V2020 INTRODUCTION The Anatomical Classification was initiated in 1971 by EphMRA. It has been developed jointly by Intellus/PBIRG and EphMRA. It is a subjective method of grouping certain pharmaceutical products and does not represent any particular market, as would be the case with any other classification system.
    [Show full text]
  • Treatment Strategy for Dyslipidemia in Cardiovascular Disease Prevention: Focus on Old and New Drugs
    pharmacy Article Treatment Strategy for Dyslipidemia in Cardiovascular Disease Prevention: Focus on Old and New Drugs Donatella Zodda 1,*, Rosario Giammona 2 and Silvia Schifilliti 2 1 Drug Department of Local Health Unit (ASP), Viale Giostra, 98168 Messina, Italy 2 Clinical Pharmacy Fellowship, University of Messina, Viale Annunziata, 98168 Messina, Italy; [email protected] (R.G.); silvia.schifi[email protected] (S.S.) * Correspondence: [email protected]; Tel.: +39-090-3653902 Received: 12 November 2017; Accepted: 11 January 2018; Published: 21 January 2018 Abstract: Prevention and treatment of dyslipidemia should be considered as an integral part of individual cardiovascular prevention interventions, which should be addressed primarily to those at higher risk who benefit most. To date, statins remain the first-choice therapy, as they have been shown to reduce the risk of major vascular events by lowering low-density lipoprotein cholesterol (LDL-C). However, due to adherence to statin therapy or statin resistance, many patients do not reach LDL-C target levels. Ezetimibe, fibrates, and nicotinic acid represent the second-choice drugs to be used in combination with statins if lipid targets cannot be reached. In addition, anti-PCSK9 drugs (evolocumab and alirocumab) provide an effective solution for patients with familial hypercholesterolemia (FH) and statin intolerance at very high cardiovascular risk. Recently, studies demonstrated the effects of two novel lipid-lowering agents (lomitapide and mipomersen) for the management of homozygous FH by decreasing LDL-C values and reducing cardiovascular events. However, the costs for these new therapies made the cost–effectiveness debate more complicated. Keywords: lipid lowering therapy; dyslipidemia; statins; fibrate; PCSK9 inhibitors; lomitapide 1.
    [Show full text]
  • Health Technology Assessment (HTA)
    Federal Department of Home Affairs Federal Office of Public Health FOPH Health and Accident Insurance Directorate Section Health Technology Assessment Health Technology Assessment (HTA) Scoping Report Title The treatment of primary hypercholesterolaemia and mixed/combined hyperlipidaemia with ezetimibe-containing medicines Author/Affiliation Jonathan Henry Jacobsen, Royal Australasian College of Surgeons Ning Ma, Royal Australasian College of Surgeons Akwasi Ampofo, Royal Australasian College of Surgeons Virginie Gaget, Royal Australasian College of Surgeons Thomas Vreugdenburg, Royal Australasian College of Surgeons David Tivey, Royal Australasian College of Surgeons Bundesamt für Gesundheit Sektion Health Technology Assessment Schwarzenburgstrasse 157 CH-3003 Bern Schweiz Tel.: +41 58 462 92 30 E-mail: [email protected] 1 Technology Ezetimibe-containing medicines Date 6 July 2020 Type of Technology Pharmaceuticals Executive Summary: Dyslipidaemia is a key risk factor in the development of atherosclerosis and cardiovascular diseases (CVDs). Ezetimibe, a cholesterol absorption inhibitor, is currently used to treat dyslipidaemias and CVDs in Switzerland; however, there is ongoing debate regarding its effectiveness. In light of this, the Swiss Federal Office of Public Health is re-evaluating the indications for the reimbursement of ezetimibe. This report aims to determine the feasibility of conducting a health technology assessment (HTA) of ezetimibe based on the clinical, economic, legal, social, ethical and organisation data identified during the scoping phase. The objective of the HTA is to evaluate the safety, efficacy, effectiveness, cost-effectiveness and budgetary impact of ezetimibe (by itself or in combination with statins or fenofibrate) compared to placebo, statins or fenofibrate monotherapies in patients who have (i) primary hypercholesterolaemia (familial and non-familial) with or without pre-existing atherosclerotic cardiovascular disease (ASCVD) or (ii) mixed/combined hyperlipidaemia with or without pre-existing ASCVD.
    [Show full text]