Iron- and Temperature-Dependent Regulation of Shigella Dysenteriae Virulence

Total Page:16

File Type:pdf, Size:1020Kb

Iron- and Temperature-Dependent Regulation of Shigella Dysenteriae Virulence Iron- and Temperature-Dependent Regulation of Shigella Dysenteriae Virulence- Associated Factors A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Yahan Wei December 2016 © 2016 Yahan Wei. All Rights Reserved. 2 This dissertation titled Iron- and Temperature-Dependent Regulation of Shigella Dysenteriae Virulence- Associated Factors by YAHAN WEI has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Erin R. Murphy Associate Professor of Bacteriology Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT WEI, YAHAN, Ph.D., December 2016, Biological Sciences Iron- and Temperature-Dependent Regulation of Shigella Dysenteriae Virulence- Associated Factors Director of Dissertation: Erin R. Murphy Shigella is a genus of Gram-negative pathogenic bacteria that causes shigellosis, a severe form of bacillary dysentery in human with an infectious dose of less than 100 cells. The global burden of shigellosis is estimated to be no less than 125 million infections, with the majority of both infection and resulting deaths occurring in children under the age of five. These facts, in combination with the lack of a vaccine or universally effective treatment makes understanding the molecular mechanisms underlying the pathophysiology of Shigella of utmost importance. To survive and successfully colonize in the host, bacterial pathogens regulate the expression of multiple virulence-associated factors in response to the changes of environmental cues. This study focused on two of the important virulence-associated processes in the infections of S. dysenteriae, the most virulent species in the genus of Shigella: 1) acquisition of essential nutritional iron via the Shigella heme uptake (Shu) system from the iron-limited environment within the human host, and 2) secretion of effector proteins required for the invasion processes through the type III secretion system (T3SS). Investigations presented here identify the host-associated environmental factors that regulate the expression of the specific factors required to complete the processes listed above, and characterize the molecular mechanisms underlying each regulation. Specifically, studies focused on the 4 regulation of the Shu system demonstrate that its periplasmic binding component, ShuT, is subject to iron-dependent transcriptional regulation via the activity of the global transcriptional regulator Fur, and temperature-dependent post-transcriptionally mediated by an RNA thermometer located within the 5' untranslated region of the gene. Studies focused on the regulation of MxiG, a component of the T3SS, identify and characterize a functional RNA thermometer that mediates post-transcriptional temperature-dependent regulation. Findings in this study provide: 1) a unique example of Fur-mediated regulation via interacting with a sequence located downstream of the promoter region, and 1) the first evidence of RNA thermometer controlling expression of T3SS component. These findings could lead to revealing of further details about the molecular mechanisms of each regulatory system, and also contribute to the knowledge pool required in designing new strategies of defending against bacterial infections. 5 DEDICATION I would like to dedicate this work to my mother, for her love and support 6 ACKNOWLEDGMENTS I would like to acknowledge all the people and institutions for their support throughout my graduate career and numerous contributions to this work. Firstly, I want to express my sincere gratitude to my advisor Erin R. Murphy, who have been really patient, motivating, and continuously supporting me and guiding me through the project. I would also like to thank my committee members, Peter Coschigano, Jennifer Hines, Donald Holzschu, and Tomohiko Sugiyama, for their insightful comments and encouragement. My thanks also go to my lab mate Megan Firs, our lab technician Michelle Pate, and former lab members Andrew Kouse and William Broach. Finally, I would like to thank Ohio University and the American Heart Association for their financial support. 7 TABLE OF CONTENTS Page Abstract ............................................................................................................................... 3 Dedication ........................................................................................................................... 5 Acknowledgments............................................................................................................... 6 List of Tables .................................................................................................................... 11 List of Figures ................................................................................................................... 12 Chapter 1: Introduction ..................................................................................................... 14 1.1 Significance ............................................................................................................ 14 1.2 Shigella ................................................................................................................... 16 1.2.1 Shigella species and evolutionary relationships .............................................. 16 1.2.2 Pathogenesis ..................................................................................................... 17 1.2.3 Shigella virulence factors ................................................................................. 19 1.3 Regulation of Shigella iron uptake systems ............................................................ 21 1.3.1 Iron uptake systems in Shigella ....................................................................... 21 1.3.2 Regulation of iron uptakes systems ................................................................. 29 1.4 Regulation of bacterial virulence-associated genes via RNA thermometers .......... 33 1.4.1 Families of RNA thermometers ....................................................................... 35 1.4.2 Bacteria virulence-associated genes regulated by RNA thermometer ............. 45 Chapter 2: Iron-dependent regulation of shuT .................................................................. 49 2.1 Abstract ................................................................................................................... 49 2.2 Introduction ............................................................................................................. 49 2.2.1 Heme uptake system and bacterial pathogenesis ............................................. 49 2.2.2 Shigella heme uptake (Shu) system ................................................................. 51 2.2.3 Transportation of heme via the Shu system ..................................................... 52 2.2.4 Fur-mediated iron-dependent regulation of the Shu system. ........................... 56 2.3 Methods and materials ............................................................................................ 58 2.3.1 Strains and culture conditions .......................................................................... 58 2.3.2 Oligonucleotide primers ................................................................................... 60 2.3.3 Reporter plasmid construction ......................................................................... 61 8 2.3.4 RNA extraction and DNA removal .................................................................. 62 2.3.5 Reverse transcriptase PCR ............................................................................... 64 2.3.6 Rapid amplification of cDNA 5' end analysis .................................................. 65 2.3.7 Beta-galactosidase assay .................................................................................. 66 2.3.8 Western blot analysis ....................................................................................... 67 2.3.9 Quantitative Real-time PCR analysis ............................................................... 68 2.3.10 Electrophoretic mobility shift assay ............................................................... 69 2.3.11 In silico analyses ............................................................................................ 71 2.3.12 Statistical analysis .......................................................................................... 72 2.4 Results ..................................................................................................................... 72 2.4.1 Fur mediates iron-dependent regulation of shuT ............................................. 72 2.4.2 Identification of shuT transcriptional start site ................................................ 74 2.4.3 Identification of shuT promoter region ............................................................ 77 2.4.4 Sequences within shuT promoter and 5' untranslated region mediates iron- dependent regulation by Fur ..................................................................................... 79 2.4.5 A functional Fur binding site is located immediately down-stream of the shuT transcription start site ................................................................................................ 81 2.5 Discussion ............................................................................................................... 89 Chapter 3: Temperature-dependent regulation of shuT ...................................................
Recommended publications
  • Shigella Infection - Factsheet
    Shigella Infection - Factsheet What is Shigellosis? How common is it? Shigellosis is an infectious disease caused by a group of bacteria (germs) called Shigella. It’s also known as bacillary dysentery. There are four main types of Shigella germ but Shigella sonnei is by far the commonest cause of this illness in the UK. Most cases of the other types are usually brought in from abroad. How is Shigellosis caught? Shigella is not known to be found in animals so it always passes from one infected person to the next, though the route may be indirect. Here are some possible ways in which you can get infected: • Shigella germs are present in the stools of infected persons while they are ill and for a week or two afterwards. Most Shigella infections are the result of germs passing from stools or soiled fingers of one person to the mouth of another person. This happens when basic hygiene and hand washing habits are inadequate, such as in young toddlers who are not yet fully toilet trained. Family members and playmates of such children are at high risk of becoming infected. • Shigellosis can be acquired from someone who is infected but has no symptoms. • Shigellosis may be picked up from eating contaminated food, which may look and smell normal. Food may become contaminated by infected food handlers who do not wash their hands properly after using the toilet. They should report sick and avoid handling food if they are ill but they may not always have symptoms. • Vegetables can become contaminated if they are harvested from a field with sewage in it.
    [Show full text]
  • Allosteric Regulation in Drug Design
    Mini Review Curr Trends Biomedical Eng & Biosci Volume 4 Issue 1 - May 2017 Copyright © All rights are reserved by Ashfaq Ur Rehman DOI: 10.19080/CTBEB.2017.04.5555630 Allosteric regulation in drug design Ashfaq Ur Rehman1,2*, Shah Saud3, Nasir Ahmad4, Abdul Wadood2 and R Hamid5 1State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, China 2Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan 3Laboratory of Analytical Biochemistry and Bio separation, Shanghai Jiao Tong University, China 4Department of Chemistry, Islama College University Peshawar, Pakistan 5Department of Bioinformatics, Muhammad Ali Jinnah University Islamabad, Pakistan Submission: May 02, 2017; Published: May 23, 2017 *Corresponding author: Ashfaq Ur Rehman, State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, Tel: ; Fax: 86-21-34204348; Email: Abstract mechanism, which are initiated through attachment of ligand or inhibitors with the protein or enzymes other than active (orthosteric) sites. ThisProtein mini review and enzymes involved play mechanism, significant types roles and in importancebiological processes of allosteric of all regulations living organisms; in drug theirdesign functions process. are regulated through allosteric Keywords: Allosteric, Activator: Drug design Introduction and ultimately cause disease. While various biological processes expressed the control at different points in life time of protein function is pivotal. As all the cell processes are under carful For the survival of all organisms the significance of protein included regulation of gene expression, translation into protein control and if not properly controls this leads to the abnormality through control of activity and at last degradation of protein [1].
    [Show full text]
  • Succession and Persistence of Microbial Communities and Antimicrobial Resistance Genes Associated with International Space Stati
    Singh et al. Microbiome (2018) 6:204 https://doi.org/10.1186/s40168-018-0585-2 RESEARCH Open Access Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces Nitin Kumar Singh1, Jason M. Wood1, Fathi Karouia2,3 and Kasthuri Venkateswaran1* Abstract Background: The International Space Station (ISS) is an ideal test bed for studying the effects of microbial persistence and succession on a closed system during long space flight. Culture-based analyses, targeted gene-based amplicon sequencing (bacteriome, mycobiome, and resistome), and shotgun metagenomics approaches have previously been performed on ISS environmental sample sets using whole genome amplification (WGA). However, this is the first study reporting on the metagenomes sampled from ISS environmental surfaces without the use of WGA. Metagenome sequences generated from eight defined ISS environmental locations in three consecutive flights were analyzed to assess the succession and persistence of microbial communities, their antimicrobial resistance (AMR) profiles, and virulence properties. Metagenomic sequences were produced from the samples treated with propidium monoazide (PMA) to measure intact microorganisms. Results: The intact microbial communities detected in Flight 1 and Flight 2 samples were significantly more similar to each other than to Flight 3 samples. Among 318 microbial species detected, 46 species constituting 18 genera were common in all flight samples. Risk group or biosafety level 2 microorganisms that persisted among all three flights were Acinetobacter baumannii, Haemophilus influenzae, Klebsiella pneumoniae, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, Yersinia frederiksenii,andAspergillus lentulus.EventhoughRhodotorula and Pantoea dominated the ISS microbiome, Pantoea exhibited succession and persistence. K. pneumoniae persisted in one location (US Node 1) of all three flights and might have spread to six out of the eight locations sampled on Flight 3.
    [Show full text]
  • Design Principles for Regulator Gene Expression in a Repressible Gene
    Design of Repressible Gene Circuits: M.E. Wall et al. 1 Design Principles for Regulator Gene Expression in a Repressible Gene Circuit Michael E. Wall1,2, William S. Hlavacek3* and Michael A. Savageau4+ 1Computer and Computational Sciences Division and 2Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 3Theoretical Biology and Biophysics Group (T-10), Theoretical Division, Mail Stop K710, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 4Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA +Current address: Department of Biomedical Engineering, One Shields Avenue, University of California, Davis, CA 95616, USA. *Corresponding author Tel.: +1-505 665 1355 Fax: +1-505 665 3493 E-mail address of the corresponding author: [email protected] Design of Repressible Gene Circuits: M.E. Wall et al. 2 Summary We consider the design of a type of repressible gene circuit that is common in bacteria. In this type of circuit, a regulator protein acts to coordinately repress the expression of effector genes when a signal molecule with which it interacts is present. The regulator protein can also independently influence the expression of its own gene, such that regulator gene expression is repressible (like effector genes), constitutive, or inducible. Thus, a signal-directed change in the activity of the regulator protein can result in one of three patterns of coupled regulator and effector gene expression: direct coupling, in which regulator and effector gene expression change in the same direction; uncoupling, in which regulator gene expression remains constant while effector gene expression changes; or inverse coupling, in which regulator and effector gene expression change in opposite directions.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Purification and Characterization of a Shigella Dysenteriae 1- Like Toxin Produced by Escherichia Coli
    CORE Metadata, citation and similar papers at core.ac.uk Provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Uniformed Services University of the Health Sciences U.S. Department of Defense 1983 Purification and Characterization of a Shigella dysenteriae 1- Like Toxin Produced by Escherichia coli Alison D. O'Brien Uniformed Services University of the Health Sciences, [email protected] Gerald D. LaVeck Uniformed Services University of the Health Sciences Follow this and additional works at: https://digitalcommons.unl.edu/usuhs Part of the Medicine and Health Sciences Commons O'Brien, Alison D. and LaVeck, Gerald D., "Purification and Characterization of a Shigella dysenteriae 1- Like Toxin Produced by Escherichia coli" (1983). Uniformed Services University of the Health Sciences. 99. https://digitalcommons.unl.edu/usuhs/99 This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Uniformed Services University of the Health Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INFECTION AND IMMUNITY, May 1983, p. 675-683 Vol. 40, No. 2 0019-9567/83/050675-09$02.00/0 Copyright C 1983, American Society for Microbiology Purification and Characterization of a Shigella dysenteriae 1- Like Toxin Produced by Escherichia coli ALISON D. O'BRIEN* AND GERALD D. LAVECKt Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 Received 10 January 1983/Accepted 18 February 1983 A toxin from an enteropathogenic strain of Escherichia coli (E. coli H30) was purified to apparent homogeneity from cell lysates.
    [Show full text]
  • Annual Summary of Communicable Disease Reported to MDH, 2003
    MINNESOTA DEPARTMENT OF HEALTH DISEASE CONTROL N EWSLETTER Volume 32, Number 4 (pages 33-52) July/August 2004 Annual Summary of Communicable Diseases Reported to the Minnesota Department of Health, 2003 Introduction Minnesota Government Data Practices do not appear in Table 2 because the Assessment is a core public health Act (Section 13.38). Provisions of the influenza surveillance system is based function. Surveillance for communi- Health Insurance Portability and on reported outbreaks rather than on cable diseases is one type of ongoing Accountability Act (HIPAA) allow for individual cases. assessment activity. Epidemiologic routine communicable disease report- surveillance is the systematic collec- ing without patient authorization. Incidence rates in this report were tion, analysis, and dissemination of calculated using disease-specific health data for the planning, implemen- Since April 1995, MDH has participated numerator data collected by MDH and a tation, and evaluation of public health as one of the Emerging Infections standardized set of denominator data programs. The Minnesota Department Program (EIP) sites funded by the derived from U.S. Census data. of Health (MDH) collects disease Centers for Disease Control and Disease incidence may be categorized surveillance information on certain Prevention (CDC) and, through this as occurring within the seven-county communicable diseases for the program, has implemented active Twin Cities metropolitan area (Twin purposes of determining disease hospital- and laboratory-based surveil- Cities metropolitan area) or outside of it impact, assessing trends in disease lance for several conditions, including (Greater Minnesota). occurrence, characterizing affected selected invasive bacterial diseases populations, prioritizing disease control and food-borne diseases. Anaplasmosis efforts, and evaluating disease preven- Human anaplasmosis (HA) is the new tion strategies.
    [Show full text]
  • Insights Into the Pathogenicity of Burkholderia Pseudomallei
    REVIEWS Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei W. Joost Wiersinga*, Tom van der Poll*, Nicholas J. White‡§, Nicholas P. Day‡§ and Sharon J. Peacock‡§ Abstract | Burkholderia pseudomallei is a potential bioterror agent and the causative agent of melioidosis, a severe disease that is endemic in areas of Southeast Asia and Northern Australia. Infection is often associated with bacterial dissemination to distant sites, and there are many possible disease manifestations, with melioidosis septic shock being the most severe. Eradication of the organism following infection is difficult, with a slow fever-clearance time, the need for prolonged antibiotic therapy and a high rate of relapse if therapy is not completed. Mortality from melioidosis septic shock remains high despite appropriate antimicrobial therapy. Prevention of disease and a reduction in mortality and the rate of relapse are priority areas for future research efforts. Studying how the disease is acquired and the host–pathogen interactions involved will underpin these efforts; this review presents an overview of current knowledge in these areas, highlighting key topics for evaluation. Melioidosis is a serious disease caused by the aerobic, rifamycins, colistin and aminoglycosides), but is usually Gram-negative soil-dwelling bacillus Burkholderia pseu- susceptible to amoxicillin-clavulanate, chloramphenicol, domallei and is most common in Southeast Asia and doxycycline, trimethoprim-sulphamethoxazole, ureido- Northern Australia. Melioidosis is responsible for 20% of penicillins, ceftazidime and carbapenems2,4. Treatment all community-acquired septicaemias and 40% of sepsis- is required for 20 weeks and is divided into intravenous related mortality in northeast Thailand. Reported cases are and oral phases2,4. Initial intravenous therapy is given likely to represent ‘the tip of the iceberg’1,2, as confirmation for 10–14 days; ceftazidime or a carbapenem are the of disease depends on bacterial isolation, a technique that drugs of choice.
    [Show full text]
  • Plesiomonas Shigelloides S000142446 Serratia Plymuthica
    0.01 Plesiomonas shigelloides S000142446 Serratia plymuthica S000016955 Serratia ficaria S000010445 Serratia entomophila S000015406 Leads to highlighted edge in Supplemental Phylogeny 1 Xenorhabdus hominickii S000735562 0.904 Xenorhabdus poinarii S000413914 0.998 0.868 Xenorhabdus griffiniae S000735553 Proteus myxofaciens S000728630 0.862 Proteus vulgaris S000004373 Proteus mirabilis S000728627 0.990 0.822 Arsenophonus nasoniae S000404964 OTU from Corby-Harris (Unpublished) #seqs-1 GQ988429 OTU from Corby-Harris et al (2007) #seqs-1 DQ980880 0.838 Providencia stuartii S000001277 Providencia rettgeri S000544654 0.999 Providencia vermicola S000544657 0.980 Isolate from Juneja and Lazzaro (2009)-EU587107 Isolate from Juneja and Lazzaro (2009)-EU587113 0.605 0.928 Isolate from Juneja and Lazzaro (2009)-EU587095 0.588 Isolate from Juneja and Lazzaro (2009)-EU587101 Providencia rustigianii S000544651 0.575 Providencia alcalifaciens S000127327 0.962 OTU XDS 099-#libs(1/0)-#seqs(1/0) OTU XYM 085-#libs(13/4)-#seqs(401/23) 0.620 OTU XDY 021-#libs(1/1)-#seqs(3/1) Providencia heimbachae S000544652 Morganella psychrotolerans S000721631 0.994 Morganella morganii S000721642 OTU ICF 062-#libs(0/1)-#seqs(0/7) Morganella morganii S000129416 0.990 Biostraticola tofi S000901778 0.783 Sodalis glossinidius S000436949 Dickeya dadantii S000570097 0.869 0.907 0.526 Brenneria rubrifaciens S000022162 0.229 Brenneria salicis S000381181 0.806 OTU SEC 066-#libs(0/1)-#seqs(0/1) Brenneria quercina S000005099 0.995 Pragia fontium S000022757 Budvicia aquatica S000020702
    [Show full text]
  • Identification of Bordetella Spp. in Respiratory Specimens From
    504 Clinical Microbiology and Infection, Volume 14 Number 5, May 2008 isolates of extended-spectrum-beta-lactamase-producing Original Submission: 27 October 2007; Revised Sub- Shigella sonnei. Ann Trop Med Parasitol 2007; 101: 511–517. mission: 5 December 2007; Accepted: 19 December 21. Rice LB. Controlling antibiotic resistance in the ICU: 2007 different bacteria, different strategies. Cleve Clin J Med 2003; 70: 793–800. Clin Microbiol Infect 2008; 14: 504–506 22. Boyd DA, Tyler S, Christianson S et al. Complete nucleo- 10.1111/j.1469-0691.2008.01968.x tide sequence of a 92-kilobase plasmid harbouring the CTX-M-15 extended spectrum b-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Cystic fibrosis (CF) is an autosomal recessive Antimicrob Agents Chemother 2004; 48: 3758–3764. disease, characterised by defective chloride ion channels that result in multi-organ dysfunction, most notably affecting the respiratory tract. The RESEARCH NOTE alteration in the pulmonary environment is asso- ciated with increased susceptibility to bacterial infection. Recent advances in bacterial taxonomy and improved microbial identification systems Identification of Bordetella spp. in have led to an increasing recognition of the respiratory specimens from individuals diversity of bacterial species involved in CF lung with cystic fibrosis infection. Many such species are opportunistic T. Spilker, A. A. Liwienski and J. J. LiPuma human pathogens, some of which are rarely found in other human infections [1]. Processing Department of Pediatrics and Communicable of CF respiratory cultures therefore employs Diseases, University of Michigan Medical selective media and focuses on detection of School, Ann Arbor, MI, USA uncommon human pathogens.
    [Show full text]
  • Use of the Diagnostic Bacteriology Laboratory: a Practical Review for the Clinician
    148 Postgrad Med J 2001;77:148–156 REVIEWS Postgrad Med J: first published as 10.1136/pmj.77.905.148 on 1 March 2001. Downloaded from Use of the diagnostic bacteriology laboratory: a practical review for the clinician W J Steinbach, A K Shetty Lucile Salter Packard Children’s Hospital at EVective utilisation and understanding of the Stanford, Stanford Box 1: Gram stain technique University School of clinical bacteriology laboratory can greatly aid Medicine, 725 Welch in the diagnosis of infectious diseases. Al- (1) Air dry specimen and fix with Road, Palo Alto, though described more than a century ago, the methanol or heat. California, USA 94304, Gram stain remains the most frequently used (2) Add crystal violet stain. USA rapid diagnostic test, and in conjunction with W J Steinbach various biochemical tests is the cornerstone of (3) Rinse with water to wash unbound A K Shetty the clinical laboratory. First described by Dan- dye, add mordant (for example, iodine: 12 potassium iodide). Correspondence to: ish pathologist Christian Gram in 1884 and Dr Steinbach later slightly modified, the Gram stain easily (4) After waiting 30–60 seconds, rinse with [email protected] divides bacteria into two groups, Gram positive water. Submitted 27 March 2000 and Gram negative, on the basis of their cell (5) Add decolorising solvent (ethanol or Accepted 5 June 2000 wall and cell membrane permeability to acetone) to remove unbound dye. Growth on artificial medium Obligate intracellular (6) Counterstain with safranin. Chlamydia Legionella Gram positive bacteria stain blue Coxiella Ehrlichia Rickettsia (retained crystal violet).
    [Show full text]
  • E3 Ubiquitin Ligase SYVN1 Is a Key Positive Regulator for GSDMD
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.21.453219; this version posted July 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 E3 ubiquitin ligase SYVN1 is a key positive regulator for 2 GSDMD-mediated pyroptosis 3 4 Yuhua Shi 1,2,#, Yang Yang3,#, Weilv Xu1,#, Wei Xu1, Xinyu Fu1, Qian Lv1, Jie Xia1, 5 Fushan Shi1,2,* 6 1 Department of Veterinary Medicine, College of Animal Sciences, Zhejiang 7 University, Hangzhou 310058, Zhejiang, PR China 8 2 Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang 9 University, Hangzhou 310058, Zhejiang, PR China 10 3 Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of 11 Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health 12 Inspection & Internet Technology, College of Animal Science and Technology & 13 College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, 14 Zhejiang, China 15 # These authors contributed equally to this work 16 *Corresponding author: Fushan Shi, E-mail: [email protected], Tel: 17 +086-0571-88982275 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.21.453219; this version posted July 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Gasdermin D (GSDMD) participates in activation of inflammasomes and pyroptosis. 21 Meanwhile, ubiquitination strictly regulates inflammatory responses. However, how 22 ubiquitination regulates Gasdermin D activity is not well understood.
    [Show full text]