HOMOTECIA Nº 10-13 Octubre 2015

Total Page:16

File Type:pdf, Size:1020Kb

HOMOTECIA Nº 10-13 Octubre 2015 HOMOTECIA Nº 10 – Año 13 Jueves, 1° de Octubre de 2015 1 En la editorial del número anterior afirmamos que “las dificultades de aprendizaje de la matemática tienen un trasfondo de debilidad cultural. No sólo del estudiante sino también del docente: por poner un ejemplo, a pesar de hacerse del conocimiento matemático, ni uno ni el otro intenta en lo cotidiano utilizar este conocimiento para resolver los problemas que se le presentan a diario…. esta situación es más grave en el docente que en el alumno… Pero como algo sumamente importante, el docente de matemática no sólo debe ser culto en la propia asignatura (conocimientos, historia, epistemología) sino que su discurso debe ser culto más allá de la matemática. Es decir, así como debe ser culto en el mundo matemático, lo debe ser en lo general, en lo que puede llamarse cultura social, la que debería en teoría compartir con el resto de los seres humanos…”. Puede afirmarse que se entiende que la aspiración es lograr un conocimiento matemático socializado, teniendo como propósito crear una condición para la integración del conocimiento matemático (la actividad docente), el conocimiento social general (cultura general compartida) y la condición natural o vivencial del ser humano (docente y estudiante comprometidos en la misión de enseñar y aprender) propiciándose realizaciones especiales en la vida de cada quien, como también etapas dinámicas, heurísticas, de colectivos, pueblos o entidades, abriéndose trascendentalmente a nuevas opciones del conocimiento (Barrera, 2006). Se vislumbra entonces, que al docente se le hace necesario apropiarse lo más que pueda de un conocimiento general y significativo del mundo, no parcializado, evitando la hiper-especialización y en consecuencia, conocer y sensibilizarse lo más que pueda del proceso de crecimiento cualitativo de la humanidad, su dinámica y sus logros, tener claridad en el qué somos y así al enseñar, ser lo más fidedigno en la transmisión de los valores de la herencia humana, buscando el beneficio de la sociedad. Pero ¿cuál es ese conocimiento general y significativo apropiable por parte del docente? ¿Cuál es el que debe transmitir? El recordado Rigoberto Lanz estableció dos categorías, conocimiento globalizado y conocimiento mundializado (2006, Noviembre 25). Para él, el globalizado se refiere al conocimiento que las naciones centros del poder mundial quieren certificarle al resto de las naciones. Pero esta certificación por parte de instituciones destinadas para ello, conduce a establecer jerarquías tanto entre las naciones como entre las personas, por lo que se puede considerar que es parcializado o hiper-especializado. En cambio opinó que el mundializado tiene que ver más con las cualidades de los pueblos, con lo mejor de su cultura, con lo mejor culturalmente intercambiable entre las naciones, tanto referido al folclore como a la producción intelectual aplicado en lo social. Lanz, según esta categorización, incluye en el mundializado al globalizado. Es decir, oferta como conocimiento a aprehender al mundializado. Sin que contradiga lo anterior, con fundamento en la idea generalizada entre muchos estudiosos en cuanto a que todo aspecto de la experiencia humana, ha de ser, por necesidad, multifacético, viéndose que así como la mente humana no existe sin cerebro, tampoco puede hacerlo sin tradiciones familiares, sociales, genéricas, étnicas, raciales, que sólo hay mentes encarnadas en cuerpos y culturas, y que el mundo físico es el mundo entendido por seres biológicos y culturales (Pakman, 1994), surge de la mente del notable Edgar Morin (2005), la idea del pensamiento complejo aspirando al logro del pensamiento multidimensional, que no se refiere ni al pensamiento completo ni al pensamiento simplista o simplificador, “porque el pensamiento complejo está animado por una tensión permanente entre la aspiración a un saber no parcelado, no dividido, no reduccionista, y el reconocimiento de lo inacabado e incompleto de todo conocimiento”. Señala también Morin (2000) que: Reducir el conocimiento de lo complejo al de uno de sus elementos, considerado como el más significativo, tiene consecuencias peores en ética que en estudios de física. Ahora bien, es también el modo de pensar dominante, reductor y simplificador aliado a los mecanismos de incomprensión el que determina la reducción de una personalidad múltiple por naturaleza a una sola de sus rasgos. Si el rasgo es favorable, habrá desconocimiento de los aspectos negativos de esta personalidad. Si es desfavorable, habrá desconocimiento de sus rasgos positivos”. ¿Cómo pueden entenderse estas ideas de Morin en el proceso de enseñanza de la matemática cuando el docente, débil culturalmente, se presenta ante el grupo de estudiantes con una actitud reduccionista y simplificadora? Posiblemente, tanto docente como alumno consideren que enseñar y aprender matemática se limite a conocer y aplicar un determinado algoritmo para resolver un ejercicio específico o aprenderse memorísticamente un concepto o una definición de un objeto matemático. Pero si queremos entender la propuesta del pensamiento complejo de Morin, también debería ser preocupación de ambos interrogantes como las siguientes: ¿Qué razón histórica llevó al logro de este conocimiento? ¿Qué necesidades de la ciencia matemática hizo que en la mente de un ser humano se hiciera presente este conocimiento? ¿Qué utilidad puede tener para mí y para mi comunidad el conocimiento matemático que he aprendido? ¿Cómo lo utilizo para resolver los problemas que afectan a mi comunidad diariamente?, y así por estilo, sin asumir la cómoda posición de quienes afirman que el conocimiento matemático florece silvestremente entre los matemáticos hasta que un científico de la física, la química o de cualquier otra ciencia le dé un adecuado uso práctico. Un intento de explicación de lo grave de la situación la podemos conseguir en un ejemplo dado por Camargo y Guzmán (2005): “Desafortunadamente, los estudiantes de los primeros semestres universitarios, manifiestan gran confusión y diferentes interpretaciones erróneas en torno al concepto de pendiente de una recta y la pendiente de la recta tangente a una curva como medida de la rapidez del cambio de una magnitud que depende de otra. Como consecuencia de esto, se obstaculiza la comprensión de conceptos posteriores del cálculo”. Podríamos decir que esta falla se produce por el trabajo del docente, y aunque sea cierto… ¿el docente no se sigue por un programa?; entonces la confusión también proviene desde lo curricular. Es decir, la debilidad cultural a la que nos referimos al principio tiene también su carácter institucional. Indudablemente cabe aquí una reflexión sobre este particular tema. Reflexiones “Considero más valiente al que conquista sus deseos que al que conquista a sus enemigos, ya que la batalla más dura es la victoria sobre uno mismo”. ARISTÓTELES HOMOTECIA Nº 10 – Año 13 Jueves, 1° de Octubre de 2015 2 GORO SHIMURA Nació el 23 de febrero de 1930 en Hamamatsu, Japón. El padre de Goro Shimura trabajó para un banco y lo cambiaban con frecuencia de una sucursal a otra, lo que obligaba a la familia a cambiar de ciudad. Incluso después del nacimiento de Goro, la familia se trasladó de una casa a otra en la propia Hamamatsu, ciudad situada a unos 240 km al oeste de Tokio. Era el más joven de los cinco hijos de sus padres; Goro tiene tres hermanas y un hermano. En marzo de 1933 la familia se trasladó a Tokio y, tres años después, en abril de 1936, fue cuando Goro comenzó su escolaridad. En 1938, la familia se mudó a una casa más grande en Tokio pero Goro continuó asistiendo a la misma escuela primaria hasta que completó el cuarto grado. Después asistió a una escuela primaria que quedaba cerca de su casa en el distrito de Nishi-Ohkubu, allí completó los quinto y sexto grados. Shimura inició sus estudios en la Escuela Media Prefectural Cuarta de Tokio en 1942, pero en esta había poco que le entusiasmara en cuanto a la enseñanza en matemáticas [1]: Las clases de matemáticas no eran muy interesantes. Nuevamente estudiamos operaciones aritméticas de fracciones y decimales, lo que estaba bien. Pero nos solicitaron resolver problemas aritméticos artificiales sin utilizar el álgebra. ... Nunca encontré interesante este tipo de problemas. Eran tiempos difíciles debido a la II Guerra Mundial - significaba que se vivía en una atmósfera tensa con entrenamiento militar como parte del currículum escolar. En noviembre de 1944 la escuela fue cerrada y los chicos fueron enviados a trabajar en fábricas ubicadas en los campo. Goro Shimura escribe en la referencia [1]: Mientras la escuela secundaria estaba cerrada, durante el último periodo de la guerra nos vimos obligados a trabajar en una fábrica que hacía partes para aviones de combate, y en ese momento supe el significado de trabajar en un lugar como ese. Su casa fue destruida en un bombardeo, pero la familia sobrevivió. Cuando terminó la guerra, la escuela abrió de nuevo y Goro continuó su educación. En este tiempo, el hogar familiar estaba en Mitaka, al oeste de Shinjuku, y viajaba en tren a la escuela. Hubo escasez de alimentos durante la guerra pero, después de que esta terminó, la escasez empeoró y Shimura estaba constantemente hambriento. En 1946 Shimura entró a la First High School. Era un internado y tenía asignado un dormitorio pero la escasez de alimentos significó que después de un par de semanas todo el mundo fue enviado a su casa a pasar unas vacaciones. En la escuela secundaria estudió matemáticas, inglés, alemán y francés pero encontró los cursos de matemáticas bastante decepcionantes. Sintió que el curso que tomó en geometría analítica fue enseñado por un maestro que no entendía completamente el tema. Shimura comenzó sus estudios en la Universidad de Tokio en 1949. Nuevamente criticó el contenido que le fue enseñado, sin embargo [1]: Mi deseo de capacitarme aprendiendo un montón de buenas matemáticas en la Universidad pronto fue traicionado por la realidad. Por un lado, mientras que en la escuela secundaria había adquirido una decente cantidad de conocimiento matemático, no había mucho de nuevo en lo que se enseñaba en el primer año en la Universidad.
Recommended publications
  • MY UNFORGETTABLE EARLY YEARS at the INSTITUTE Enstitüde Unutulmaz Erken Yıllarım
    MY UNFORGETTABLE EARLY YEARS AT THE INSTITUTE Enstitüde Unutulmaz Erken Yıllarım Dinakar Ramakrishnan `And what was it like,’ I asked him, `meeting Eliot?’ `When he looked at you,’ he said, `it was like standing on a quay, watching the prow of the Queen Mary come towards you, very slowly.’ – from `Stern’ by Seamus Heaney in memory of Ted Hughes, about the time he met T.S.Eliot It was a fortunate stroke of serendipity for me to have been at the Institute for Advanced Study in Princeton, twice during the nineteen eighties, first as a Post-doctoral member in 1982-83, and later as a Sloan Fellow in the Fall of 1986. I had the privilege of getting to know Robert Langlands at that time, and, needless to say, he has had a larger than life influence on me. It wasn’t like two ships passing in the night, but more like a rowboat feeling the waves of an oncoming ship. Langlands and I did not have many conversations, but each time we did, he would make a Zen like remark which took me a long time, at times months (or even years), to comprehend. Once or twice it even looked like he was commenting not on the question I posed, but on a tangential one; however, after much reflection, it became apparent that what he had said had an interesting bearing on what I had been wondering about, and it always provided a new take, at least to me, on the matter. Most importantly, to a beginner in the field like I was then, he was generous to a fault, always willing, whenever asked, to explain the subtle aspects of his own work.
    [Show full text]
  • Advanced Algebra
    Cornerstones Series Editors Charles L. Epstein, University of Pennsylvania, Philadelphia Steven G. Krantz, University of Washington, St. Louis Advisory Board Anthony W. Knapp, State University of New York at Stony Brook, Emeritus Anthony W. Knapp Basic Algebra Along with a companion volume Advanced Algebra Birkhauser¨ Boston • Basel • Berlin Anthony W. Knapp 81 Upper Sheep Pasture Road East Setauket, NY 11733-1729 U.S.A. e-mail to: [email protected] http://www.math.sunysb.edu/˜ aknapp/books/b-alg.html Cover design by Mary Burgess. Mathematics Subject Classicification (2000): 15-01, 20-02, 13-01, 12-01, 16-01, 08-01, 18A05, 68P30 Library of Congress Control Number: 2006932456 ISBN-10 0-8176-3248-4 eISBN-10 0-8176-4529-2 ISBN-13 978-0-8176-3248-9 eISBN-13 978-0-8176-4529-8 Advanced Algebra ISBN 0-8176-4522-5 Basic Algebra and Advanced Algebra (Set) ISBN 0-8176-4533-0 Printed on acid-free paper. c 2006 Anthony W. Knapp All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhauser¨ Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA) and the author, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
    [Show full text]
  • Quadratic Forms and Automorphic Forms
    Quadratic Forms and Automorphic Forms Jonathan Hanke May 16, 2011 2 Contents 1 Background on Quadratic Forms 11 1.1 Notation and Conventions . 11 1.2 Definitions of Quadratic Forms . 11 1.3 Equivalence of Quadratic Forms . 13 1.4 Direct Sums and Scaling . 13 1.5 The Geometry of Quadratic Spaces . 14 1.6 Quadratic Forms over Local Fields . 16 1.7 The Geometry of Quadratic Lattices – Dual Lattices . 18 1.8 Quadratic Forms over Local (p-adic) Rings of Integers . 19 1.9 Local-Global Results for Quadratic forms . 20 1.10 The Neighbor Method . 22 1.10.1 Constructing p-neighbors . 22 2 Theta functions 25 2.1 Definitions and convergence . 25 2.2 Symmetries of the theta function . 26 2.3 Modular Forms . 28 2.4 Asymptotic Statements about rQ(m) ...................... 31 2.5 The circle method and Siegel’s Formula . 32 2.6 Mass Formulas . 34 2.7 An Example: The sum of 4 squares . 35 2.7.1 Canonical measures for local densities . 36 2.7.2 Computing β1(m) ............................ 36 2.7.3 Understanding βp(m) by counting . 37 2.7.4 Computing βp(m) for all primes p ................... 38 2.7.5 Computing rQ(m) for certain m ..................... 39 3 Quaternions and Clifford Algebras 41 3.1 Definitions . 41 3.2 The Clifford Algebra . 45 3 4 CONTENTS 3.3 Connecting algebra and geometry in the orthogonal group . 47 3.4 The Spin Group . 49 3.5 Spinor Equivalence . 52 4 The Theta Lifting 55 4.1 Classical to Adelic modular forms for GL2 ..................
    [Show full text]
  • A Glimpse of the Laureate's Work
    A glimpse of the Laureate’s work Alex Bellos Fermat’s Last Theorem – the problem that captured planets moved along their elliptical paths. By the beginning Andrew Wiles’ imagination as a boy, and that he proved of the nineteenth century, however, they were of interest three decades later – states that: for their own properties, and the subject of work by Niels Henrik Abel among others. There are no whole number solutions to the Modular forms are a much more abstract kind of equation xn + yn = zn when n is greater than 2. mathematical object. They are a certain type of mapping on a certain type of graph that exhibit an extremely high The theorem got its name because the French amateur number of symmetries. mathematician Pierre de Fermat wrote these words in Elliptic curves and modular forms had no apparent the margin of a book around 1637, together with the connection with each other. They were different fields, words: “I have a truly marvelous demonstration of this arising from different questions, studied by different people proposition which this margin is too narrow to contain.” who used different terminology and techniques. Yet in the The tantalizing suggestion of a proof was fantastic bait to 1950s two Japanese mathematicians, Yutaka Taniyama the many generations of mathematicians who tried and and Goro Shimura, had an idea that seemed to come out failed to find one. By the time Wiles was a boy Fermat’s of the blue: that on a deep level the fields were equivalent. Last Theorem had become the most famous unsolved The Japanese suggested that every elliptic curve could be problem in mathematics, and proving it was considered, associated with its own modular form, a claim known as by consensus, well beyond the reaches of available the Taniyama-Shimura conjecture, a surprising and radical conceptual tools.
    [Show full text]
  • Fermat's Last Theorem, a Theorem at Last
    August 1993 MAA FOCUS Fermat’s Last Theorem, that one could understand the elliptic curve given by the equation a Theorem at Last 2 n n y = x(x − a )( x + b ) Keith Devlin, Fernando Gouvêa, and Andrew Granville in the way proposed by Taniyama. After defying all attempts at a solution for Wiles’ approach comes from a somewhat Following an appropriate re-formulation 350 years, Fermat’s Last Theorem finally different direction, and rests on an amazing by Jean-Pierre Serre in Paris, Kenneth took its place among the known theorems of connection, established during the last Ribet in Berkeley strengthened Frey’s mathematics in June of this year. decade, between the Last Theorem and the original concept to the point where it was theory of elliptic curves, that is, curves possible to prove that the existence of a On June 23, during the third of a series of determined by equations of the form counter example to the Last Theorem 2 3 lectures at a conference held at the Newton y = x + ax + b, would lead to the existence of an elliptic Institute in Cambridge, British curve which could not be modular, and mathematician Dr. Andrew Wiles, of where a and b are integers. hence would contradict the Shimura- Princeton University, sketched a proof of the Taniyama-Weil conjecture. Shimura-Taniyama-Weil conjecture for The path that led to the June 23 semi-stable elliptic curves. As Kenneth announcement began in 1955 when the This is the point where Wiles entered the Ribet, of the University of California at Japanese mathematician Yutaka Taniyama picture.
    [Show full text]
  • Associating Abelian Varieties to Weight-2 Modular Forms: the Eichler-Shimura Construction
    Ecole´ Polytechnique Fed´ erale´ de Lausanne Master’s Thesis in Mathematics Associating abelian varieties to weight-2 modular forms: the Eichler-Shimura construction Author: Corentin Perret-Gentil Supervisors: Prof. Akshay Venkatesh Stanford University Prof. Philippe Michel EPF Lausanne Spring 2014 Abstract This document is the final report for the author’s Master’s project, whose goal was to study the Eichler-Shimura construction associating abelian va- rieties to weight-2 modular forms for Γ0(N). The starting points and main resources were the survey article by Fred Diamond and John Im [DI95], the book by Goro Shimura [Shi71], and the book by Fred Diamond and Jerry Shurman [DS06]. The latter is a very good first reference about this sub- ject, but interesting points are sometimes eluded. In particular, although most statements are given in the general setting, the book mainly deals with the particular case of elliptic curves (i.e. with forms having rational Fourier coefficients), with little details about abelian varieties. On the other hand, Chapter 7 of Shimura’s book is difficult, according to the author himself, and the article by Diamond and Im skims rapidly through the subject, be- ing a survey. The goal of this document is therefore to give an account of the theory with intermediate difficulty, accessible to someone having read a first text on modular forms – such as [Zag08] – and with basic knowledge in the theory of compact Riemann surfaces (see e.g. [Mir95]) and algebraic geometry (see e.g. [Har77]). This report begins with an account of the theory of abelian varieties needed for what follows.
    [Show full text]
  • One-Class Genera of Maximal Integral Quadratic Forms
    One-class genera of maximal integral quadratic forms Markus Kirschmer June, 2013 Abstract Suppose Q is a definite quadratic form on a vector space V over some totally real field K 6= Q. Then the maximal integral ZK -lattices in (V; Q) are locally isometric everywhere and hence form a single genus. We enu- merate all orthogonal spaces (V; Q) of dimension at least 3, where the cor- responding genus of maximal integral lattices consists of a single isometry class. It turns out, there are 471 such genera. Moreover, the dimension of V and the degree of K are bounded by 6 and 5 respectively. This classification also yields all maximal quaternion orders of type number one. 1 Introduction Let K be a totally real number field and ZK its maximal order. Two definite quadratic forms over ZK are said to be in the same genus if they are locally isometric everywhere. Each genus is the disjoint union of finitely many isometry classes. The genera which consist of a single isometry class are precisely those lattices for which the local-global principle holds. These genera have been under study for many years. In a large series of papers [Wat63, Wat72, Wat74, Wat78, Wat82, Wat84, Wated], Watson classified all such genera in the case K = Q in three and more than five variables. He also produced partial results in the four and five dimensional cases. Assuming the Generalized Riemann Hypothesis, Voight classified the one-class genera in two variables [Voi07, Theorem 8.6]. Recently, Lorch and the author [LK13] reinvestigated Watson's classification with the help of a computer using the mass formula of Smith, Minkowski and Siegel.
    [Show full text]
  • Computing the Hilbert Class Fields of Quartic CM Fields Using Complex Multiplication Jared Asuncion
    Computing the Hilbert Class Fields of Quartic CM Fields Using Complex Multiplication Jared Asuncion To cite this version: Jared Asuncion. Computing the Hilbert Class Fields of Quartic CM Fields Using Complex Multipli- cation. 2021. hal-03210279 HAL Id: hal-03210279 https://hal.inria.fr/hal-03210279 Preprint submitted on 27 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. COMPUTING THE HILBERT CLASS FIELDS OF QUARTIC CM FIELDS USING COMPLEX MULTIPLICATION JARED ASUNCION Abstract. Let K be a quartic CM field, that is, a totally imaginary quadratic extension of a real quadratic number field. In a 1962 article titled On the class- fields obtained by complex multiplication of abelian varieties, Shimura considered a particular family {FK (m) : m ∈ Z>0} of abelian extensions of K, and showed that the Hilbert class field HK of K is contained in FK (m) for some positive integer m. We make this m explicit. We then give an algorithm that computes a set of defining polynomials for the Hilbert class field using the field FK (m). Our proof-of-concept implementation of this algorithm computes a set of defining polynomials much faster than current implementations of the generic Kummer algorithm for certain examples of quartic CM fields.
    [Show full text]
  • Fermat's Last Theorem
    Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) Fermat's Last Theorem states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have an infinite number of solutions.[1] The proposition was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of Arithmetica; Fermat added that he had a proof that was too large to fit in the margin. However, there were first doubts about it since the publication was done by his son without his consent, after Fermat's death.[2] After 358 years of effort by mathematicians, the first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995; it was described as a "stunning advance" in the citation for Wiles's Abel Prize award in 2016.[3] It also proved much of the modularity theorem and opened up entire new approaches to numerous other problems and mathematically powerful modularity lifting techniques. The unsolved problem stimulated the development of algebraic number theory in the 19th century and the proof of the modularity theorem in the 20th century. It is among the most notable theorems in the history of mathematics and prior to its proof was in the Guinness Book of World Records as the "most difficult mathematical problem" in part because the theorem has the largest number of unsuccessful proofs.[4] Contents The 1670 edition of Diophantus's Arithmetica includes Fermat's Overview commentary, referred to as his "Last Pythagorean origins Theorem" (Observatio Domini Petri Subsequent developments and solution de Fermat), posthumously published Equivalent statements of the theorem by his son.
    [Show full text]
  • Arxiv:2003.08242V1 [Math.HO] 18 Mar 2020
    VIRTUES OF PRIORITY MICHAEL HARRIS In memory of Serge Lang INTRODUCTION:ORIGINALITY AND OTHER VIRTUES If hiring committees are arbiters of mathematical virtue, then letters of recom- mendation should give a good sense of the virtues most appreciated by mathemati- cians. You will not see “proves true theorems” among them. That’s merely part of the job description, and drawing attention to it would be analogous to saying an electrician won’t burn your house down, or a banker won’t steal from your ac- count. I don’t know how electricians or bankers recommend themselves to one another, but I have read a lot of letters for jobs and prizes in mathematics, and their language is revealing in its repetitiveness. Words like “innovative” or “original” are good, “influential” or “transformative” are better, and “breakthrough” or “deci- sive” carry more weight than “one of the best.” Best, of course, is “the best,” but it is only convincing when accompanied by some evidence of innovation or influence or decisiveness. When we try to answer the questions: what is being innovated or decided? who is being influenced? – we conclude that the virtues highlighted in reference letters point to mathematics as an undertaking relative to and within a community. This is hardly surprising, because those who write and read these letters do so in their capacity as representative members of this very community. Or I should say: mem- bers of overlapping communities, because the virtues of a branch of mathematics whose aims are defined by precisely formulated conjectures (like much of my own field of algebraic number theory) are very different from the virtues of an area that grows largely by exploring new phenomena in the hope of discovering simple This article was originally written in response to an invitation by a group of philosophers as part arXiv:2003.08242v1 [math.HO] 18 Mar 2020 of “a proposal for a special issue of the philosophy journal Synthese` on virtues and mathematics.” The invitation read, “We would be delighted to be able to list you as a prospective contributor.
    [Show full text]
  • Construction of Modular Galois Representations
    Johannes Anschütz Michael Füerer Kleine AG: Construction of modular Galois representations Februar , Overview e aim of this Kleine AG is to present the following theorem due to Deligne. P n eorem: Let f 2 Sk(Γ1(N ); χ) be a normalized eigenform of weight k ≥ 2. Let f = anq its Fourier expansion and define Kf := Q(a1; a2; ::) ⊆ C. en Kf is a number field and if λ is a place of Kf dividing the prime ` 2 Z, there exists a continuous two-dimensional representation ρf ;λ : Gal(Q/Q) . GL2(Kf ;λ) which is unramified at all primes p - `N and satisfies − 2 − k−1 det(X ρf ;λ(Frobp)) = X ap X + p χ(p) for each arithmetic Frobenius Frobp at p. In particular, : Tr(ρf ;λ(Frobp)) = ap So basically, for suitable modular forms there is associated a Galois representation with pre- scribed traces. is emphasizes once more the arithmetic significance of modular forms. e proof of the above theorem will heavily use geometry and cohomology of modular curves. e constructions and proofs in the theorem are involved and unfortunately not clearly outlined in our references,¹ so we present a short summary here (see also http: //vbrt.org/writings/l-adic-talk.pdf for another one). As a first and easy reduction it suffices (by taking the contragredient representation) to con- struct a two-dimensional Kf ;λ-representation Vf ;λ of Gal(Q/Q) unramified for p - `N and satisfying k−1 2 det(1 − Fp X j Vf ;λ) = 1 − ap X + p χ(p)X ¹ [Del] deals with the case N = 1 to capture the discriminant and [Con] presents some arguments only in the weight two case.
    [Show full text]
  • Algebraic Structures of Symmetric Domains Publications of the Mathematical Society Ofjapan
    ALGEBRAIC STRUCTURES OF SYMMETRIC DOMAINS PUBLICATIONS OF THE MATHEMATICAL SOCIETY OFJAPAN 1. The Construction and Study of Certain Important Algebras. By Claude Chevalley. 2. Lie Groups and Differential Geometry. By Katsumi Nomizu. 3. Lectures on Ergodic Theory. By Paul R. Halmos. 4. Introduction to the Problem of Minimal Models in the Theory of Algebraic Surfaces. By Oscar Zariski. 5. Zur Reduktionstheorie Quadratischer Formen. Von Carl Ludwig Siegel. 6. Complex Multiplication of Abelian Varieties and its Applications to Number Theory. By Goro Shimura and Yutaka Taniyama. 7. Equations Diifdrentielles Ordinaires du Premier Ordre dans Ie Champ Complexe. Par Masuo Hukuhara, Tosihusa Kimura et Mme Tizuko Matuda. 8. Theory of Q_-varieties. By Teruhisa Matsusaka. 9. Stability Theory by Liapunov's Second Method. By Taro Yoshi- zawa. 10. FonctionsEntieresetTransformdesdeFourier. Application. Par Szolem Mandelbrojt. 11. Introduction to the Arithmetic Theory of Automorphic Functions. By Goro Shimura. (Kano Memorial Lectures 1) 12. Introductory Lectures on Automorphic Forms. By Walter L. Baily, Jr. (Kano Memorial Lectures 2) 13. Two Applications of Logic to Mathematics. By Gaisi Takeuti. (Kano Memorial Lectures 3) 14. Algebraic Structures of Symmetric Domains. By Ichiro Satake. (Kano Memorial Lectures 4) PUBLICATIONS OF THE MATHEMATICAL SOCIETY OF JAPAN 14 ALGEBRAIC STRUCTURES OF SYMMETRIC DOMAINS by Ichiro Satake ΚΑΝ0 MEMORIAL LECTURES 4 Iwanami Shoten, Publishers and Princeton University Press 1980 ©The Mathematical Society of Japan 1980 All rights reserved Kano Memorial Lectures In 1969, the Mathematical Society of Japan received an anonymous donation to en­ courage the publication of lectures in mathematics of distinguished quality in com­ memoration of the late Kokichi Kano (1865-1942).
    [Show full text]