Memories of Goro Shimura Don Blasius, Toni Bluher, Haruzo Hida, Kamal Khuri-Makdisi, Kenneth Ribet, Alice Silverberg, and Hiroyuki Yoshida

Total Page:16

File Type:pdf, Size:1020Kb

Memories of Goro Shimura Don Blasius, Toni Bluher, Haruzo Hida, Kamal Khuri-Makdisi, Kenneth Ribet, Alice Silverberg, and Hiroyuki Yoshida Memories of Goro Shimura Don Blasius, Toni Bluher, Haruzo Hida, Kamal Khuri-Makdisi, Kenneth Ribet, Alice Silverberg, and Hiroyuki Yoshida Goro Shimura, a mathematician who greatly influenced number theory in the second half of the twentieth cen- tury, was born in Japan on February 23, 1930. Over a career spanning six decades, he repeatedly made transfor- mational discoveries that stimulated new lines of inves- tigation and played a central role in the development of the field. Shimura earned his degrees at the University of Tokyo and held appointments at the University of Tokyo and Osaka University. He was a professor at Princeton Uni- versity from 1964 until he retired in 1999. He authored numerous influential books and papers and was awarded a Guggenheim Fellowship in 1970, the Cole Prize in Num- ber Theory in 1977, the Asahi Prize in 1991, and the Steele Prize for Lifetime Achievement in 1996. Goro Shimura passed away in Princeton on May 3, 2019, at the age of eighty-nine. Don Blasius Goro Shimura advised my 1981 Princeton thesis and he was, through his research and guidance, the central figure of my intellectual life in graduate school and for many years afterwards. His ideas about how to do mathematics have influenced me throughout my career. Figure 1. Goro, Chikako, Haru, and Tomoko returning to the Arriving at Princeton in fall 1977, I had no plan to study US from Haneda Airport in 1971. number theory, had never read a book about it, and had never heard of Shimura, Iwasawa, Dwork, Langlands, or offering of an introductory course in algebraic number even Weil. Most graduate courses had incomprehensible theory stood out as a beacon of light. Algebra already course descriptions. In this context Professor Shimura’s had great appeal for me, and I was hooked right away by this perfect course. Later I took his courses on families of Don Blasius is Distinguished Professor of Mathematics at UCLA. His email abelian varieties, special values of 퐿-functions, period rela- address is [email protected]. tions, the arithmetic theory of automorphic forms, Eisen- Communicated by Notices Associate Editor William McCallum. stein series, theta functions, etc., all topics essential to his For permission to reprint this article, please contact: current research and, as it turned out, my initial research. [email protected]. He really taught for his students, not just to have a context DOI: https://doi.org/10.1090/noti2076 to explore a topic of interest to himself. Each course started MAY 2020 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 677 with minimal assumptions of background and went far end as his destination after the fact. In words, he told me into its subject with both clarity and an economy of means. he starts with a general idea but no fixed goal or conjecture. He always had his lecture fully written out in a notebook, Many people who did not know him have some imag- which would be on the table in front of him. He would lec- ination of Shimura as exclusively serious or severe. This ture without it except for complex formulas. For them, he is simply not true, and I mention two among many mo- would pick it up to refresh his memory, always explaining ments of wit that we both enjoyed. After I started a conver- clearly as he went. Shimura was always perfectly prepared sation with a remark about Hecke operators, he said, “The and engaging. first thing you say to me is always interesting.” And after By early in my second year, it was clear to me that I I complained to him that I found his paper on confluent wanted Shimura to supervise my dissertation. When I hypergeometric functions hard, he said, “You need to go queried him about it, he asked me to read his famous see an analyst!” 1971 text Introduction to the Arithmetic Theory of Automor- About other mathematicians, he freely acknowledged phic Functions. This book is a masterpiece of exposition, his debts to Eichler, Hecke, and Weil, who was a friend starting from scratch and giving, mostly with proofs, the for over four decades. He also had the highest respect for key themes of his research up to that point. For me it was Siegel. Once he told me, “His proofs are correct and you the perfect preparation for reading the articles on which can just use his theorems.” He did not think that about it was based. It was a transformative undertaking. As an many mathematicians. One day we discussed Weil’s 1967 anecdote, I mention that when I told him I had finished paper on the converse theorem. After a while he said, Chapter 3, the one on Hecke algebras and the relation with with intensity, “Weil is a genius.” I never heard him say 퐿-functions, he asked me how long I had spent on it. I told that about anyone else, even when discussing major works. him I had spent about a month, and he said that was “very About ideas, although he knew a great deal, he was some- fast” (meaning too fast). He was correct! Later that year, thing of a minimalist in his preferred way of writing. For when I asked to be his student formally, he agreed but im- example, when I referred to automorphic forms as sections posed the condition that I promise not to “fire” him. He of vector bundles, he queried me sharply as to whether explained that a student with whom he had been work- this language added anything. I had to admit that, in the ing for some time had just done that, and he was visibly context, except for curb appeal to some, it did not. As a hurt when he spoke about it. I told him that there was no consequence, I avoided such usage in my dissertation. chance of that. I was asked to make a brief summary concerning Shimura did not tend, at least with me, to engage in Shimura’s theory of canonical models and its antecedents. lengthy, detailed discussion of mathematics. Usually, af- In 1953, at the start of his career, Shimura created ([1]) ter a brief discussion of math, he would shift the con- the first theory of reduction mod 푝 of varieties in arbitrary versation to something else, ranging from departmental dimensions. In a December 1953 letter to Shimura, Weil gossip to Chinese stories. He did not give me a research called it “a very important step forward” and emphasized problem right away. Instead, he asked me to read articles. its promise for the further development of complex multi- The first was [3], mentioned below, and the second was plication. He also wrote that it was “just what is needed [to [17]. Sometime while reading the second paper, he gave study] modular functions of several variables.” The first me the simple-sounding research problem concerning its direction became the famous collaboration of Shimura main theme of relations between the periods of abelian and Yutaka Taniyama, which was well underway by 1955. varieties: “Find more precise results. Find natural fields of They defined and studied abelian (group) varieties ofCM definition.” This was a great problem because it connected type and proved the Shimura–Taniyama reciprocity law, with so many topics, including values of 퐿-functions and which describes explicitly the action of a Galois group on the extension of the canonical models formalism from au- the points of finite order of the variety. The main un- tomorphic functions to automorphic forms, both new ar- derlying result here is a celebrated formula for the prime eas. ideal decomposition of the endomorphism that reduces to Before giving me this problem, Shimura had supported the Frobenius morphism attached to a given prime of the my desire to come up with my own. Several times I made field of definition. As a key application of this formula, suggestions to him, but he found compelling issues with they computed the Hasse–Weil zeta function at almost all them, such as being too hard or already done. When I places, thereby verifying Hasse’s conjecture for such func- finally found some results on his problem, he washappy tions. Their research was summarized in the well-known and exclaimed “Isn’t it nice to have some success?!” Later, 1961 monograph Complex Multiplication of Abelian Vari- I asked him about how he worked. He drew a really messy eties and Its Applications to Number Theory, which Shimura self-intersecting path on the blackboard and declared the wrote after Taniyama’s death. In fact, Shimura wrote 678 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 67, NUMBER 5 research articles about complex multiplication and abelian varieties over his career, even publishing in 1998 an expos- itory monograph Abelian Varieties with Complex Multiplica- tion and Modular Functions. This text includes more recent fundamental topics of his research, such as reciprocity laws for values of modular functions at CM points and the the- ory of period relations for abelian varieties of CM type. From the late 1950s until the late 1960s Shimura made a continuing study, mostly published in the Annals of Math- ematics, of the fields of definition for certain varieties de- fined by arithmetic quotients of bounded symmetric do- mains. For me, the start was the 1963 article “On ana- Figure 2. Chikako and Goro in 1993 in Nagano prefecture, lytic families of polarized abelian varieties and automor- where they had a summer house. phic functions.” In its first part, this highly readable paper showed that arithmetic quotients of three of the four clas- symmetric domains I, II,” both published in the Annals.
Recommended publications
  • MY UNFORGETTABLE EARLY YEARS at the INSTITUTE Enstitüde Unutulmaz Erken Yıllarım
    MY UNFORGETTABLE EARLY YEARS AT THE INSTITUTE Enstitüde Unutulmaz Erken Yıllarım Dinakar Ramakrishnan `And what was it like,’ I asked him, `meeting Eliot?’ `When he looked at you,’ he said, `it was like standing on a quay, watching the prow of the Queen Mary come towards you, very slowly.’ – from `Stern’ by Seamus Heaney in memory of Ted Hughes, about the time he met T.S.Eliot It was a fortunate stroke of serendipity for me to have been at the Institute for Advanced Study in Princeton, twice during the nineteen eighties, first as a Post-doctoral member in 1982-83, and later as a Sloan Fellow in the Fall of 1986. I had the privilege of getting to know Robert Langlands at that time, and, needless to say, he has had a larger than life influence on me. It wasn’t like two ships passing in the night, but more like a rowboat feeling the waves of an oncoming ship. Langlands and I did not have many conversations, but each time we did, he would make a Zen like remark which took me a long time, at times months (or even years), to comprehend. Once or twice it even looked like he was commenting not on the question I posed, but on a tangential one; however, after much reflection, it became apparent that what he had said had an interesting bearing on what I had been wondering about, and it always provided a new take, at least to me, on the matter. Most importantly, to a beginner in the field like I was then, he was generous to a fault, always willing, whenever asked, to explain the subtle aspects of his own work.
    [Show full text]
  • Advanced Algebra
    Cornerstones Series Editors Charles L. Epstein, University of Pennsylvania, Philadelphia Steven G. Krantz, University of Washington, St. Louis Advisory Board Anthony W. Knapp, State University of New York at Stony Brook, Emeritus Anthony W. Knapp Basic Algebra Along with a companion volume Advanced Algebra Birkhauser¨ Boston • Basel • Berlin Anthony W. Knapp 81 Upper Sheep Pasture Road East Setauket, NY 11733-1729 U.S.A. e-mail to: [email protected] http://www.math.sunysb.edu/˜ aknapp/books/b-alg.html Cover design by Mary Burgess. Mathematics Subject Classicification (2000): 15-01, 20-02, 13-01, 12-01, 16-01, 08-01, 18A05, 68P30 Library of Congress Control Number: 2006932456 ISBN-10 0-8176-3248-4 eISBN-10 0-8176-4529-2 ISBN-13 978-0-8176-3248-9 eISBN-13 978-0-8176-4529-8 Advanced Algebra ISBN 0-8176-4522-5 Basic Algebra and Advanced Algebra (Set) ISBN 0-8176-4533-0 Printed on acid-free paper. c 2006 Anthony W. Knapp All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhauser¨ Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA) and the author, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
    [Show full text]
  • Quadratic Forms and Automorphic Forms
    Quadratic Forms and Automorphic Forms Jonathan Hanke May 16, 2011 2 Contents 1 Background on Quadratic Forms 11 1.1 Notation and Conventions . 11 1.2 Definitions of Quadratic Forms . 11 1.3 Equivalence of Quadratic Forms . 13 1.4 Direct Sums and Scaling . 13 1.5 The Geometry of Quadratic Spaces . 14 1.6 Quadratic Forms over Local Fields . 16 1.7 The Geometry of Quadratic Lattices – Dual Lattices . 18 1.8 Quadratic Forms over Local (p-adic) Rings of Integers . 19 1.9 Local-Global Results for Quadratic forms . 20 1.10 The Neighbor Method . 22 1.10.1 Constructing p-neighbors . 22 2 Theta functions 25 2.1 Definitions and convergence . 25 2.2 Symmetries of the theta function . 26 2.3 Modular Forms . 28 2.4 Asymptotic Statements about rQ(m) ...................... 31 2.5 The circle method and Siegel’s Formula . 32 2.6 Mass Formulas . 34 2.7 An Example: The sum of 4 squares . 35 2.7.1 Canonical measures for local densities . 36 2.7.2 Computing β1(m) ............................ 36 2.7.3 Understanding βp(m) by counting . 37 2.7.4 Computing βp(m) for all primes p ................... 38 2.7.5 Computing rQ(m) for certain m ..................... 39 3 Quaternions and Clifford Algebras 41 3.1 Definitions . 41 3.2 The Clifford Algebra . 45 3 4 CONTENTS 3.3 Connecting algebra and geometry in the orthogonal group . 47 3.4 The Spin Group . 49 3.5 Spinor Equivalence . 52 4 The Theta Lifting 55 4.1 Classical to Adelic modular forms for GL2 ..................
    [Show full text]
  • A Glimpse of the Laureate's Work
    A glimpse of the Laureate’s work Alex Bellos Fermat’s Last Theorem – the problem that captured planets moved along their elliptical paths. By the beginning Andrew Wiles’ imagination as a boy, and that he proved of the nineteenth century, however, they were of interest three decades later – states that: for their own properties, and the subject of work by Niels Henrik Abel among others. There are no whole number solutions to the Modular forms are a much more abstract kind of equation xn + yn = zn when n is greater than 2. mathematical object. They are a certain type of mapping on a certain type of graph that exhibit an extremely high The theorem got its name because the French amateur number of symmetries. mathematician Pierre de Fermat wrote these words in Elliptic curves and modular forms had no apparent the margin of a book around 1637, together with the connection with each other. They were different fields, words: “I have a truly marvelous demonstration of this arising from different questions, studied by different people proposition which this margin is too narrow to contain.” who used different terminology and techniques. Yet in the The tantalizing suggestion of a proof was fantastic bait to 1950s two Japanese mathematicians, Yutaka Taniyama the many generations of mathematicians who tried and and Goro Shimura, had an idea that seemed to come out failed to find one. By the time Wiles was a boy Fermat’s of the blue: that on a deep level the fields were equivalent. Last Theorem had become the most famous unsolved The Japanese suggested that every elliptic curve could be problem in mathematics, and proving it was considered, associated with its own modular form, a claim known as by consensus, well beyond the reaches of available the Taniyama-Shimura conjecture, a surprising and radical conceptual tools.
    [Show full text]
  • Fermat's Last Theorem, a Theorem at Last
    August 1993 MAA FOCUS Fermat’s Last Theorem, that one could understand the elliptic curve given by the equation a Theorem at Last 2 n n y = x(x − a )( x + b ) Keith Devlin, Fernando Gouvêa, and Andrew Granville in the way proposed by Taniyama. After defying all attempts at a solution for Wiles’ approach comes from a somewhat Following an appropriate re-formulation 350 years, Fermat’s Last Theorem finally different direction, and rests on an amazing by Jean-Pierre Serre in Paris, Kenneth took its place among the known theorems of connection, established during the last Ribet in Berkeley strengthened Frey’s mathematics in June of this year. decade, between the Last Theorem and the original concept to the point where it was theory of elliptic curves, that is, curves possible to prove that the existence of a On June 23, during the third of a series of determined by equations of the form counter example to the Last Theorem 2 3 lectures at a conference held at the Newton y = x + ax + b, would lead to the existence of an elliptic Institute in Cambridge, British curve which could not be modular, and mathematician Dr. Andrew Wiles, of where a and b are integers. hence would contradict the Shimura- Princeton University, sketched a proof of the Taniyama-Weil conjecture. Shimura-Taniyama-Weil conjecture for The path that led to the June 23 semi-stable elliptic curves. As Kenneth announcement began in 1955 when the This is the point where Wiles entered the Ribet, of the University of California at Japanese mathematician Yutaka Taniyama picture.
    [Show full text]
  • Associating Abelian Varieties to Weight-2 Modular Forms: the Eichler-Shimura Construction
    Ecole´ Polytechnique Fed´ erale´ de Lausanne Master’s Thesis in Mathematics Associating abelian varieties to weight-2 modular forms: the Eichler-Shimura construction Author: Corentin Perret-Gentil Supervisors: Prof. Akshay Venkatesh Stanford University Prof. Philippe Michel EPF Lausanne Spring 2014 Abstract This document is the final report for the author’s Master’s project, whose goal was to study the Eichler-Shimura construction associating abelian va- rieties to weight-2 modular forms for Γ0(N). The starting points and main resources were the survey article by Fred Diamond and John Im [DI95], the book by Goro Shimura [Shi71], and the book by Fred Diamond and Jerry Shurman [DS06]. The latter is a very good first reference about this sub- ject, but interesting points are sometimes eluded. In particular, although most statements are given in the general setting, the book mainly deals with the particular case of elliptic curves (i.e. with forms having rational Fourier coefficients), with little details about abelian varieties. On the other hand, Chapter 7 of Shimura’s book is difficult, according to the author himself, and the article by Diamond and Im skims rapidly through the subject, be- ing a survey. The goal of this document is therefore to give an account of the theory with intermediate difficulty, accessible to someone having read a first text on modular forms – such as [Zag08] – and with basic knowledge in the theory of compact Riemann surfaces (see e.g. [Mir95]) and algebraic geometry (see e.g. [Har77]). This report begins with an account of the theory of abelian varieties needed for what follows.
    [Show full text]
  • One-Class Genera of Maximal Integral Quadratic Forms
    One-class genera of maximal integral quadratic forms Markus Kirschmer June, 2013 Abstract Suppose Q is a definite quadratic form on a vector space V over some totally real field K 6= Q. Then the maximal integral ZK -lattices in (V; Q) are locally isometric everywhere and hence form a single genus. We enu- merate all orthogonal spaces (V; Q) of dimension at least 3, where the cor- responding genus of maximal integral lattices consists of a single isometry class. It turns out, there are 471 such genera. Moreover, the dimension of V and the degree of K are bounded by 6 and 5 respectively. This classification also yields all maximal quaternion orders of type number one. 1 Introduction Let K be a totally real number field and ZK its maximal order. Two definite quadratic forms over ZK are said to be in the same genus if they are locally isometric everywhere. Each genus is the disjoint union of finitely many isometry classes. The genera which consist of a single isometry class are precisely those lattices for which the local-global principle holds. These genera have been under study for many years. In a large series of papers [Wat63, Wat72, Wat74, Wat78, Wat82, Wat84, Wated], Watson classified all such genera in the case K = Q in three and more than five variables. He also produced partial results in the four and five dimensional cases. Assuming the Generalized Riemann Hypothesis, Voight classified the one-class genera in two variables [Voi07, Theorem 8.6]. Recently, Lorch and the author [LK13] reinvestigated Watson's classification with the help of a computer using the mass formula of Smith, Minkowski and Siegel.
    [Show full text]
  • Computing the Hilbert Class Fields of Quartic CM Fields Using Complex Multiplication Jared Asuncion
    Computing the Hilbert Class Fields of Quartic CM Fields Using Complex Multiplication Jared Asuncion To cite this version: Jared Asuncion. Computing the Hilbert Class Fields of Quartic CM Fields Using Complex Multipli- cation. 2021. hal-03210279 HAL Id: hal-03210279 https://hal.inria.fr/hal-03210279 Preprint submitted on 27 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. COMPUTING THE HILBERT CLASS FIELDS OF QUARTIC CM FIELDS USING COMPLEX MULTIPLICATION JARED ASUNCION Abstract. Let K be a quartic CM field, that is, a totally imaginary quadratic extension of a real quadratic number field. In a 1962 article titled On the class- fields obtained by complex multiplication of abelian varieties, Shimura considered a particular family {FK (m) : m ∈ Z>0} of abelian extensions of K, and showed that the Hilbert class field HK of K is contained in FK (m) for some positive integer m. We make this m explicit. We then give an algorithm that computes a set of defining polynomials for the Hilbert class field using the field FK (m). Our proof-of-concept implementation of this algorithm computes a set of defining polynomials much faster than current implementations of the generic Kummer algorithm for certain examples of quartic CM fields.
    [Show full text]
  • Program Cincinnati Solving the Biggest Challenges in the Digital Universe
    July 31-Aug 3, 2019 PROGRAM CINCINNATI SOLVING THE BIGGEST CHALLENGES IN THE DIGITAL UNIVERSE. At Akamai, we thrive on solving complex challenges for businesses, helping them digitally transform, outpace competitors, and achieve their goals. Cloud delivery and security. Video streaming. Secure application access. Our solutions make it easier for many of the world’s top brands to deliver the best, most secure digital experiences — in industries like entertainment, sports, gaming, nance, retail, software, and others. We helped broadcasters deliver high-quality live streaming during the 2018 Pyeongchang Games. We mitigated a record-breaking, memcached-fueled 1.3 Tbps DDoS attack. We’ve managed Black Friday web trafc for the biggest retailers on the planet. SECURE AND GROW YOUR BUSINESS. AKAMAI.COM WELCOME TO MAA MATHFEST! The MAA is pleased that you have joined us in Cincinnati for the math event of the summer. What are my favorite things to do at MAA MathFest? Attend the Invited Addresses! When I think back on prior MAA MathFest meetings, the Invited Addresses are the talks that I still remember and that have renewed my excitement for mathematics. This year will continue that tradition. We have excellent speakers presenting on a variety of exciting topics. If you see an Invited Address title that looks interesting, go to that talk. It will be worth it. Remember to attend the three 20-minute talks given by the MAA Adler Teaching Award winners on Friday afternoon. Jumpstart your passion for teaching and come hear these great educators share their TABLE OF CONTENTS insights on teaching, connecting with students, and the answer to “life, the universe and everything” (okay, maybe they won’t talk about 3 EARLE RAYMOND HEDRICK LECTURE SERIES the last item, but I am sure they will give inspiring and motivating presentations).
    [Show full text]
  • Fermat's Last Theorem
    Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) Fermat's Last Theorem states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have an infinite number of solutions.[1] The proposition was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of Arithmetica; Fermat added that he had a proof that was too large to fit in the margin. However, there were first doubts about it since the publication was done by his son without his consent, after Fermat's death.[2] After 358 years of effort by mathematicians, the first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995; it was described as a "stunning advance" in the citation for Wiles's Abel Prize award in 2016.[3] It also proved much of the modularity theorem and opened up entire new approaches to numerous other problems and mathematically powerful modularity lifting techniques. The unsolved problem stimulated the development of algebraic number theory in the 19th century and the proof of the modularity theorem in the 20th century. It is among the most notable theorems in the history of mathematics and prior to its proof was in the Guinness Book of World Records as the "most difficult mathematical problem" in part because the theorem has the largest number of unsuccessful proofs.[4] Contents The 1670 edition of Diophantus's Arithmetica includes Fermat's Overview commentary, referred to as his "Last Pythagorean origins Theorem" (Observatio Domini Petri Subsequent developments and solution de Fermat), posthumously published Equivalent statements of the theorem by his son.
    [Show full text]
  • Arxiv:2003.08242V1 [Math.HO] 18 Mar 2020
    VIRTUES OF PRIORITY MICHAEL HARRIS In memory of Serge Lang INTRODUCTION:ORIGINALITY AND OTHER VIRTUES If hiring committees are arbiters of mathematical virtue, then letters of recom- mendation should give a good sense of the virtues most appreciated by mathemati- cians. You will not see “proves true theorems” among them. That’s merely part of the job description, and drawing attention to it would be analogous to saying an electrician won’t burn your house down, or a banker won’t steal from your ac- count. I don’t know how electricians or bankers recommend themselves to one another, but I have read a lot of letters for jobs and prizes in mathematics, and their language is revealing in its repetitiveness. Words like “innovative” or “original” are good, “influential” or “transformative” are better, and “breakthrough” or “deci- sive” carry more weight than “one of the best.” Best, of course, is “the best,” but it is only convincing when accompanied by some evidence of innovation or influence or decisiveness. When we try to answer the questions: what is being innovated or decided? who is being influenced? – we conclude that the virtues highlighted in reference letters point to mathematics as an undertaking relative to and within a community. This is hardly surprising, because those who write and read these letters do so in their capacity as representative members of this very community. Or I should say: mem- bers of overlapping communities, because the virtues of a branch of mathematics whose aims are defined by precisely formulated conjectures (like much of my own field of algebraic number theory) are very different from the virtues of an area that grows largely by exploring new phenomena in the hope of discovering simple This article was originally written in response to an invitation by a group of philosophers as part arXiv:2003.08242v1 [math.HO] 18 Mar 2020 of “a proposal for a special issue of the philosophy journal Synthese` on virtues and mathematics.” The invitation read, “We would be delighted to be able to list you as a prospective contributor.
    [Show full text]
  • 2021 September-October Newsletter
    Newsletter VOLUME 51, NO. 5 • SEPTEMBER–OCTOBER 2021 PRESIDENT’S REPORT This is a fun report to write, where I can share news of AWM’s recent award recognitions. Sometimes hearing about the accomplishments of others can make The purpose of the Association for Women in Mathematics is us feel like we are not good enough. I hope that we can instead feel inspired by the work these people have produced and energized to continue the good work we • to encourage women and girls to ourselves are doing. study and to have active careers in the mathematical sciences, and We’ve honored exemplary Student Chapters. Virginia Tech received the • to promote equal opportunity and award for Scientific Achievement for offering three different research-focused the equal treatment of women and programs during a pandemic year. UC San Diego received the award for Professional girls in the mathematical sciences. Development for offering multiple events related to recruitment and success in the mathematical sciences. Kutztown University received the award for Com- munity Engagement for a series of events making math accessible to a broad community. Finally, Rutgers University received the Fundraising award for their creative fundraising ideas. Congratulations to all your members! AWM is grateful for your work to support our mission. The AWM Research Awards honor excellence in specific research areas. Yaiza Canzani was selected for the AWM-Sadosky Research Prize in Analysis for her work in spectral geometry. Jennifer Balakrishnan was selected for the AWM- Microsoft Research Prize in Algebra and Number Theory for her work in computa- tional number theory.
    [Show full text]