Lineage Identification Affects Estimates of Evolutionary Mode In

Total Page:16

File Type:pdf, Size:1020Kb

Lineage Identification Affects Estimates of Evolutionary Mode In Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology Syst. Biol. 69(6):1106–1121, 2020 © The Author(s) 2020. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please email: [email protected] DOI:10.1093/sysbio/syaa018 Advance Access publication March 12, 2020 Lineage Identification Affects Estimates of Evolutionary Mode in Marine Snails , , , ,∗ FELIX VAUX 1 2 3 ,MICHAEL R. GEMMELL1,SIMON F.K. HILLS1,BRUCE A. MARSHALL4,ALAN G. BEU5, JAMES S. CRAMPTON6,STEVEN A. TREWICK1, AND MARY MORGAN-RICHARDS1 1Wildlife and Ecology Group, School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4410, New Zealand; 2Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA; 3Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, Otago, New Zealand; 4Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand; 5GNS Science, PO Box 30-368, Lower Hutt 5011, New Zealand; and 6School of Geography, Environment & Earth Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand ∗ Correspondence to be sent to: Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, Otago, New Zealand; E-mail: [email protected]. Downloaded from https://academic.oup.com/sysbio/article/69/6/1106/5803659 by Massey University user on 26 October 2020 Received 01 October 2019; reviews returned 13 February 2020; accepted 09 March 2020 Associate Editor: Ken Halanych Abstract.—In order to study evolutionary pattern and process, we need to be able to accurately identify species and the evolutionary lineages from which they are derived. Determining the concordance between genetic and morphological variation of living populations, and then directly comparing extant and fossil morphological data, provides a robust approach for improving our identification of lineages through time. We investigate genetic and shell morphological variation in extant species of Penion marine snails from New Zealand, and extend this analysis into deep time using fossils. We find that genetic and morphological variation identify similar patterns and support most currently recognized extant species. However, some taxonomic over-splitting is detected due to shell size being a poor trait for species delimitation, and we identify incorrect assignment of some fossil specimens. We infer that a single evolutionary lineage (Penion sulcatus) has existed for 22 myr, with most aspects of shell shape and shell size evolving under a random walk. However, by removing samples previously classified as the extinct species P. marwicki, we instead detect morphological stasis for one axis of shell shape variation. This result demonstrates how lineage identification can change our perception of evolutionary pattern and process. [Genotyping by sequencing; geometric morphometrics; morphological evolution; Neogastropoda; phenotype; speciation; stasis.] Our perception of trait evolution and change in biod- is the degree of concordance between morphological iversity is strongly influenced by our identification of species and separately evolving lineages as revealed species as delineated segments of an evolutionary lin- by genetic data. This relationship matters in particular eage in time (de Queiroz 1998; Sites and Marshall 2003). for extinct species (Stanley and Yang 1987; Gould 1991; Unsurprisingly, if living and fossil species derived from Eldredge 1993; Forey et al. 2004). Restricting analyses of these lineage segments are not identified consistently, the fossil record to only generic-level classification can analyses that rely upon taxonomic identification (i.e., help to avoid this issue, as morphology is more likely to most) are likely to be inaccurate. This issue is especially accurately reflect deeper evolutionary splits (Forey et al. important for the investigation of evolutionary tempo 2004; Foote et al. 2007; Foote 2011; Eronen et al. 2011). In and mode (Lande 1986; Agapow et al. 2004), where addition, generic-level analyses can help to circumvent change can be described differently (e.g., stasis, random statistical limitations due to the incompleteness of walk or punctuated) depending on whether one or many the fossil record, as it is easier to sample a greater species are recognized over a given length of a lineage. proportion of genera than species. However, estimates Morphology is the predominant evidence for species of evolutionary change using genera and species can be delimitation preserved in the fossil record, which means highly discrepant, and it can be theoretically difficult to that the majority of all organisms that have existed integrate data from well-defined living species and fossil are likely to be defined exclusively using phenotype genera (Roy et al. 1996; Wilkinson 2011; Hendricks et al. (Allmon and Yacobucci 2016; Marshall 2017). Fossils 2014; Weise et al. 2016). can preserve morphology for many different internal It is probably appropriate to recognize distinct spe- and external anatomical components, and “morphos- cies where fossils are separated by geologically sig- pecies” can be distinguished based on variation for a nificant periods of time, or if they originate from wide variety of continuous and discrete morphological geographically distant provenances. However, many characters. Shape and size are usually key for species extinct morphospecies are classified from adjacent or delimitation though because these morphological fea- overlapping geological time intervals, and it is com- tures are typically preserved best in the fossil record. mon for fossil sites to contain multiple species from However, diversity among living organisms assessed the same genus. Previous studies have highlighted using molecular markers frequently demonstrates the sampling biases (e.g., Guillerme and Cooper 2018; existence of crypsis, polymorphism, and morphological Hopkins et al. 2018), and arbitrary limits set for the convergence (e.g., Trewick 1998; Bickford et al. 2007; temporal duration of a species (e.g., Aze et al. 2013), as Coppard and Lessios 2017). Consequently, a perennial potential sources of error when attempting to analyze interest for evolutionary biologists and paleontologists evolutionary change and fossil diversity. Where there 1106 [12:42 8/10/2020 Sysbio-OP-SYSB200018.tex] Page: 1106 1106–1121 Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology 2020 VAUX ET AL. — LINEAGE IDENTIFICATION IN MARINE SNAILS 1107 is no clear temporal or spatial disjunction, or substan- In this study, we use New Zealand Penion as an tial morphological differences between fossil taxa, a exemplar to integrate extinct and extant material in genetic context for morphological variation is advant- order to identify evolutionary lineages and estimate ageous. Studies can gather this context by integrating evolutionary mode. Multilocus nuclear genetic variation genetic data from living relatives and the morpho- among six extant Penion taxa is investigated, which is logical analysis of both extant and fossil specimens used to determine species delimitation between P. chath- (e.g., Stanley and Yang 1987; Jackson and Cheetham amensis and P. fairfieldae (Powell, 1947), and between 1994; Hills et al. 2012; Smith and Hendricks 2013; P. jeakingsi (Powell, 1947) and P. ormesi (Powell, 1927). Hopkins et al. 2018). Using a geometric morphometric method, we assess Siphon whelks from New Zealand provide an oppor- the extent of shell shape and size variation within tunity to identify evolutionary lineages using genetic extant species and apply this knowledge to identify and morphological data, and this knowledge can be fossil material. Two subsampled data sets are used to applied to fossil material. Siphon whelks of the genus analyze morphological variation among extant: 1) P. Penion P. Fischer, 1884 are large marine snails (Fig. 1a) chathamensis and P. fairfieldae and 2) P. jeakingsi and P. Downloaded from https://academic.oup.com/sysbio/article/69/6/1106/5803659 by Massey University user on 26 October 2020 with a rich fossil record in New Zealand, including 19 ormesi. These morphometric results are compared with extinct species, found in high abundance from many variation in nuclear DNA sequence data and the signal paleontological sites spanning the last 66 myr (Beu from previous molecular phylogenetics results (Vaux and Maxwell 1990). Although many fossils are well- et al. 2018; Fig. 1b). The taxonomic identification of preserved (Fig. 1c), evolutionary relationships among fossil specimens is investigated at two paleontological extant and fossil taxa are unclear and the taxonomic sites that putatively exhibit multiple species of Penion identity of specimens at many fossil sites is uncertain (Beu and Maxwell 1990): 1) Wanganui Beach (0.97–0.38 Ma) with putative fossils of P. sulcatus, P. ormesi, and P. (Beu and Maxwell 1990). Shells exhibit considerable jeakingsi and 2) Te Piki, Cape Runaway (2.40–1.63 Ma) morphological variation in shape, size, and sculp- with specimens currently classified as P. sulcatus and P. ture within and among the six extant species (and cuvierianus (Powell 1927) (Fig. 1a). Fossil specimens from one subspecies) currently recognized in New Zealand these sites are analyzed along with extant populations waters (Powell 1979; Supplementary Fig. S1 available on from the surrounding geographic
Recommended publications
  • Geometric Morphometric Analysis Reveals That the Shells of Male and Female Siphon Whelks Penion Chathamensis Are the Same Size and Shape Felix Vaux A, James S
    MOLLUSCAN RESEARCH, 2017 http://dx.doi.org/10.1080/13235818.2017.1279474 Geometric morphometric analysis reveals that the shells of male and female siphon whelks Penion chathamensis are the same size and shape Felix Vaux a, James S. Cramptonb,c, Bruce A. Marshalld, Steven A. Trewicka and Mary Morgan-Richardsa aEcology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand; bGNS Science, Lower Hutt, New Zealand; cSchool of Geography, Environment & Earth Sciences, Victoria University, Wellington, New Zealand; dMuseum of New Zealand Te Papa Tongarewa, Wellington, New Zealand ABSTRACT ARTICLE HISTORY Secondary sexual dimorphism can make the discrimination of intra and interspecific variation Received 11 July 2016 difficult, causing the identification of evolutionary lineages and classification of species to be Final version received challenging, particularly in palaeontology. Yet sexual dimorphism is an understudied research 14 December 2016 topic in dioecious marine snails. We use landmark-based geometric morphometric analysis to KEYWORDS investigate whether there is sexual dimorphism in the shell morphology of the siphon whelk Buccinulidae; conchology; Penion chathamensis. In contrast to studies of other snails, results strongly indicate that there fossil; geometric is no difference in the shape or size of shells between the sexes. A comparison of morphometrics; mating; P. chathamensis and a related species demonstrates that this result is unlikely to reflect a paleontology; reproduction; limitation of the method. The possibility that sexual dimorphism is not exhibited by at least secondary sexual some species of Penion is advantageous from a palaeontological perspective as there is a dimorphism; snail; true whelk rich fossil record for the genus across the Southern Hemisphere.
    [Show full text]
  • Phylum MOLLUSCA Chitons, Bivalves, Sea Snails, Sea Slugs, Octopus, Squid, Tusk Shell
    Phylum MOLLUSCA Chitons, bivalves, sea snails, sea slugs, octopus, squid, tusk shell Bruce Marshall, Steve O’Shea with additional input for squid from Neil Bagley, Peter McMillan, Reyn Naylor, Darren Stevens, Di Tracey Phylum Aplacophora In New Zealand, these are worm-like molluscs found in sandy mud. There is no shell. The tiny MOLLUSCA solenogasters have bristle-like spicules over Chitons, bivalves, sea snails, sea almost the whole body, a groove on the underside of the body, and no gills. The more worm-like slugs, octopus, squid, tusk shells caudofoveates have a groove and fewer spicules but have gills. There are 10 species, 8 undescribed. The mollusca is the second most speciose animal Bivalvia phylum in the sea after Arthropoda. The phylum Clams, mussels, oysters, scallops, etc. The shell is name is taken from the Latin (molluscus, soft), in two halves (valves) connected by a ligament and referring to the soft bodies of these creatures, but hinge and anterior and posterior adductor muscles. most species have some kind of protective shell Gills are well-developed and there is no radula. and hence are called shellfish. Some, like sea There are 680 species, 231 undescribed. slugs, have no shell at all. Most molluscs also have a strap-like ribbon of minute teeth — the Scaphopoda radula — inside the mouth, but this characteristic Tusk shells. The body and head are reduced but Molluscan feature is lacking in clams (bivalves) and there is a foot that is used for burrowing in soft some deep-sea finned octopuses. A significant part sediments. The shell is open at both ends, with of the body is muscular, like the adductor muscles the narrow tip just above the sediment surface for and foot of clams and scallops, the head-foot of respiration.
    [Show full text]
  • Molluscs 2018 Program and Abstract Handbook
    © Malacological Society of Australia 2018 Abstracts may be reproduced provided that appropriate acknowledgement is given and the reference cited. Requests for this book should be made to: Malacological Society of Australia information at: http://www.malsocaus.org/contactus.htm Program and Abstracts for the 2018 meeting of the Malacological Society of Australasia (2nd to 5th December, Wellington, New Zealand) Cover Photo and Design: Kerry Walton Logo Design: Platon Vafiadis Compilation and layout: Julie Burton, Carmel McDougall and Kerry Walton Publication Date: November 2018 Recommended Retail Price: $25.00 AUD Malacological Society of Australasia, Triennial Conference Table of contents The Conference Venue ................................................................................................................... 3 Venue floorplan ............................................................................................................................. 3 General Information ....................................................................................................................... 4 Molluscs 2018 Organising Committee ............................................................................................. 6 Our Sponsors .................................................................................................................................. 6 MSA Annual General Meeting and Election of Office Bearers ......................................................... 7 President’s Welcome .....................................................................................................................
    [Show full text]
  • Mollusca Gastropoda : Columbariform Gastropods of New Caledonia
    ÎULTATS DES CAMPAGNES MUSORSTOM. VOLUME 7 RÉSULTATS DES CAMPAGNES MUSORSTOM. VOLUME i RÉSUI 10 Mollusca Gastropoda : Columbariform Gastropods of New Caledonia M. G. HARASEWYCH Smithsonian Institution National Museum of Natural History Department of Invertebrate Zoology Washington, DC 20560 U.S.A. ABSTRACT A survey of the deep-water malacofauna of New Caledo­ Fustifusus. Serratifusus virginiae sp. nov. and Serratifusus nia has brought to light two species referable to the subfamily lineatus sp. nov., two Recent species of the columbariform Columbariinac (Gastropoda: Turbincllidae). Coluzca faeeta genus Serratifusus Darragh. 1969. previously known only sp. nov. is described from off the Isle of Pines at depths of from deep-water fossil deposits of Miocene age. arc also 385-500 m. Additional specimens of Coluzea pinicola Dar- described. On the basis of anatomical and radular data, ragh, 19X7, previously described from off the Isle of Pines, Serratifusus is transferred from the Columbariinae to the serve as the basis for the description of the new genus family Buccinidae. RESUME Mollusca Gastropoda : Gastéropodes columbariformes de également décrite de l'île des Pins, a été récoltée vivante et Nouvelle-Calédonie. devient l'espèce type du nouveau genre Fustifusus. Le genre Serratifusus Darragh. 1969 n'était jusqu'ici connu que de Au cours des campagnes d'exploration de la faune pro­ dépôts miocènes en faciès profond : deux espèces actuelles. .S. fonde de Nouvelle-Calédonie, deux espèces de la sous-famille virginiae sp. nov. et S. lineatus sp. nov., sont maintenant Columbariinae (Gastropoda : Turbinellidae) ont été décou­ décrites de Nouvelle-Calédonie. Sur la base des caractères vertes. Coluzea faeeta sp.
    [Show full text]
  • Intertidal Biota of Te Matuku Bay, Waiheke Island, Auckland
    Tane 36: 67-84 (1997) INTERTIDAL BIOTA OF TE MATUKU BAY, WAIHEKE ISLAND, AUCKLAND Bruce W. Hayward, A. Brett Stephenson, Margaret S. Morley, Nancy Smith, Fiona Thompson, Wilma Blom, Glenys Stace, Jenny L. Riley, Ramola Prasad and Catherine Reid Auckland Museum, Private Bag 92018, Auckland SUMMARY Ninety-seven Mollusca (7 chitons, 52 gastropods, 38 bivalves), 33 Crustacea (8 amphipods, 4 barnacles, 18 decapods) 10 Echinodermata (3 echinoids, 3 asteroids, 3 ophiuroids, 1 holothurian), 21 Polychaeta and 31 other animals and plants are recorded from Te Matuku Bay, on the south-east corner of Waiheke Island, Auckland. The intertidal communities and their constituent fauna and flora are similar to those encountered around the middle and upper Waitemata Harbour, except for the abundance at Te Matuku Bay of the tube worm Pomatoceros caeruleus. This species used to be equally abundant on Meola Reef but has now disappeared from there. The Pacific oyster is well established on the rocks around Te Matuku Bay, but other introduced organisms (Musculista senhousia, Limaria orientalis, Codium fragile tomentosoides) are present in only small numbers. Keywords: New Zealand; Waiheke Island; Te Matuku Bay; intertidal ecology; Mollusca; Polychaeta; Crustacea; Amphipoda; Decapoda. INTRODUCTION Te Matuku Bay (latitude 36°50'S, longitude 175°08'E) lies on the sheltered south coast of Waiheke Island, near its eastern end (Fig. 1). The bay is long and relatively narrow (2.5 x 1km) and opens to the south into the east end of Tamaki Strait. Both sides of the bay rise relatively steeply to 60-100m high ridge lines. These adjacent slopes are mostly in regenerating scrub, although partly in grazed grassland and partly in mature coastal forest (middle point on eastern side).
    [Show full text]
  • Gastropoda, Buccinidae), a Reappraisal
    Beets, Notes on Buccinulum, a reappraisal, Scripta Geol., 82 (1986) Notes on Buccinulum (Gastropoda, Buccinidae), a reappraisal C. Beets Beets, C. Notes on Buccinulum (Gastropoda, Buccinidae), a reappraisal. — Scripta Geol., 82: 83-100, pis 6-7, Leiden, January 1987 An attempt was made to assemble what is known at present of Buccinulum in the Indo-Western Pacific Region, fossil and Recent, more scope being offered by the discovery of new Miocene fossils from Java and Sumatra, and the recognition of further fossil species from India and Burma. This induced comparisons with, and revisions of some of the fossil and living species occurring in adjacent zoogeographical provinces. The Recent distribution of the subgenus Euthria appears to be much more extensive than when recorded by Wenz (1938-1944), the minimum enlargement encompassing an area stretching from the eastern Indian Ocean to Japan, via the Philippines and Ryukyu Islands. The knowledge of its fossil distribution, in the Indopacific Region long confined to Javanese Eocene, has likewise greatly expanded by discoveries made in Neogene to Quaternary of India, Burma, Indonesia (Sumatra, Java, Madura, and Borneo), the Philippines, New Hebrides, Fiji?, Ryukyu Islands, and Japan. The relevant data were tabulated. New taxa described are: Buccinulum pendopoense and B. sumatrense, both from presumed Preangerian of Sumatra, and B. walleri sedanense from the Rembangian of Java. It is proposed to include Ornopsis, which was described from the Upper Cretaceous of North America, as a subgenus of Buccinulum. It may well be ancestral to Euthria, considering its similarity to certain of the latter's fossil and living species.
    [Show full text]
  • New Buccinoid Gastropods from Uppermost Cretaceous and Paleocene Strata of California and Baja California, Mexico
    THE NAUTILUS 120(2):66–78, 2006 Page 66 New buccinoid gastropods from uppermost Cretaceous and Paleocene strata of California and Baja California, Mexico Richard L. Squires LouElla R. Saul Department of Geological Sciences Invertebrate Paleontology Section California State University, Natural History Museum of Los Angeles Northridge, CA 91330–8266 USA County [email protected] 900 Exposition Boulevard Los Angeles, CA 90007 USA [email protected] ABSTRACT better understanding of the relationship between Ornop- sis? n. sp. and “T.” titan. Saul’s Ornopsis? n. sp. is herein Two new genera and three new species of extinct buccinoid assigned to Ornopsis? dysis new species, and its genus gastropods are described and named from the Pacific slope of assignment cannot be made with certainty until more North America. The buccinid? Ornopsis? dysis new species is specimens are found. Ornopsis sensu stricto Wade, 1916, from uppermost Maastrichtian (uppermost Cretaceous) strata heretofore has been reported with certainty only from in the Dip Creek area, San Luis Obispo County, west-central Upper Cretaceous (upper Campanian to upper Maas- California. The fasciolarine fasciolarid? Saxituberosa new genus is comprised of the lineage Saxituberosa fons new species, from trichtian) strata of the southeastern United States (Sohl, lower Paleocene (Danian) strata in Los Angeles County, south- 1964). “Trachytriton” titan is herein found to occur in ern California, and Saxituberosa titan (Waring, 1917), from middle Paleocene strata in southern California. Its char- middle Paleocene (Selandian) strata in Ventura and Los Ange- acteristics separate it from the cymatiid Trachytriton les counties, southern California, and northern Baja California, Meek, 1864, and “T.” titan is assigned to Saxituberosa Mexico.
    [Show full text]
  • Title Evolution of the Gastropod Genus Siphonalia with Accounts on The
    Evolution of the Gastropod Genus Siphonalia with accounts on Title the Pliocene Species of Tōtōmi and other Examples : The Ketienzian Fauna Series, no. 1 Author(s) Makiyama, Jiro Memoirs of the College of Science, Kyoto Imperial University. Citation Ser. B (1941), 16(2): 75-93 Issue Date 1941-03-31 URL http://hdl.handle.net/2433/257908 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University MEMolRs eF Tf{E COLLEGE OF S:IENCE,KyoTe ZMpERiALUNIVERSITY,SERrEs B, VoL. XVI, N'o. 2, ART. 4, 1941. Evolutien'of the Gastroped Genus Siphonalia with accounts on the Pliocene Species of T6t6mi and other Examvles The Ketlenzian Fauna Series, no. 1 By Jir6 MAKIYAMA With 4 Ptates and 4 Test-fi.crares (Received 7, November1939) First Words to the Ketienzian Fauna Series The work on the Tertiary stratigraphy and palaeontology of the areas in T6t6mi was undertaken by myself from 1919, and its outcome was partly made public, two in English (this Memoirs, B-3, art. 1, B-, art. 1.) aRd others in our language. Iam still working on the same field as it takes very irnportant place in the geology of this laftd. In the first Eng!ish paper, details of the Mollusca of the Dainitian stage or the Lower Kakegawa forma- tion have been given. In comparison with the DaiRitian fauna, the Ketienzian or the Upper Kakegawa fauna was seemingly very poor, for the beds were deposited under the sea deeper than that of the Dainitian. From the Hosoya beds which are the representative of the lowest level of the age, some small number of Mollttsca was listed in the second English paper.
    [Show full text]
  • Conradconfusus, a Replacement Name for Buccinofusus
    Cainozoic November 2002 Research, 1(1-2) (2001), pp. 129-132, a name for Conradconfusus, replacement Buccinofusus Conrad, 1868, non 1866 (Mollusca, Gastropoda) Martin+Avery Snyder Research Associate, Department of Malacology, Academy of Natural Sciences ofPhiladelphia, 19th and Benjamin Franklin Park- PA way, Philadelphia, 19103, USA; e-mail: [email protected] Received 6 August 2002; revised version accepted 20 August 2002 The Fusus is for new genus Conradconfusus n. gen., type species parilis Conrad, 1832, proposed as a replacement name Buccinofu- 1868 strata sus Conrad, (non 1866). Twenty-three (sub)species, from Upper Cretaceous and Cainozoic worldwide, may be assigned this to genus. Key words: Mollusca, Gastropoda, Cretaceous, Cainozoic, replacement name, lectotype. Introduction diegoensis and Fusus parilis are not congeneric, and the latter use of the genus name Buccinofusus, probably in Conrad introduced the (1866, p. 17) validly genus Bucci- the neogastropod family Fasciolariidae, requires re- nofusus by the combination Buccinofusus diegoensis placement. (Gabb); the type species, by monotypy, being Tritonium diegoensis Gabb, 1864 (p. 95, pi. 18, fig. 44) from the Eocene of California. The nearly complete holotype, A replacement name which is 14.3 mm in height and 8.5 mm in width, was reported by Stewart (1927, p. 430) to be in the Museum When Conrad (1868) introduced Buccinofusus, he sug- of Paleontology at Berkeley, California (registration gested four possible species as members of this genus, in number 11980). The was noted by Stewart (1927, addition to F. parilis viz. genus , but overlooked Neave p. 430) by (1939-1966). Vaught (1989, p. 50) listed the genus Buccinofusus with the date Buccinum balteatumReeve, 1846 (Recent, Australia); 1866.
    [Show full text]
  • WCM 2001 Abstract Volume
    Abstracts Council of UNITAS MALACOLOGICA 1998-2001 World Congress of President: Luitfried SALVINI-PLAWEN (Wien/Vienna, Austria) Malacology Secretary: Peter B. MORDAN (London, England, UK) Treasurer: Jackie VAN GOETHEM (Bruxelles/Brussels, Belgium) 2001 Members of Council: Takahiro ASAMI (Matsumoto, Japan) Klaus BANDEL (Hamburg, Germany) Yuri KANTOR (Moskwa/Moscow, Russia) Pablo Enrique PENCHASZADEH (Buenos Aires, Argentinia) John D. TAYLOR (London, England, UK) Vienna, Austria Retired President: Rüdiger BIELER (Chicago, USA) 19. – 25. August Edited by Luitfried Salvini-Plawen, Janice Voltzow, Helmut Sattmann and Gerhard Steiner Published by UNITAS MALACOLOGICA, Vienna 2001 I II Organisation of Congress Symposia held at the WCM 2001 Organisers-in-chief: Gerhard STEINER (Universität Wien) Ancient Lakes: Laboratories and Archives of Molluscan Evolution Luitfried SALVINI-PLAWEN (Universität Wien) Organised by Frank WESSELINGH (Leiden, The Netherlands) and Christiane TODT (Universität Wien) Ellinor MICHEL (Amsterdam, The Netherlands) (sponsored by UM). Helmut SATTMANN (Naturhistorisches Museum Wien) Molluscan Chemosymbiosis Organised by Penelope BARNES (Balboa, Panama), Carole HICKMAN Organising Committee (Berkeley, USA) and Martin ZUSCHIN (Wien/Vienna, Austria) Lisa ANGER Anita MORTH (sponsored by UM). Claudia BAUER Rainer MÜLLAN Mathias BRUCKNER Alice OTT Thomas BÜCHINGER Andreas PILAT Hermann DREYER Barbara PIRINGER Evo-Devo in Mollusca Karl EDLINGER (NHM Wien) Heidemarie POLLAK Organised by Gerhard HASZPRUNAR (München/Munich, Germany) Pia Andrea EGGER Eva-Maria PRIBIL-HAMBERGER and Wim J.A.G. DICTUS (Utrecht, The Netherlands) (sponsored by Roman EISENHUT (NHM Wien) AMS). Christine EXNER Emanuel REDL Angelika GRÜNDLER Alexander REISCHÜTZ AMMER CHAEFER Mag. Sabine H Kurt S Claudia HANDL Denise SCHNEIDER Matthias HARZHAUSER (NHM Wien) Elisabeth SINGER Molluscan Conservation & Biodiversity Franz HOCHSTÖGER Mariti STEINER Organised by Ian KILLEEN (Felixtowe, UK) and Mary SEDDON Christoph HÖRWEG Michael URBANEK (Cardiff, UK) (sponsored by UM).
    [Show full text]
  • A Phylogeny of Southern Hemisphere Whelks (Gastropoda: Buccinulidae) and Concordance with the Fossil Record ⇑ Felix Vaux A, , Simon F.K
    Molecular Phylogenetics and Evolution 114 (2017) 367–381 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A phylogeny of Southern Hemisphere whelks (Gastropoda: Buccinulidae) and concordance with the fossil record ⇑ Felix Vaux a, , Simon F.K. Hills a, Bruce A. Marshall b, Steven A. Trewick a, Mary Morgan-Richards a a Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand b National Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand article info abstract Article history: Under current marine snail taxonomy, the majority of whelks from the Southern Hemisphere Received 15 February 2017 (Buccinulidae) are hypothesised to represent a monophyletic clade that has evolved independently from Revised 31 May 2017 Northern Hemisphere taxa (Buccinidae). Phylogenetic analysis of mitochondrial genomic and nuclear Accepted 26 June 2017 ribosomal DNA sequence data indicates that Southern Hemisphere taxa are not monophyletic, and results Available online 29 June 2017 suggest that dispersal across the equator has occurred in both directions. New Zealand buccinulid whelks, noted for their high endemic diversity, are also found to not be monophyletic. Using independent fossil Keywords: calibrations, estimated genetic divergence dates show remarkable concordance with the fossil record of Buccinulum the Penion and Kelletia. The divergence dates and the geographic distribution of the genera through time Buccinidae Kelletia implies that some benthic marine snails are capable of dispersal over long distances, despite varied devel- Marine snail opmental strategies. Phylogenetic results also indicate that one species, P. benthicolus belongs in Penion Antarctoneptunea. Systematics Ó 2017 Elsevier Inc. All rights reserved.
    [Show full text]
  • A Molluscan Paleocommunity
    A Molluscan Paleocommunity: A Speculative Model for an East-West Trending, Shallow-Marine Miocene Shelf, Navidad, Chile A thesis presented in partial fulfillment of the requirement for the degree Bachelor of Science in Geology. by David F. Green The Ohio State University 1983 Approved by Abstract A subtropical Miocene marine molluscan community is developed from the fossil shells collected by Dr. William J. Zinsmeister. The shells were collected from locations along the coastal and inland areas sur­ rounding Navidad, Chile. The exposed sediments of Navidad are early to middle Miocene in age. Cecioni (1978, 1980) records, from well logs and observations, that sediments had accumulated since the Cretaceous period. Their depo­ sition closely follows the major Andean uplift at the close of the Cretaceous period. The bathymetric and sedimentary trends that seem apparent, when the molluscan paleocommunity is developed, point to Navidad as marking an east-west trending, shallow-marine shelf and offshore island complex that turns southward to the east of Navidad. ii Acknowledgments Where would this project be without Dr. Bill Zinsmeister? Thanks have to be given to him for taking interest in this beginner and pro­ viding me with the fossil collection from Navidad, Chile. He showed the confidence in me that provided a comfortable place to learn and work. He pointed the way and I went. To Tom DeVries and Carlos Macel­ lari, they both gave freely of their time and resources, never a dis­ couraging word. Whenever I needed help with my direction or needed encouragement they were there. To Brian Huber, who shared with me the frustration of an inadequate cluster analysis program.
    [Show full text]