PF165: Orange Oil

Total Page:16

File Type:pdf, Size:1020Kb

PF165: Orange Oil TM the art and science of smart patch testing PF165: Orange Oil CAS#: 8008-57-9 Patient Information Your patch test results indicate that you have a contact allergy to orange oil. This contact allergy may cause your skin to react when it is exposed to this substance although it may take several days for the symptoms to appear. Typical symptoms include redness, swelling, itching, and fluid-filled blisters. Where is orange oil found? Orange oil is used as a fragrance found in household products and cosmetics. How can you avoid contact with orange oil? Avoid products that list any of the following names in the ingredients: Absolue orange flower Oils, orange, sweet Absolue orange flower decoloree Orange flower absolute Absolue orange flower from water Orange flower oil Absolute orange flowers Orange flower water absolute Absolute petitgrain Orange flower water, absolute CCRIS 683 Orange flower, absolute Caswell No. 425A Orange leaf oil Citrus sinensis Oil Orange oil Citrus sinensis peel oil Orange oil concentrate EPA Pesticide Chemical Code Orange oil sweet 040501 Orange oil, sweet EPA Pesticide Chemical Code Orange oil, sweet, expressed 040517 Orange oil, terpeneless (Citrus FEMA No. 2822 sinensis (L.) Osbeck) HSDB 1934 Orange peel oil, sweet Neat oil of sweet orange Orange sweet oil, expressed Neroli oil Petitgrain bigarade sur fleurs Neroli oil, pomade d'oranger Oil of sweet orange Petitgrain citronnier oil Oil sweet orange Sweet orange oil Oils, orange Sweet orange oil, terpeneless What are some products that may contain orange oil? Household Products: Citra Solv, Natural Citrus Cleaner and Degreaser Earth Friendly Orange Plus Earth Friendly Products Furniture Polish Pledge Wipes With Orange Oil Vaseline Intensive Care Lotion, Aloe & Naturals *For additional information about products that might contain orange oil, go to the Household Product Database online (http:/householdproducts.nlm.nih.gov) at the United States National Library of Medicine. These lists are brief and provide just a few examples. They are not comprehensive. Product formulations also change frequently. Read product labels carefully and talk to your doctor if you have any questions. These are general guidelines. Talk to your doctor for more specific instructions. .
Recommended publications
  • Essential Oils, Bioactive Compounds and Antioxidant Capacity
    medicines Article Traditional Small-Size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity Min-Hung Chen 1, Kai-Min Yang 2, Tzou-Chi Huang 1 and Mei-Li Wu 1,* 1 Department of Food Science, National Pingtung University of Science & Technology, Pingtung 90090, Taiwan; [email protected] (M.-H.C.); [email protected] (T.-C.H.) 2 Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-8-770-3202 (ext. 7064); Fax: +886-8-774-0378 Academic Editor: Eleni Skaltsa Received: 13 March 2017; Accepted: 4 May 2017; Published: 8 May 2017 Abstract: Background: The calamondin (Citrus microcarpa Bunge) and the kumquat (Fortunella crassifolia Swingle) are two small-size citrus fruits that have traditionally been consumed in Taiwan; however, there has been a lack of scientific research regarding the active compounds and functionalities of these fruits. Methods: Analysis of volatile composition of essential oil and phytosterol was carried out using Gas Chromatography–Mass Spectrometry (GC-MS). Flavonoid and limonoid were analyzed by High Performance Liquid Chromatography (HPLC). Moreover, antioxidant capacity from their essential oils and extracts were assessed in vitro. Results: The compositions of the essential oils of both fruits were identified, with the results showing that the calamondin and kumquat contain identified 43 and 44 volatile compounds, respectively. In addition, oxygenated compounds of volatiles accounted for 4.25% and 2.04%, respectively, consistent with the fact that oxygenated compounds are generally found in high content in citrus fruits.
    [Show full text]
  • Detection of Orange Essential Oil, Isopropyl Myristate, and Benzyl Alcohol in Lemon Essential Oil by FTIR Spectroscopy Combined with Chemometrics
    foods Article Detection of Orange Essential Oil, Isopropyl Myristate, and Benzyl Alcohol in Lemon Essential Oil by FTIR Spectroscopy Combined with Chemometrics Nur Cebi 1,*, Osman Taylan 2, Mona Abusurrah 3 and Osman Sagdic 1 1 Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34210 Istanbul,˙ Turkey; [email protected] 2 Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; [email protected] 3 Department of Management Information Systems, College of Business Administration, Taibah University, Madinah 42353, Saudi Arabia; [email protected] * Correspondence: [email protected] Abstract: Essential oils are high-valued natural extracts that are involved in industries such as food, cosmetics, and pharmaceutics. The lemon essential oil (LEO) has high economic importance in the food and beverage industry because of its health-beneficial characteristics and desired flavor properties. LEO, similar to other natural extracts, is prone to being adulterated through economic motivations. Adulteration causes unfair competition between vendors, disruptions in national economies, and crucial risks for consumers worldwide. There is a need for cost-effective, rapid, reliable, robust, and eco-friendly analytical techniques to detect adulterants in essential oils. The cur- rent research developed chemometric models for the quantification of three adulterants (orange essential oil, benzyl alcohol, and isopropyl myristate) in cold-pressed LEOs by using hierarchical cluster analysis (HCA), principal component regression (PCR), and partial least squares regression (PLSR) based on FTIR spectra. The cold-pressed LEO was successfully distinguished from adulter- Citation: Cebi, N.; Taylan, O.; ants by robust HCA. PLSR and PCR showed high accuracy with high R2 values (0.99–1) and low Abusurrah, M.; Sagdic, O.
    [Show full text]
  • Don't Be So Humble, You're Awesome
    DON'T BE SO HUMBLE, YOU'RE AWESOME 7 th Edition January 2019 BY THINGS OF EDIBLE BEAUTY Yes, that means FOOD Eat me I’m raw! Oyster אויסטר 32 Zucchini, grannie Smith, green beans, cherry tomatoes, coriander, mint, spicy peanuts זוקיני, גרני סמית', שעועית ירוקה, עגבניות שרי, כוסברה, נענע, בוטנים חריפים 44 Red tuna sashimi, mango, white soy, orange flower water, yuzu, coriander, wasabi coconut סשימי טונה אדומה, מנגו, סויה בהירה, מי זהר, כוסברה, ווסאבי קוקוס 58 Drum fish crudo, beef tomatoes, haloumi, basil, parmesan oil קרודו מוסר ים, עגבניות ביף, גבינת חלומי, בזיליקום, שמן פרמזן 56 Crystal shrimp ceviche, yuzu and cucumber soup, chives, lavender flower, violet habanero jelly סביצ'ה שרימפס, מרק יוזו ומלפפונים, עירית, לוונדר, ג'לי סיגליות והאבנרו 64 Beef tartar, dates, tomatoes, shallots, oregano, pickled mustard seeds טרטר בקר, תמרים, עגבניות, שאלוט, אורגנו, זרעי חרדל מוחמצים 58 Eat me I’m hot! Italian artichoke, aubergine cream, sage vinaigrette, almonds, tomato fumet ארטישוק איטלקי, קרם חצילים, ויניגרט מרווה, שקדים, 'פומה' עגבניות 52 Poached egg, truffle, asparagus, corn cream, parmesan ביצה עלומה, כמהין, אספרגוס, קרם תירס, פרמזן 48 Shrimp dim sum, rose flower, mirin, green onion, pistachio דים סאם שרימפס, מירין, מי ורדים, בצל ירוק, פיסטוקים 54 Scallops, oyster & bacon broth, green tobiko סקאלופ, ציר צדפות ובייקון, טוביקו ירוק 68 Octopus, cherry tomatoes, potatoes, olives, pine nuts, smoked paprika aioli תמנון צרוב, עגבניות שרי, תפוח אדמה, זיתים, צנוברים, איולי פפריקה מעושנת 78 Aged sirloin, Jerusalem artichoke cream, horseradish aioli,
    [Show full text]
  • 1D3fc8bde9f6b59ed96a39c48a1
    Molecules 2013, 18, 10639-10647; doi:10.3390/molecules180910639 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Communication Volatile Constituents and Antioxidant Activity of Peel, Flowers and Leaf Oils of Citrus aurantium L. Growing in Greece Eirini Sarrou 1,*, Paschalina Chatzopoulou 2, Kortessa Dimassi-Theriou 1 and Ioannis Therios 1 1 Laboratory of Pomology, School of Horticulture, Aristotle University of Thessaloniki 54124, Greece; E-Mails: [email protected] (K.D.-T.); [email protected] (I.T.) 2 Hellenic Agricultural Organization - Demeter (former NAGREF), Department of Aromatic and Medicinal Plants, Thessaloniki 57001, Greece; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +30-2310-998-603; Fax: +30-2310-472-497. Received: 24 June 2013; in revised form: 23 August 2013 / Accepted: 28 August 2013 / Published: 2 September 2013 Abstract: The volatile constituents of the essential oils of the peel, flower (neroli) and leaves (petitgrain) of bitter orange (Citrus aurantium L.) growing in Greece were studied by GC-MS. The analytical procedures enabled the quantitative determination of 31 components. More specifically, the components of the essential oils identified were: twelve in the peel, twenty-six in the flowers, and twenty and sixteen in old and young leaves, respectively. The major constituents of the different parts of Citrus aurantium L. essential oils were: β-pinene (0.62%–19.08%), limonene (0.53%–94.67%), trans-β-ocimene (3.11%–6.06%), linalool (0.76%–58.21%), and α-terpineol (0.13%–12.89%). The DPPH test demonstrated that the essential oils in the old leaves had the maximum antioxidant activity, followed by the flowers, young leaves and the peel in that order.
    [Show full text]
  • Safety Assessment of Citrus-Derived Peel Oils As Used in Cosmetics
    Safety Assessment of Citrus-Derived Peel Oils as Used in Cosmetics Status: Final Report Release Date: September 30, 2014 Panel Meeting Date: September 8-9, 2014 The 2014 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This report was prepared by Christina Burnett, Senior Scientific Analyst/Writer and Monice Fiume, Assistant Director/Senior Scientific Analyst. Cosmetic Ingredient Review 1620 L Street NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] ABSTRACT The CIR Expert Panel assessed the safety of 14 Citrus-derived peel oil ingredients and concluded that these ingredients are safe for use in cosmetic products when finished products, excluding rinse-off products, do not contain more than 0.0015% (15 ppm) 5-methoxypsoralen (5-MOP), and when formulated to be non-sensitizing and non-irritating. The citrus-derived peel oil ingredients are most frequently reported to function in cosmetics as fragrances and/or skin conditioning agents. The Panel reviewed the available animal and clinical data to determine the safety of these ingredients. Because final product formulations may contain multiple botanicals, each containing similar constituents of concern, formulators are advised to be aware of these constituents and to avoid reaching levels that may be hazardous to consumers.
    [Show full text]
  • FEMA GRAS Assessment of Natural Flavor Complexes Citrus-Derived
    Food and Chemical Toxicology 124 (2019) 192–218 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox FEMA GRAS assessment of natural flavor complexes: Citrus-derived T flavoring ingredients Samuel M. Cohena, Gerhard Eisenbrandb, Shoji Fukushimac, Nigel J. Gooderhamd, F. Peter Guengeriche, Stephen S. Hechtf, Ivonne M.C.M. Rietjensg, Maria Bastakih, ∗ Jeanne M. Davidsenh, Christie L. Harmanh, Margaret McGowenh, Sean V. Taylori, a Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198- 3135, USA b Food Chemistry & Toxicology, Kühler Grund 48/1, 69126 Heidelberg, Germany c Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan d Dept. of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom e Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA f Masonic Cancer Center, Dept. of Laboratory Medicine and Pathology, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6th St. SE, Minneapolis, MN, 55455, USA g Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands h Flavor and Extract Manufacturers Association, 1101 17th Street, NW Suite 700, Washington, DC, 20036, USA i Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, NW Suite 700, Washington, DC,20036,USA ARTICLE INFO ABSTRACT Keywords: In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation Citrus of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients. This publication isthe Natural flavor complex first in a series and summarizes the evaluation of54 Citrus-derived NFCs using the procedure outlined in Smith Botanical et al.
    [Show full text]
  • Safety Assessment of Citrus Flower- and Leaf-Derived Ingredients As Used in Cosmetics
    Safety Assessment of Citrus Flower- and Leaf-Derived Ingredients as Used in Cosmetics Status: Final Report Release Date: January 18, 2017 Panel Meeting Date: December 5-6, 2016 The 2016 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, DPA. This safety assessment was prepared by Christina L. Burnett, Scientific Analyst/Writer and Bart Heldreth, Ph.D., Chemist CIR. © Cosmetic Ingredient Review 1620 L St NW, Suite 1200◊ Washington, DC 20036-4702 ◊ ph 202.331.0651 ◊fax 202.331.0088 ◊ [email protected] ABSTRACT The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 33 Citrus flower- and leaf-derived ingredients, which are most frequently reported to function in cosmetics as fragrances and/or skin conditioning agents. The Panel reviewed the available data to determine the safety of these ingredients. Because final product formulations may contain multiple botanicals, each containing similar constituents of concern, formulators are advised to be aware of these constituents and to avoid reaching levels that may be hazardous to consumers. With Citrus flower- and leaf-derived ingredients, the Panel was concerned about the presence of the hydroperoxides of limonene and linalool in cosmetics. Industry should use good manufacturing practices to limit impurities that could be present in botanical ingredients.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting Template
    A SENSORY EVALUATION OF CITRUS GREENING-AFFECTED JUICE BLENDS By CHINEDU IKPECHUKWU A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2012 1 © 2012 Chinedu Ikpechukwu 2 To my parents: for their unconditional love, support and encouragement 3 ACKNOWLEDGMENTS I would like to give special thanks to Dr. Renee Goodrich-Schneider, my advisor, for giving me the opportunity to pursue my dream as a food scientist and for her guidance and encouragement in completing my master’s degree. I am very grateful for the expertise and support given to me by members of my committee: Dr. Charles Sims, Dr. Wade Yang and Dr. Tim Spann. I would like to personally thank Eric Dreyer, the taste panel manager, as well as his Taste Panel staff that enabled me complete numerous sensory projects properly and on time. I would also like to thank my lab mates, Lemâne Delva, Devin Lewis, and Gayathri Balakrishnan for all their help and suggestions. Most of all, I cannot thank more profusely my family whose support and faith gave me the strength to accomplish my goals. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 7 ABSTRACT ....................................................................................................................
    [Show full text]
  • Riding the Citrus Trail: When Is a Mandarin a Tangerine?
    PERFUMER&FLAVORIST Riding the Citrus Trail: When is a Mandarin a Tangerine? by Daemmon Reeve, RC Treatt, and David Arthur, Florida Treatt In the second installment of articles looking at the origins is one element responsible for the confusion between and development of fruits and their flavoring derivatives, tangerine and mandarin. However, in the flavor and fra- Daemmon Reeve and David Arthur investigate mandarins grance industry, critical differences exist between the and tangerines. varieties both in terms of juice and essential oil. Today, there are literally hundreds of commercially recog- Terminology nized varieties of mandarin and tangerine in existence worldwide. There is much confusion surrounding the dif- The situation is further confused by the conflicting termi- ference between these products, and often the names are nology, which makes it even harder to come to grips with used interchangeably. Here, the differences between fruit varieties. And this is an we outline the key types and international issue. The discuss some of the many es- Ponkan mandarin, for ex- sential oils derived from man- ample, is the most common darins and tangerines. mandarin in Brazil, although it is often known as Cravo tangerine there. In China, the Back to Basics word “kan” is used to describe Mandarins: The mandarin, the larger, sweeter mandarins, Citrus reticulata, Rutaceae, is while “chü” is used for smaller the largest and most varied mandarins — both sweet and group of edible citrus. World- sour varieties. To overcome wide mandarin production is this problem in the United currently estimated to be in States, many people have be- the range of 10-13 million tons.
    [Show full text]
  • Quality and Quantity of Volatile Oil Resulting from the Recycling of Different Forms of Orange Peel Using Drying Methods
    Journal of Materials and J. Mater. Environ. Sci., 2019, Volume 10, Issue 7, Page 598-603 Environmental Sciences ISSN : 2028-2508 CODEN : JMESCN http://www.jmaterenvironsci.com Copyright © 2019, University of Mohammed Premier Oujda Morocco Quality and Quantity of Volatile Oil Resulting From the Recycling of Different Forms Of Orange Peel Using Drying Methods M. E. Ibrahim1, S. A. El-Sawi2 1Research of Medicinal and Aromatic Plants Department, 2Pharmacognosy Dept., 2 National Research Center, Dokki, 12622, Cairo, Egypt Received 26 June 2019, Abstract Revised 17 July 2019, Orange is one of the world's most popular fruit crops, contains active constituents that can Accepted 17 July 2019 protect health. To get the highest quality and quantity of orange peel oil, it is necessary to know the suitable methods for drying and the appropriate form of the peel, whether in the form of pieces, grated or powder. The objective of this study was to study the effect of drying Keywords methods and peel form on the yield and chemical composition of the orange peel oil Citrus Sinensis L; constituents. The sweet orange of Washington Navel orange peel (Citrus sinensis L) obtained essential oil, from the farms of the Egyptian Ministry of Agriculture on 15 December 2017. For the drying methods, preparation and processing of orange peel, it has been peeling orange fruits and dried by three greated peel, different methods of drying, drying the shade, sun drying and drying oven at 40 ° C. The fresh powder peel, orange peel took two forms, the first was pieces while, the second was in the form of grated GC MS, peel.
    [Show full text]
  • An Overview of Citrus Aurantium Used in Treatment of Various Diseases
    African Journal of Plant Science Vol. 5(7), pp. 390-395, July 2011 Available online at http://www.academicjournals.org/ajps ISSN 1996-0824 ©2011 Academic Journals Review An overview of Citrus aurantium used in treatment of various diseases Jyotsna A. Saonere Suryawanshi Department of Pharmacy, Government Polytechnic, Amravati (M.S. India), India. E-mail: [email protected] Accepted 22 February, 2011 Citrus aurantium (bitter orange) is a plant belonging to the family Rutaceae, The most important biologically active constituents of the C. aurantium fruits are phenethylamine alkaloids octopamine, synephrine, tyramine, N-methyltyramine and hordenine. It is rich in vitamin C, flavonoids and volatile oil. Synephrine is a primary synthesis compound with pharmacological activities such as vasoconstriction, elevation of blood pressure and relaxation of bronchial muscle. whose fruit extracts have been used for the treatment of various diseases such as gastrointestinal disorders, insomnia, head aches, cardiovascular diseases, cancer, antiseptic, anti-oxidant, antispasmodic, aromatic, astringent, carminative, digestive, sedative, stimulant, stomachic and tonic and by research novel use is found in obesity and related risks even life threatening are continuously increasing through out world in all age groups. Many marketed formulations claim to possess antiobesity actions, but still many herbs which have claims to this need to be investigated and their claims to be authenticated. In recent era there is a great thrust on screening of herbal extracts and formulations for antiobesity action. In this article efforts have been taken to discuss the photochemistry, constituents, ethnobotany, pharmacology safety and toxicity of citrus plant. The motto is to discuss C. aurantium here more research attention should be given on this that would increase its use in various chronic and acute diseases Key words: Bitter orange, synephrine, obesity, thermogenesis, ethnobotany.
    [Show full text]
  • Additional Cocktail Recipes
    Recipes From Philip Greene’s Smithsonian Associates Classic Summer Cocktails Seminar [email protected] Classic Highball 2 oz spirit 4 oz carbonated mixer Serve in a tall glass on ice. Garnish lemon or lime wedge/peel Moscow Mule 2 oz vodka ½ oz lime juice 4 oz ginger beer Add all ingredients to a copper mug (or rocks glass). Garnish with the lime hull. Audrey Saunders’ delicious riff on the Moscow Mule, the Gin-Gin Mule ¾ oz fresh lime juice 1 oz simple syrup 2 mint sprigs 1¾ oz Tanqueray London dry gin 1 oz homemade ginger beer* Shake all ingredients well, strain into a tall Collins glass filled with fresh ice. Garnish with a lime wheel, a sprig of mint and a piece of candied ginger. Serve with a straw. *Ginger Beer 1 gallon water 1 pound ginger root, peeled 4 oz light brown sugar or 6 oz light agave syrup 2 oz fresh lime juice Place the water in a sauce pan, bring to a boil. Cut the ginger into smaller pieces and mix this in a food processor with some of the hot water until the mixture resembles mulch. Then add this back into the pot of water, turn off the heat, cover, and allow it to steep for one hour. Once cooled, strain the mixture through cheese cloth or a sieve, extracting as much flavor from the solids as you can. Discard the solids. Add the lime juice and sugar/syrup, stir. Let cool, then transfer to bottle(s). Store in refrigerator. Note: this will not yield a conventional, carbonated ginger beer.
    [Show full text]