Characterization of Ginkgo Biloba Leaf Flavonoids As Neuroexocytosis Regulators
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Utilizing UVPD Fragmentation for Plant Molecules: Phenylpropanoids
Utilizing UVPD Fragmentation for Plant Molecules: Phenylpropanoids Romain Huguet1, Tim Stratton1, Seema Sharma1, Christopher Mullen1, Jesse Canterbury1, and Vlad Zabrouskov1 1Thermo Fisher Scientific, San Jose, California, USA RESULTS A significant difference between the fragmentation approaches arises from the means in which UVPD Laser In addition to early observation of typically higher energy fragmentation channels in the UVPD, an ABSTRACT they initiate fragmentation. In HCD, energy is imparted by the initial injection of the ions into the increase in fragment ions arising from ionization of the aromatic rings or the conjugated double For this work, we used a Nd:YAG (neodymium doped yttrium aluminum garnet) laser. This is an collision cell and collisions with a relatively static gas. A greater voltage offset gives rise to more Purpose: Investigate the potential use of UVPD to provide unique and potentially diagnostic Compound Structure and UV Absorption bond chalconoids was observed (Figure 6). While ionization was largely the result of the ketone or optically pumped laser that typically emits in the infrared range (>1000nm). When operated in a energetic collisions. The energy is internally distributed with bonds breaking to form fragment ions fragmentation information for structure determination of small molecules, specifically alcohol functions present on the compounds, specific absorption of photons generated unique pulsed Q-switching mode, where the laser energy is released in a pulse when reaching a threshold, which may also undergo subsequent fragmentation events generating several generations of phenylpropanoids and chalconoids. fragmentation. Several of these fragment ions were not observed in HCD at any energy level frequency doubling of the pulses can be used to obtain shorter wavelengths. -
Sephadex® LH-20, Isolation, and Purification of Flavonoids from Plant
molecules Review Sephadex® LH-20, Isolation, and Purification of Flavonoids from Plant Species: A Comprehensive Review Javad Mottaghipisheh 1,* and Marcello Iriti 2,* 1 Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary 2 Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy * Correspondence: [email protected] (J.M.); [email protected] (M.I.); Tel.: +36-60702756066 (J.M.); +39-0250316766 (M.I.) Academic Editor: Francesco Cacciola Received: 20 August 2020; Accepted: 8 September 2020; Published: 10 September 2020 Abstract: Flavonoids are considered one of the most diverse phenolic compounds possessing several valuable health benefits. The present study aimed at gathering all correlated reports, in which Sephadex® LH-20 (SLH) has been utilized as the final step to isolate or purify of flavonoid derivatives among all plant families. Overall, 189 flavonoids have been documented, while the majority were identified from the Asteraceae, Moraceae, and Poaceae families. Application of SLH has led to isolate 79 flavonols, 63 flavones, and 18 flavanones. Homoisoflavanoids, and proanthocyanidins have only been isolated from the Asparagaceae and Lauraceae families, respectively, while the Asteraceae was the richest in flavones possessing 22 derivatives. Six flavones, four flavonols, three homoisoflavonoids, one flavanone, a flavanol, and an isoflavanol have been isolated as the new secondary metabolites. This technique has been able to isolate quercetin from 19 plant species, along with its 31 derivatives. Pure methanol and in combination with water, chloroform, and dichloromethane have generally been used as eluents. This comprehensive review provides significant information regarding to remarkably use of SLH in isolation and purification of flavonoids from all the plant families; thus, it might be considered an appreciable guideline for further phytochemical investigation of these compounds. -
And East Siberian Rhododendron (Rh. Adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry
molecules Article Comparative Analysis of Far East Sikhotinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry Mayya Razgonova 1,2,* , Alexander Zakharenko 1,2 , Sezai Ercisli 3 , Vasily Grudev 4 and Kirill Golokhvast 1,2,5 1 N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia; [email protected] (A.Z.); [email protected] (K.G.) 2 SEC Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia 3 Agricultural Faculty, Department of Horticulture, Ataturk University, 25240 Erzurum, Turkey; [email protected] 4 Far Eastern Investment and Export Agency, 123112 Moscow, Russia; [email protected] 5 Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia * Correspondence: [email protected] Academic Editors: Seung Hwan Yang and Satyajit Sarker Received: 29 June 2020; Accepted: 12 August 2020; Published: 19 August 2020 Abstract: Rhododendron sichotense Pojark. and Rhododendron adamsii Rheder have been actively used in ethnomedicine in Mongolia, China and Buryatia (Russia) for centuries, as an antioxidant, immunomodulating, anti-inflammatory, vitality-restoring agent. These plants contain various phenolic compounds and fatty acids with valuable biological activity. Among green and selective extraction methods, supercritical carbon dioxide (SC-CO2) extraction has been shown to be the method of choice for the recovery of these naturally occurring compounds. Operative parameters and working conditions have been optimized by experimenting with different pressures (300–400 bar), temperatures (50–60 ◦C) and CO2 flow rates (50 mL/min) with 1% ethanol as co-solvent. The extraction time varied from 60 to 70 min. -
In Vitro Cytotoxic Activity of Brazilian Middle West Plant Extracts
Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy 21(3): 456-464, May./Jun. 2011 In vitro cytotoxic activity of Brazilian Middle West plant extracts Talal Suleiman Mahmoud,*,1 Maria Rita Marques,2 Cláudia do Ó Pessoa,3 Leticia V. C. Lotufo,3 Hemerson I. F. Magalhães,3 Manoel O. de Moraes,3 Dênis P. de Lima,4 Aristeu G. Tininis,5 José Eduardo de Oliveira1 Article 1Instituto de Química, Universidade Estadual Paulista, Brazil, 2Laboratório de Bioquímica Vegetal, Fundação Universidade Federal do Mato Grosso do Sul, Brazil, 3 Received 15 Apr 2010 Laboratório de Oncologia Experimental, Universidade Federal do Ceará, Brazil, Accepted 14 Nov 2010 4Departamento de Química-SINTMOLB-LP4, Fundação Universidade Federal do Available online 15 Apr 2011 Mato Grosso do Sul, Brazil, 5Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus de Sertãozinho, Brazil. Abstract: Cytotoxic activity of eight plant extracts, native from the Mid- Keywords: West of Brazil comprising Cerrado, Pantanal and semideciduous forest, was Brazilian Middle-west plants, evaluated for MDA-MB-435, SF-295, and HCT-8 cancer cell strains. A single cytotoxicity 100 µg.mL-1 dose of each extract was employed with 72 h of incubation for all cancer cell lines tests. Doxorubicin (1 µg.mL-1) was used as the positive control and the MTT method was used to detect the activity. Cytotoxicity of distinct polarities was observed in thirty extracts (46%), from different parts of the following species: Tabebuia heptaphylla (Vell.) Toledo, Bignoniaceae, Tapirira guianensis Aubl., Anacardiaceae, Myracrodruon urundeuva Allemão, Anacardiaceae, Schinus terebinthifolius Raddi, Anacardiaceae, Gomphrena elegans Mart., Amaranthaceae, Attalea phalerata Mart. -
Quercitrin and Afzelin Isolation: Chemical Synthesis of A
University of Mississippi eGrove Honors College (Sally McDonnell Barksdale Honors Theses Honors College) 2017 Quercitrin and Afzelin Isolation: Chemical Synthesis of a Novel Methicillin-Resistant Staphylococcus Aureus (MRSA) Antibiotic Analogue Taylor Ramsaroop University of Mississippi. Sally McDonnell Barksdale Honors College Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis Part of the Chemistry Commons Recommended Citation Ramsaroop, Taylor, "Quercitrin and Afzelin Isolation: Chemical Synthesis of a Novel Methicillin-Resistant Staphylococcus Aureus (MRSA) Antibiotic Analogue" (2017). Honors Theses. 905. https://egrove.olemiss.edu/hon_thesis/905 This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact [email protected]. QUERCITRIN AND AFZELIN ISOLATION: CHEMICAL SYNTHESIS OF A NOVEL METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA) ANTIBIOTIC ANALOGUE by Taylor Nichole Ramsaroop A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford May 2017 Approved by ___________________________________ Advisor: Dr. James McChesney ___________________________________ Reader: Dr. Susan Pedigo ___________________________________ Reader: Dr. Nathan Hammer © 2017 Taylor Ramsaroop ii Acknowledgements I would like to thank my thesis advisors for making this project possible and the Sally McDonnell Barksdale Honors College for all the opportunities made available to me throughout my incredible four years at the University of Mississippi. A special thank you to Dr. McChesney for choosing to hire me at Ironstone Separations, Inc two years ago, his continued support, and patience throughout this process. -
Chemistry and Pharmacology of the Kazakh Crataegus Almaatensis Pojark: an Asian Herbal Medicine
antioxidants Article Chemistry and Pharmacology of the Kazakh Crataegus Almaatensis Pojark: An Asian Herbal Medicine 1,2, 3, 1,4,5 3 Sabrina S. Soares y , Elmira Bekbolatova y, Maria Dulce Cotrim , Zuriyadda Sakipova , Liliya Ibragimova 3, Wirginia Kukula-Koch 6,* , Thais B. Sardella Giorno 7, Patrícia D. Fernandes 7, Diogo André Fonseca 1,4,5 and Fabio Boylan 2,* 1 Laboratory of Pharmacy and Pharmaceutical care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal 2 School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland 3 School of Pharmacy, JSC National Medical University, 050000 Almaty, Kazakhstan 4 Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal 5 CIBB Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal 6 Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, 1 Chodzki str., 20-093 Lublin, Poland 7 Laboratório da Dor e Inflamação, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil * Correspondence: [email protected] (W.K.-K.); [email protected] (F.B.) Sabrina S. Soares and Elmira Bekbolatova contributed equally to this paper. y Received: 26 June 2019; Accepted: 6 August 2019; Published: 10 August 2019 Abstract: Crataegus almaatensis, an endemic ornamental plant in Kazakhstan is used in popular medicine due to its cardiotonic properties. The most studied species of the same genus are commonly found in Europe, which shows the importance of having the Kazakh species validated via its chemical and pharmacological studies. -
Spectrum-Effect Relationship of Antioxidant and Tyrosinase Activity
Food and Chemical Toxicology 133 (2019) 110754 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Spectrum-effect relationship of antioxidant and tyrosinase activity with T Malus pumila flowers by UPLC-MS/MS and component knock-out method Wenjing Lia,b,1, Yan Zhangc,1, Shujin Shid, Gen Yanga,b, Zhenhua Liua,b,**, Jinmei Wanga,b,***, Wenyi Kanga,b,* a National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China b Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China c Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, China d College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhegnzhou, 450046, China ARTICLE INFO ABSTRACT Keywords: The active components of Malus pumila flowers on antioxidant and tyrosinase activity were investigated Malus pumila flower with the method of spectrum-effect relationship and knock-out. Some compounds were identified byUPLC- Spectrum-effect relationship MS/MS method. The chemical fingerprints were established by HPLC and the activity of antioxidant and Knock-out tyrosinase were assayed in vitro. Chromatographic peaks P34, P35, P39, P44, P45 and P49 were identified as phloridzin, hyperoside, astragalin, afzelin, quercetin and kaempferol by UPLC-MS/MS method. Hyperoside and kaempferol were identified in M. pumila flowers for the first time. When the concentration was 1 g/mL of sample (equivalent to raw material), the scavenging capacity of P35 (hyperoside) on DPPH free radicals were consistent with the spectrum-effect relationship. The scavenging capacity ofP34 (phloridzin) and P45 (quercetin) on ABTS free radicals were consistent with the spectrum-effect relation- ship. -
Glycosides and Oligosaccharides in the L-Rhamnose Series
[Agr. Biol. Chem., Vol. 31, No. 2, p. 133•`136, 1967] Glycosides and Oligosaccharides in the L-Rhamnose Series Part I. Enzymatic Partial Hydrolysis of Flavonoid-glycosides By Shintaro KAMIYA,Sachiko ESAKIand Misao HAMA Laboratoryof FoodChemistry, Shizuoka Women's Junior College,Shizuoka ReceivedJuly 9, 1966 Naringinase, which was induced from Aspergillus niger, consisted ƒÀ-D-glucosidase and ƒ¿-L-rhamnosidase. The former was successfully inactivated by heating the crude enzyme solution at 60•Ž and pH 6.4-,-6.8, whereas the latter was very stable under such treat ment. By using this enzyme solution flavonoid gycosides were partially hydrolyzed and prunin from naringin, isosakuranin from poncirin, hesperetin-7-ƒÀ-D-glucoside from hesperidin and neohesperidin, isoquercitrin from rutin, cosmociin from rhoifolin were obtained respec tively in good yields. Furthermore kaempherol-3-robinobioside, a new flavonol glycoside, and afzelin were obtained from robinin and kaempheritrin, respectively. INTRODUCTION components ƒÀ-D glucosidase and ƒ¿-L-rhamno The flavonoid-glycosides, which contain L- sidase. The authors have found that ƒÀ-D- rhamnose, widely occur in nature. Rhamno glucosidase was inactivated by heating at glucoside rutin, hesperidin, neohesperidin, 60•Ž pH 6.4-6.8, though the latter was very naringin, poncirin and rhoifolin are the most stable under such treatment. readily available flavonoid compounds at Furthermore partial hydrolysis of robinin present. The glucosides corresponding to the and kaempheritrin by the same enzyme gave above rhamnoglucosides, which are desired kaempherol-3-robinobioside, a new flavonoid, for biological testing have not been available. and afzelin as the result. To our knowledge, partial hydrolysis of the EXPERIMENTAL rhamnoglucosides to remove only the rham nose and leave the glucose still attached to 1) The Preparation of Enzyme Solution the flavonoid portion has been very difficult. -
The Genus Solanum: an Ethnopharmacological, Phytochemical and Biological Properties Review
Natural Products and Bioprospecting (2019) 9:77–137 https://doi.org/10.1007/s13659-019-0201-6 REVIEW The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review Joseph Sakah Kaunda1,2 · Ying‑Jun Zhang1,3 Received: 3 January 2019 / Accepted: 27 February 2019 / Published online: 12 March 2019 © The Author(s) 2019 Abstract Over the past 30 years, the genus Solanum has received considerable attention in chemical and biological studies. Solanum is the largest genus in the family Solanaceae, comprising of about 2000 species distributed in the subtropical and tropical regions of Africa, Australia, and parts of Asia, e.g., China, India and Japan. Many of them are economically signifcant species. Previous phytochemical investigations on Solanum species led to the identifcation of steroidal saponins, steroidal alkaloids, terpenes, favonoids, lignans, sterols, phenolic comopunds, coumarins, amongst other compounds. Many species belonging to this genus present huge range of pharmacological activities such as cytotoxicity to diferent tumors as breast cancer (4T1 and EMT), colorectal cancer (HCT116, HT29, and SW480), and prostate cancer (DU145) cell lines. The bio- logical activities have been attributed to a number of steroidal saponins, steroidal alkaloids and phenols. This review features 65 phytochemically studied species of Solanum between 1990 and 2018, fetched from SciFinder, Pubmed, ScienceDirect, Wikipedia and Baidu, using “Solanum” and the species’ names as search terms (“all felds”). Keywords Solanum · Solanaceae -
Toxicity of Plant Secondary Metabolites Modulating Detoxification Genes Expression for Natural Red Palm Weevil Pesticide Development
molecules Article Toxicity of Plant Secondary Metabolites Modulating Detoxification Genes Expression for Natural Red Palm Weevil Pesticide Development Ahmed Mohammed AlJabr 1,†, Abid Hussain 1,†,*, Muhammad Rizwan-ul-Haq 1 and Hassan Al-Ayedh 2 1 Laboratory of Bio-Control and Molecular Biology, Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Hofuf 31982, Al-Ahsa, Saudi Arabia; [email protected] (A.M.A.); [email protected] (M.R.-H.) 2 Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia; [email protected] * Correspondence: [email protected]; Tel.: +966-135-895-851 † These authors contributed equally to this work. Academic Editor: Marcello Iriti Received: 27 December 2016; Accepted: 17 January 2017; Published: 20 January 2017 Abstract: This study aimed to explore the larvicidal and growth-inhibiting activities, and underlying detoxification mechanism of red palm weevil against phenylpropanoids, an important class of plant secondary metabolites. Toxicity of α-asarone, eugenol, isoeugenol, methyl eugenol, methyl isoeugenol, coumarin, coumarin 6, coniferyl aldehyde, diniconazole, ethyl cinnamate, and rosmarinic acid was evaluated by incorporation into the artificial diet. All of the phenylpropanoids exhibited dose- and time-dependent insecticidal activity. Among all the tested phenylpropanoids, coumarin exhibited the highest toxicity by revealing the least LD50 value (0.672 g/L). In addition, the most toxic compound (coumarin) observed in the current study, deteriorated the growth resulting tremendous reduction (78.39%) in efficacy of conversion of digested food (ECD), and (ECI) efficacy of conversion of ingested food (70.04%) of tenth-instar red palm weevil larvae. -
Analysis of the Binding and Interaction Patterns of 100 Flavonoids with the Pneumococcal Virulent Protein Pneumolysin: an in Silico Virtual Screening Approach
Available online a t www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2016, 8 (16):40-51 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4 Analysis of the binding and interaction patterns of 100 flavonoids with the Pneumococcal virulent protein pneumolysin: An in silico virtual screening approach Udhaya Lavinya B., Manisha P., Sangeetha N., Premkumar N., Asha Devi S., Gunaseelan D. and Sabina E. P.* 1School of Biosciences and Technology, VIT University, Vellore - 632014, Tamilnadu, India 2Department of Computer Science, College of Computer Science & Information Systems, JAZAN University, JAZAN-82822-6694, Kingdom of Saudi Arabia. _____________________________________________________________________________________________ ABSTRACT Pneumococcal infection is one of the major causes of morbidity and mortality among children below 2 years of age in under-developed countries. Current study involves the screening and identification of potent inhibitors of the pneumococcal virulence factor pneumolysin. About 100 flavonoids were chosen from scientific literature and docked with pnuemolysin (PDB Id.: 4QQA) using Patch Dockprogram for molecular docking. The results obtained were analysed and the docked structures visualized using LigPlus software. It was found that flavonoids amurensin, diosmin, robinin, rutin, sophoroflavonoloside, spiraeoside and icariin had hydrogen bond interactions with the receptor protein pneumolysin (4QQA). Among others, robinin had the highest score (7710) revealing that it had the best geometrical fit to the receptor molecule forming 12 hydrogen bonds ranging from 0.8-3.3 Å. Keywords : Pneumococci, pneumolysin, flavonoids, antimicrobial, virtual screening _____________________________________________________________________________________________ INTRODUCTION Streptococcus pneumoniae is a gram positive pathogenic bacterium causing opportunistic infections that may be life-threating[1]. Pneumococcus is the causative agent of pneumonia and is the most common agent causing meningitis. -
Flavonoids: Potential Candidates for the Treatment of Neurodegenerative Disorders
biomedicines Review Flavonoids: Potential Candidates for the Treatment of Neurodegenerative Disorders Shweta Devi 1,†, Vijay Kumar 2,*,† , Sandeep Kumar Singh 3,†, Ashish Kant Dubey 4 and Jong-Joo Kim 2,* 1 Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India; [email protected] 2 Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea 3 Department of Medical Genetics, SGPGIMS, Lucknow 226014, India; [email protected] 4 Department of Neurology, SGPGIMS, Lucknow 226014, India; [email protected] * Correspondence: [email protected] (V.K.); [email protected] (J.-J.K.); Tel.: +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3464 (J.-J.K.) † These authors contributed equally to this work. Abstract: Neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), are the most concerning disor- ders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could reduce cellular stress and have gained much attention in recent years. Evidence has shown the poten- tial use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the potential role of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.