A Tof-Camera As a 3D Vision Sensor for Autonomous Mobile Robotics

Total Page:16

File Type:pdf, Size:1020Kb

A Tof-Camera As a 3D Vision Sensor for Autonomous Mobile Robotics International Journal of Advanced Robotic Systems ARTICLE A ToF-camera as a 3D Vision Sensor for Autonomous Mobile Robotics Regular Paper Sobers Lourdu Xavier Francis1*, Sreenatha G. Anavatti1, Matthew Garratt1 and Hyunbgo Shim2 1 University of New South Wales, Canberra, Australia 2 Seoul National University, Seoul, Korea *Corresponding author(s) E-mail: [email protected] Received 03 February 2015; Accepted 25 August 2015 DOI: 10.5772/61348 © 2015 Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract respect to the ground surface. This mounting angle is recommended to be half the vertical field-of-view (FoV) of The aim of this paper is to deploy a time-of-flight (ToF) the PMD camera. A series of still and moving tests are based photonic mixer device (PMD) camera on an Auton‐ conducted on the AGV to verify correct sensor operations, omous Ground Vehicle (AGV) whose overall target is to which show that the postulated application of the ToF traverse from one point to another in hazardous and hostile camera in the AGV is not straightforward. Later, to stabilize environments employing obstacle avoidance without the moving PMD camera and to detect obstacles, a tracking human intervention. The hypothesized approach of feature detection algorithm and the scene flow technique applying a ToF Camera for an AGV is a suitable approach are implemented to perform a real-time experiment. to autonomous robotics because, as the ToF camera can provide three-dimensional (3D) information at a low Keywords 3D ToF Camera, PMD Camera, Pioneer Mobile computational cost, it is utilized to extract information Robots, Path-planning about obstacles after their calibration and ground testing, and is mounted and integrated with the Pioneer mobile robot. The workspace is a two-dimensional (2D) world map which has been divided into a grid/cells, where the 1. Introduction collision-free path defined by the graph search algorithm is a sequence of cells the AGV can traverse to reach the As an AGV must be able to adequately sense its surround‐ ings in order to operate in unknown environments and target. PMD depth data is used to populate traversable execute autonomous tasks, vision sensors provide the areas and obstacles by representing a grid/cells of suitable necessary information required for it to perceive and avoid size. These camera data are converted into Cartesian any obstacles to accomplish autonomous path-planning. coordinates for entry into a workspace grid map. A more Hence, the perception sensor becomes the key sensory optimal camera mounting angle is needed and adopted by device for perceiving the environment in intelligent mobile analysing the camera’s performance discrepancy, such as robots, and the perception objective depends on three basic pixel detection, the detection rate and the maximum system qualities, namely rapidity, compactness and perceived distances, and infrared (IR) scattering with robustness [1]. Int J Adv Robot Syst, 2015, 12:156 | doi: 10.5772/61348 1 Over the last few decades, many different types of sensors optimal camera angle is adopted. To ensure that the top- [2] have been developed in the context of AGV path- most pixels are observed directly ahead of the robot, planning to avoid obstacles [3] such as infrared sensors [4], thereby giving an adequate conception of obstacles and ultrasonic sensors, sonar [5], LADAR [6], laser rangefinders maximizing the ground plane conception, various analyses [7], camera data fused with radar [8] and stereo cameras of the camera performance are carried out in this paper. with a projector [9]. These sensors’ data along with data Later, the parametric calibration for the PMD cameras is processing techniques are used to update the positions and performed by obtaining necessary camera parameters to directions of the vertices of obstacles. However, these derive the true information of the imaging scene. The sensor systems are unable to provide necessary informa‐ imaging technology of the PMD camera is better under‐ tion without ease about any surroundings. stood whereby camera pixels provide a complete image of As the world’s attention is increasingly focusing on the scene with each pixel detecting the range data stored in automation in every field, extracting 3D information about a 2D array, which are utilized and interpreted in this paper an obstacle has become a topical and challenging task. As to extract information about the surroundings. A few such, an appropriate sensor is required to obtain 3D experiments are carried to measure the camera’s parame‐ information that has small dimensions, low power con‐ ters and distance errors with respect to each pixel. sumption and real-time performance. The main limitation To determine the difference between the function of the of a 2D camera is that, as it is the projection of 3D informa‐ camera in an environment similar to that claimed by the tion onto a 2D image plane, it cannot provide complete manufacturer data sheet, white surface testing and grass information of the entire scene. Thus, the processing of surface testing are conducted for the PMD camera. This also these images will depend upon the view point (rather than provided a means to compare the performance of the the actual information about the object). In order to camera from a flat white surface to a flat grassy surface. overcome this drawback, the use of 3D information has Later, the camera data is synchronized with the instanta‐ emerged. In general, researchers use a setup consisting of neous orientation and position of the platform (and thus a charge-coupled device (CCD) camera and light projector the camera), which translates the Cartesian coordinates in order to obtain a 3D image, such as that of the 3D into squares of grids. It reconstructed the ground region visualization of rock [9]. (extremities that the camera could see) into a grid of A 3D sensor is selected for our work, which is based on the suitable grid cells which are imputed to the path-planning photonic mixer device (PMD) technology that delivers algorithm. range and intensity data with low computational cost as During real-time experimentation, the grid-based Efficient well as compactness and economical design with a high D* Lite path-planning algorithm and scene-flow technique frame rate. This camera system delivers absolute geomet‐ rical dimensions of obstacles without depending upon the were programmed on the Pioneer onboard computers object surface, distance, rotation or illumination. Hence, it using the OpenCV and OpenGL libraries. In order to is rotation-, translation- and illumination-invariant [10]. compensate for the ego-motion of the PMD camera, which Nowadays, RGBD cameras (e.g., Kinect, Asus Xtion, is aligned with the AGV coordinates, a features detection Carmine) have been widely used in object recognition and algorithm using Good − Features −to −Track from the OpenCV mobile robotics applications. However, these RGBD library is adopted. cameras cannot operate in outdoor environments [11]. A The paper is organized as follows: a brief comparison of the PMD camera with a working range of (0.2 - 7 metres) 3D sensors and their fundamental principles is presented provides better depth precision compared to Kinect (0.7 - in Section II. In Section III, the calibration of the PMD 3.5 metres) and Carmine (0.35 - 1.4 metres). camera is performed by parametric calibration. Section IV However, the PMD camera is constrained by its limited presents the manipulation of the PMD camera data. In FoV, namely its need to adjust the camera mounting Section V, several standardized tests are devised to downwards to obtain a greater view of the ground. The characterize the PMD camera and Section VI describes the specific angle of this mounting is explained in this paper; experimental results. nonetheless, it was unexpected that light incident at different angles to the ground would result in significant 2. ToF-based 3D Cameras - state-of-the-art receiver loss and distortion of distance measurements due to scattering. The camera is mounted on the front of the Nowadays, 3D data are required in the automation robot through brackets that enable variable camera industries for analysing the visible space/environment. mounting angles at a static angle of tilt - it is perceived that The rapid acquisition of 3D data by a robotic system for this configuration would enable the best compromise navigation and control applications is required. New 3D between the ground conception and a straight ahead cameras at affordable prices which have been successful‐ conception as a function of the camera tilt angle ψ. Due to ly developed using the ToF principle to resemble LIDAR being mounted above the robot, it would be necessary to scanners. In a ToF camera unit, a modulated light pulse flag closer obstacles so as to reduce the blind spot in front is transmitted by the illumination source and the target of the robot. Because of these considerations, a more distance is measured from the time taken by the pulse to 2 Int J Adv Robot Syst, 2015, 12:156 | doi: 10.5772/61348 reflect from the target back to the receiving unit. PMD intensity and the 3D structure of the range data. Gesture technologies have developed 3D sensors using the ToF recognition has been performed based on shape contexts principle, which provide for a wide range of field and simple binary matching [40] whereby motion informa‐ applications with high integration and cost-effective tion is extracted by matching the difference in the range production [12]. data of different image frames. The measurement of shapes and deformations of metal objects and structures using ToF ToF cameras do not suffer from missing texture in the scene range information and heterodyne imaging are discussed or bad lighting conditions, are computationally less in [41].
Recommended publications
  • Depth Camera Technology Comparison and Performance Evaluation
    DEPTH CAMERA TECHNOLOGY COMPARISON AND PERFORMANCE EVALUATION Benjamin Langmann, Klaus Hartmann and Otmar Loffeld ZESS – Center for Sensor Systems, University of Siegen, Paul-Bonatz-Strasse 9-11, Siegen, Germany Keywords: Depth, Range camera, Time-of-Flight, ToF, Photonic Mixer Device, PMD, Comparison. Abstract: How good are cheap depth cameras, namely the Microsoft Kinect, compared to state of the art Time-of- Flight depth cameras? In this paper several depth cameras of different types were put to the test on a variety of tasks in order to judge their respective performance and to find out their weaknesses. We will concentrate on the common area of applications for which both types are specified, i.e. near field indoor scenes. The characteristics and limitations of the different technologies as well as the concrete hardware implementations are discussed and evaluated with a set of experimental setups. Especially, the noise level and the axial and angular resolutions are compared. Additionally, refined formulas to generate depth values based on the raw measurements of the Kinect are presented. 1 INTRODUCTION when used outdoors. Currently, ToF imaging chips reaching resolutions up to 200x200 pixels are on the Depth or range cameras have been developed for market and chips with 352x288 pixels are in several years and are available to researchers as well development and for a few years some ToF chips as on the market for certain applications for about a feature methods to suppress ambient light (e.g. decade. PMDTec, Mesa Imaging, 3DV Systems and Suppression of Background Illumination - SBI). Canesta were the companies driving the Other depth cameras or measuring devices, such development of Time-of-Flight (ToF) depth as laser scanners or structured light approaches, cameras.
    [Show full text]
  • Direct Interaction with Large Displays Through Monocular Computer Vision
    DIRECT INTERACTION WITH LARGE DISPLAYS THROUGH MONOCULAR COMPUTER VISION A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Information Technologies at The University of Sydney Kelvin Cheng October 2008 © Copyright by Kelvin Cheng 2008 All Rights Reserved Abstract Large displays are everywhere, and have been shown to provide higher productivity gain and user satisfaction compared to traditional desktop monitors. The computer mouse remains the most common input tool for users to interact with these larger displays. Much effort has been made on making this interaction more natural and more intuitive for the user. The use of computer vision for this purpose has been well researched as it provides freedom and mobility to the user and allows them to interact at a distance. Interaction that relies on monocular computer vision, however, has not been well researched, particularly when used for depth information recovery. This thesis aims to investigate the feasibility of using monocular computer vision to allow bare-hand interaction with large display systems from a distance. By taking into account the location of the user and the interaction area available, a dynamic virtual touchscreen can be estimated between the display and the user. In the process, theories and techniques that make interaction with computer display as easy as pointing to real world objects is explored. Studies were conducted to investigate the way human point at objects naturally with their hand and to examine the inadequacy in existing pointing systems. Models that underpin the pointing strategy used in many of the previous interactive systems were formalized.
    [Show full text]
  • Per-Pixel Calibration for RGB-Depth Natural 3D Reconstruction on GPU
    University of Kentucky UKnowledge Theses and Dissertations--Electrical and Computer Engineering Electrical and Computer Engineering 2016 Per-Pixel Calibration for RGB-Depth Natural 3D Reconstruction on GPU Sen Li University of Kentucky, [email protected] Author ORCID Identifier: http://orcid.org/0000-0001-9906-0481 Digital Object Identifier: https://doi.org/10.13023/ETD.2016.416 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Li, Sen, "Per-Pixel Calibration for RGB-Depth Natural 3D Reconstruction on GPU" (2016). Theses and Dissertations--Electrical and Computer Engineering. 93. https://uknowledge.uky.edu/ece_etds/93 This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Motion Capture Technologies 24
    MOTION CAPTURE TECHNOLOGIES 24. 3. 2015 DISA Seminar Jakub Valcik Outline Human Motion and Digitalization Motion Capture Devices Optical Ranging Sensor Inertial and Magnetic Comparison Human Motion Brain + Skeleton + Muscles Internal factors External Factors Musculature Shoes Skeleton Clothes Weight Type of surface Injuries Slope of surface Movement habits Wind Pregnancy Gravity State of mind Environment Motion Capture 푛 Sequence of individual frames 푚 = (푓푘)푘=1 Captured information Static body configuration Position in space Orientation of body Silhouette vs. Skeleton Appearance Based Approaches Eadweard Muybridge, 1878 Boys Playing Leapfrog, printed 1887 Appearance Base Approaches Originally only regular video cameras, CCTV Silhouette oriented 푓푘 ≔ 퐵푘 푥, 푦 ∈ {0, 1} Silhouette extraction is a common bottleneck Model Based Approaches Additional abstraction – 2D, 3D Stick figure, volumetric model, … Skeleton Joint (or end-effector), Bone Undirected acyclic graph 퐽 – tree Joint ~ Vertex, Bone ~ Edge 3×|푉 퐽 | Static configuration ~ Pose 푝 ∈ ℝ 푛 푛 푚 = (푓푘)푘=1= (푝푘)푘=1 Motion Capture Devices Optical Both, appearance and Markerless model based approaches Invasive Inertial Magnetic Only model based Mechanical approaches Radio frequency Optical Markerless MoCap Devices 3D scene reconstruction Multiple views Depth sensors RGB stereoscopic cameras Multiple synchronized cameras Additional sensors Silhouette extraction Depth sensing IR camera, ranging sensor Ranging Sensor - Triangulation Laser
    [Show full text]
  • Lecture 1: Course Introduction and Overview
    MIT Media Lab MAS 131/ 531 Computational Camera & Photography: Camera Culture Ramesh Raskar MIT Media Lab http://cameraculture.media.mit.edu/ MIT Media Lab Image removed due to copyright restrictions. Photo of airplane propeller, taken with iPhone and showing aliasing effect: http://scalarmotion.wordpress.com/2009/03/15/propeller-image-aliasing/ Shower Curtain: Diffuser Courtesy of Shree Nayar. Used with permission. Source: http://www1.cs.columbia.edu/CAVE/projects/ separation/occluders_gallery.php Direct Global A Teaser: Dual Photography Projector Photocell Figure by MIT OpenCourseWare. Images: Projector by MIT OpenCourseWare. Scene Photocell courtesy of afternoon_sunlight on Flickr. Scene courtesy of sbpoet on Flickr. A Teaser: Dual Photography Projector Photocell Figure by MIT OpenCourseWare. Images: Projector by MIT OpenCourseWare. Scene Photocell courtesy of afternoon_sunlight on Flickr. Scene courtesy of sbpoet on Flickr. A Teaser: Dual Photography Projector Camera Figure by MIT OpenCourseWare. Scene Images: Projector and camera by MIT OpenCourseWare. Scene courtesy of sbpoet on Flickr. The 4D transport matrix: Contribution of each projector pixel to each camera pixel projector camera Figure by MIT OpenCourseWare. Photo courtesy of sbpoet on Flickr. Scene Images: Projector and camera by MIT OpenCourseWare. Scene courtesy of sbpoet on Flickr. The 4D transport matrix: Contribution of each projector pixel to each camera pixel projector camera Figure by MIT OpenCourseWare. Scene Images: Projector and camera by MIT OpenCourseWare. Sen et al, Siggraph 2005 Scene courtesy of sbpoet on Flickr. The 4D transport matrix: Which projector pixel contributes to each camera pixel projector camera Figure by MIT OpenCourseWare. ? Scene Images: Projector and camera by MIT OpenCourseWare. Sen et al, Siggraph 2005 Scene courtesy of sbpoet on Flickr.
    [Show full text]
  • Research Article Human Depth Sensors-Based Activity Recognition Using Spatiotemporal Features and Hidden Markov Model for Smart Environments
    Hindawi Publishing Corporation Journal of Computer Networks and Communications Volume 2016, Article ID 8087545, 11 pages http://dx.doi.org/10.1155/2016/8087545 Research Article Human Depth Sensors-Based Activity Recognition Using Spatiotemporal Features and Hidden Markov Model for Smart Environments Ahmad Jalal,1 Shaharyar Kamal,2 and Daijin Kim1 1 Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea 2KyungHee University, Suwon, Republic of Korea Correspondence should be addressed to Ahmad Jalal; [email protected] Received 30 June 2016; Accepted 15 September 2016 Academic Editor: Liangtian Wan Copyright © 2016 Ahmad Jalal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Nowadays, advancements in depth imaging technologies have made human activity recognition (HAR) reliable without attaching optical markers or any other motion sensors to human body parts. This study presents a depth imaging-based HAR system to monitor and recognize human activities. In this work, we proposed spatiotemporal features approach to detect, track, and recognize human silhouettes using a sequence of RGB-D images. Under our proposed HAR framework, the required procedure includes detection of human depth silhouettes from the raw depth image sequence, removing background noise, and tracking of human silhouettes using frame differentiation constraints of human motion information. These depth silhouettes extract the spatiotemporal features based on depth sequential history, motion identification, optical flow, and joints information. Then, these features are processed by principal component analysis for dimension reduction and better feature representation.
    [Show full text]
  • Multiple View Geometry for Video Analysis and Post-Production
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2006 Multiple View Geometry For Video Analysis And Post-production Xiaochun Cao University of Central Florida Part of the Computer Sciences Commons, and the Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Cao, Xiaochun, "Multiple View Geometry For Video Analysis And Post-production" (2006). Electronic Theses and Dissertations, 2004-2019. 815. https://stars.library.ucf.edu/etd/815 MULTIPLE VIEW GEOMETRY FOR VIDEO ANALYSIS AND POST-PRODUCTION by XIAOCHUN CAO B.E. Beijing University of Aeronautics and Astronautics, 1999 M.E. Beijing University of Aeronautics and Astronautics, 2002 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the School of Electrical Engineering and Computer Science in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Spring Term 2006 Major Professor: Dr. Hassan Foroosh °c 2006 by Xiaochun Cao ABSTRACT Multiple view geometry is the foundation of an important class of computer vision techniques for simultaneous recovery of camera motion and scene structure from a set of images. There are numerous important applications in this area. Examples include video post-production, scene reconstruction, registration, surveillance, tracking, and segmentation.
    [Show full text]
  • Evaluation of Microsoft Kinect 360 and Microsoft Kinect One for Robotics and Computer Vision Applications
    UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE Corso di Laurea Magistrale in Ingegneria Informatica Tesi di Laurea Evaluation of Microsoft Kinect 360 and Microsoft Kinect One for robotics and computer vision applications Student: Simone Zennaro Advisor: Prof. Emanuele Menegatti Co-Advisor: Dott. Ing. Matteo Munaro 9 Dicembre 2014 Anno Accademico 2014/2015 Dedico questa tesi ai miei genitori che in questi duri anni di studio mi hanno sempre sostenuto e supportato nelle mie decisioni. 2 Gli scienziati sognano di fare grandi cose. Gli ingegneri le realizzano. James A. Michener 3 TABLE OF CONTENTS Abstract ......................................................................................................................................................... 6 1 Introduction .......................................................................................................................................... 7 1.1 Kinect XBOX 360 ............................................................................................................................ 7 1.1.1 Principle of depth measurement by triangulation ................................................................ 7 1.2 Kinect XBOX ONE ........................................................................................................................ 10 1.2.1 Principle of depth measurement by time of flight .............................................................. 13 1.2.2 Driver and SDK ...................................................................................................................
    [Show full text]
  • THE Tof CAMERAS
    NEW SENSORS FOR CULTURAL HERITAGE METRIC SURVEY: THE ToF CAMERAS Filiberto CHIABRANDO1, Dario PIATTI2, Fulvio RINAUDO2 1Politecnico di Torino, DINSE Viale Mattioli 39, 10125 Torino, Italy, [email protected] 2 Politecnico di Torino, DITAG Corso Duca Degli Abruzzi 24 , 10129 Torino, Italy, [email protected], [email protected] Keywords: Time-of-Flight, RIM, calibration, metric survey, 3D modeling Abstract: ToF cameras are new instruments based on CCD/CMOS sensors which measure distances instead of radiometry. The resulting point clouds show the same properties (both in terms of accuracy and resolution) of the point clouds acquired by means of traditional LiDAR devices. ToF cameras are cheap instruments (less than 10.000 €) based on video real time distance measurements and can represent an interesting alternative to the more expensive LiDAR instruments. In addition, the limited weight and dimensions of ToF cameras allow a reduction of some practical problems such as transportation and on-site management. Most of the commercial ToF cameras use the phase-shift method to measure distances. Due to the use of only one wavelength, most of them have limited range of application (usually about 5 or 10 m). After a brief description of the main characteristics of these instruments, this paper explains and comments the results of the first experimental applications of ToF cameras in Cultural Heritage 3D metric survey. The possibility to acquire more than 30 frames/s and future developments of these devices in terms of use of more than one wavelength to overcome the ambiguity problem allow to foresee new interesting applications. 1.
    [Show full text]
  • Ptzoptics VL-ZCAM
    PTZOptics VL-ZCAM User Manual Model Nos: PTVL-ZCAM V1.3 (English) Please check PTZOPTICS.com for the most up to date version of this document Rev 1.3 7/19 Preface Thank you for using the HD Professional Video Conferencing Camera. This manual introduces the function, installation and operation of the HD camera. Prior to installation and usage, please read the manual thoroughly. Precautions This product can only be used in the specified conditions in order to avoid any damage to the camera: • Don’t subject the camera to rain or moisture. • Don’t remove the cover. Removal of the cover may result in an electric shock, in addition to voiding the warranty. In case of abnormal operation, contact the manufacturer. • Never operate outside of the specified operating temperature range, humidity, or with any other power supply than the one originally provided with the camera. • Please use a soft dry cloth to clean the camera. If the camera is very dirty, clean it with diluted neutral detergent; do not use any type of solvents, which may damage the surface. Note This is an FCC Class A Digital device. As such, unintentional electromagnetic radiation may affect the image quality of TV in a home environment. Page i of 44 Rev 1.3 7/19 Table of Contents 1 Supplied Accessories ··································································································· 1 2 Notes ······················································································································ 1 4 Features ···················································································································
    [Show full text]
  • User Manual Model No: PTEPTZ-ZCAM-G2 V1.3 (English)
    PTZOptics EPTZ ZCAM G2 User Manual Model No: PTEPTZ-ZCAM-G2 V1.3 (English) Please check PTZOPTICS.com for the most up to date version of this document Rev 1.3 10/20 Preface Thank you for purchasing a PTZOptics Camera. This manual introduces the function, installation and operation of the camera. Prior to installation and usage, please read the manual thoroughly. Precautions This product can only be used in the specified conditions in order to avoid any damage to the camera: • Don’t subject the camera to rain or moisture. • Don’t remove the cover. Removal of the cover may result in an electric shock, in addition to voiding the warranty. In case of abnormal operation, contact the manufacturer. • Never operate outside of the specified operating temperature range, humidity, or with any other power supply than the one originally provided with the camera. • Please use a soft dry cloth to clean the camera. If the camera is very dirty, clean it with diluted neutral detergent; do not use any type of solvents, which may damage the surface. Note This is an FCC Class A Digital device. As such, unintentional electromagnetic radiation may affect the image quality of TV in a home environment. Warranty PTZOptics includes a limited parts & labor warranty for all PTZOptics manufactured cameras. Warranty lengths are shown below. The warranty is valid only if PTZOptics receives proper notice of such defects during the warranty period. PTZOptics, at its option, will repair or replace products that prove to be defective. PTZOptics manufactures its hardware products from parts and components that are new or equivalent to new in accordance with industry standard practices.
    [Show full text]
  • E2 User Manual
    Z CAM E2 User Manual v0.6 Draft (Firmware 0.89) 1. Introduction 1.1. Camera Introduction 1.2. LCD Screen The content displayed on the LCD Screen will be different when the camera is in different mode. Standby & Recording Preview Press FN + OK button when the camera is in Standby mode, it will switch to Preview mode. Press FN + OK again to come back to Standby mode. Playback Short press Power button when the camera is in Standby / Preview mode, it will switch to Playback mode. Short press Power button again to come back to Standby / Preview mode. 1.3. LED Indicator Status Green : Standby Red : Recording. Flashing Red (every 1s) : No memory card. Flashing Red (every 0.5s) : Memory card is full. Flashing Red (every 0.2s) : Camera overheat. Flashing Red (very fast) : Critical error. Flashing Red (fast & slow alternant) : Low battery 1.4. Buttons MENU: Camera setting. FN / ISO: FN or ISO quick setting (2.1 Quick Settings). Up / SHT: Up selection (or add value) or Shutter Speed / Shutter Angle quick setting (2.1 Quick Settings). Down / EV: Down selection (or reduce value) or EV quick setting (2.1 Quick Settings). OK: Confirmation or to trigger the AF function (2.1 Quick Settings). F1: AEL (Auto Exposure Lock) by default, can be changed to other quick settings (2.10 System - Fn). F2: Load profile by default, can be changed to other quick settings (2.10 System - Fn). F3: Aperture quick setting by default, can be changed to other quick settings (2.10 System - Fn). Power button: Long press for 3 seconds to power on / off the camera, short press to switch to / back from Playback mode.
    [Show full text]