Differences in the Epidemiological of H5n1, Covid-19 and Other Global Zoonosis Flu

Total Page:16

File Type:pdf, Size:1020Kb

Differences in the Epidemiological of H5n1, Covid-19 and Other Global Zoonosis Flu DIFFERENCES IN THE EPIDEMIOLOGICAL OF H5N1, COVID-19 AND OTHER GLOBAL ZOONOSIS FLU Zata Ismah 1, Saidah Fatimah Sari Simanjuntak2, Bebby Alfiera Riyandina Hardja3, Nur Fadhilah Hasanah4, Rani Elviyanti Siregar5, Apriliani6 1,2,3,4,5,6Health Faculty At State Islamic University Of North Sumatera. Email : [email protected] ABSTRAC Human avian influenza has caused serious outbreaks in several countries, especially in Asia, one of which is Indonesia. Human avian influenza has become an important public health problem because of the high mortality rates and because of the possibility of causing a global pandemic. The source of the virus is thought to come from bird migration and transport of infected birds. Laboratory tests can be done by examining leukocytes, platelets in suspected cases. Clinically suspicious of AI testing can be done simultaneously, which is taking blood for serology, throat swabs, nasopharynx, and oropharynx for RT-PCR examination and viral culture gold test as confirmation. Until now it is known that there have been five zoonotic flu diseases that cause a global pandemic and have taken many casualties in the world including SARS, MERS, H1N1, H5N1, and new diseases namely COVID-19. The method to be used for this review is literature study. The data obtained were compiled, analyzed, and concluded in order to get conclusions about the literature study. The five zoonotic flu diseases have differences from one another. So the classification of differences between H5N1 with each of the zoonotic flu diseases above needs to be done. Keywords: Avian influenza (AI) H5N1 virus, Covid19, Epidemiology, Global pandemic, Zoonotic flu 1. INTRODUCTION Human avian influenza is an infection that occurs in humans caused by the influenza A virus subtype H5N1. Avian influenza was discovered to attack in Italy about 100 years ago. This outbreak virus struck humans in Hong Kong in 1997 with 18 victims and six of them dead. Avian influenza (H5N1) or highly pathogenic avian influenza (HPAI) has caused serious outbreaks in several countries, especially in Asia. Since May 2005 the number of confirmed cases of avian influenza A (H5N1) has expanded to various countries in the world. Human avian influenza (H5N1) has become an important public health problem because it has a high mortality rate and 67 likely to cause an influenza pandemic.1 Avian Influenza (AI) is a contagious avian disease caused by influenza type A viruses from the family of Orthomyxoviridae. This virus most commonly affects birds (for example domestic chickens, turkeys, ducks, quails, and geese) as well as various wild birds. Some bird flu viruses are also known to attack mammals, including humans.2 Based on data from the Ministry of Research and Development of the Ministry of Health (2005), avian influenza transmitted by Avian Influenza type H5N1 viruses in poultry has been confirmed to have occurred in the Republic of Korea, Vietnam, Japan, Thailand, Komboja, Taiwan, Laos, China, Indonesia, and Pakistan. The source of the virus is thought to come from bird migration and transport of infected birds.3 Until now the AI pandemics still occur in both developing and developed countries, the possibility of transmission from the movement of birds from endemic to non-endemic countries. Although AI disease attacks poultry, or other livestock, but can transmit to humans. Transmitted between humans, can not be proven. The laboratory tests can be carried out by examining leukocytes, platelets carried out in suspected cases. A suspicious clinical examination of AI can be done simultaneously, namely taking blood for serology, throat swabs, nasopharynx, and oropharynx for RT-PCR examination as well for viral culture gold test as confirmation. Weaknesses in laboratory examinations, not all referral laboratories can perform RT-PCR examinations.4 The Ministry of Health of the Republic of Indonesia said that as of 30 December 2005, 142 cases of poultry influenza infections in humans had been reported from various regions. At that time human transmission was still limited in Cambodia, Indonesia, Thailand, with epicenter in Vietnam (65.5% of all cases), 72 people (50.7%) had died. This number has now increased again, especially with the widespread and increasing deaths in Indonesia. Also from several other countries (Turkey, Iraq), there have been reports of cases of this avian influenza in humans. Cumulative cases of H5N1 since 2014-2018 were 860 cases with 454 deaths (CFR 53%). Based on data from the Indonesian Ministry of Health (2019), in 2018 there were no H5N1 cases reported yet. Cases in Indonesia from 2005 to 27 October 2018 were 200 cases with 168 deaths (CFR 84%).5 68 Until now it has been known that there have been five zoonotic flu diseases that cause a global pandemic and have taken many casualties in the world including SARS, MERS, H1N1, H5N1, and new diseases namely COVID-19. The five zoonotic flu diseases have differences from one another. 2. METHODS The data collection method is literature study. The method to be used for this review is literature study. The data obtained were compiled, analyzed, and concluded in order to get conclusions about the literature study. Research with literature studies is a study whose preparation is the same as other research, but the sources and methods of data collection are by taking data from libraries, reading, taking notes, and processing research materials. Research with literature studies is also a study and can be categorized as a scientific work because data collection is carried out with a strategy in the form of a research methodology. 3. RESULT AND DISCUSSION EPIDEMIOLOGY 1. Agent The virus that causes bird flu is classified as family orthomyxoviridae. Viruses consist of 3 different antigenic types, namely A, B, and C. Influenza A viruses can be found in poultry, humans, pigs, horses, and sometimes other mammals, such as mink, seals, and whales. However, natural horpes are wild birds. In contrast, influenza B and C viruses are only found in humans (shown in fig.1). Avian influenza also called avian influenza, is caused by influenza A virus. This virus is an RNA virus and has haemagglutinin (HA) and neuraminidase (NA) activity. The division of virus subtypes is based on the surface of the antigen, the surface of the hemagglutinin, and the neuraminidase they have.6 2. Clinical Symptoms According to Vascellari (2007), the symptoms of bird flu are highly variable and depend on the infected bird species. The incubation period of this virus for poultry ranges from a few hours to 3 days, sometimes 7 days depending on the dose of the virus, the route of contact, and the species of poultry attacked. Whereas in humans 1-3 days, the infection period is 1 day before until 3-5 69 days after symptoms appear. In children for up to 21 days. Avian influenza in poultry can be found in two forms, namely mild form an acute form (highly pathogenic avian influenza, HPAI.7 The symptoms of ducks/poultry attacked by bird flu include such as neck twisted, convulsions, difficulty standing, lack of appetite, vaginal discharge, for laying ducks egg production suddenly decreases (weakness, flaccid eggshell), and widespread bleeding or spots are often found in the trachea mucosa, proventriculus, intestine, fat layer, chest muscles, and legs.7 According to Damayanti (2004), human symptoms of bird flu that is, the majority of sufferers of AI (H5N1) symptoms are the same as another influenza early fever over 38°C and lower respiratory tract symptoms. Diarrhea, vomiting, abdominal pain, chest pain (pleuritic), and bleeding from the nose and gums. The resulting sputum varies sometimes with blood, respiratory distress, tachypnea, and cracked inspiration. Diffuse progressive respiratory failure, bilateral, infiltration, and display of acute respiratory symptoms (ARDS = Acute Respiratory Distress Syndrome).8 Failure of many organs of the kidney, heart dysfunction including dilation and supraventricular arrhythmias. Other complications associated with ventilation are pneumonia, pulmonary bleeding, pneumothorax, pancytopenia, symptoms of Reye, and sepsis without bacteremia. Early- onset of a sudden and rapidly worsening disease, high fever, muscle aches, and dry cough are often found in AI infections (H5N1). Differential diagnoses of AI (H5N1) include respiratory syncytial virus (RSV), adenovirus, parainfluenzavirus, rhinovirus, Mycoplasma pneumonia, Chlamydia.8 3. Chain Of Infection According to Ong (2008), the influenza A / H5N1 virus is very virulent and contagious, at first, transmission only occurred between wild birds and then spread among poultry through livestock, equipment, transportation equipment, food, pens, and clothing. After an outbreak of avian influenza infection in poultry, this virus can spread from birds to humans. This influenza A virus can cause a pandemic because it is easily mutated, either in the form of antigenic drift or antigenic shift to form new variants that are more pathogenic.9 WHO (2008) states that the exact time when exposure is difficult is determined because in many cases the exposure is repeated many times, but the estimated incubation period for H5N1 virus infection in humans after exposure to sick poultry is generally between 2-7 days, and in one cluster case it is estimated reach 8-9 days.10 70 Transmission can also occur indirectly, for example through air polluted by material/dust containing influenza viruses (aerosols); food/beverage, livestock equipment/supplies, cages, chicken cages, clothing, vehicles, egg trays, birds; mammals and insects that contain or are contaminated with influenza viruses. In connection with the mode of transmission, the influenza virus can be spread easily to various regions by people or equipment/equipment and vehicles used to market poultry products.8 4. Natural History Of Disease A. Prepathogenesis According to Ririh (2006), the susceptible phase (pre-pathogenesis) is the stage of the etiological process, in which the first causative factor meets the host for the first time (Host). This first causative factor has not yet caused the illness but has begun to lay the foundations for future disease development.
Recommended publications
  • US and International Responses to the Global Spread of Avian
    Order Code RL33219 CRS Report for Congress Received through the CRS Web U.S. and International Responses to the Global Spread of Avian Flu: Issues for Congress Updated February 23, 2006 Tiaji Salaam-Blyther and Emma Chanlett-Avery Coordinators Foreign Affairs, Defense, and Trade Division Congressional Research Service ˜ The Library of Congress U.S. and International Responses to the Global Spread of Avian Flu: Issues for Congress Summary One strain of avian influenza currently identified in Asia, Europe, the Middle East, and Africa is known as Influenza A/H5N1. Although it is a bird flu, it has infected a relatively small number of people — killing around 50% of those infected. Some scientists are concerned that H5N1 may cause the next influenza pandemic. Flu pandemics have occurred cyclically, between every 30 and 50 years. Since 1997, when the first human contracted H5N1 in Hong Kong, the virus has resurfaced and spread to more than a dozen countries in Asia and eastern Europe — infecting more than 170 people and killing more than 90. In February 2006, the virus spread further to countries in western Europe. That month, officials confirmed that birds in Austria, Germany, Greece, and Italy were infected with the virus. Health experts are investigating suspected bird cases in France. The first human H5N1 fatalities outside of Asia occurred in 2006 when Turkey and Iraq announced their first human deaths related to H5N1 infection in January 2006 and February 2006, respectively. A global influenza pandemic could have a number of consequences. Global competition for existing vaccines and treatments could ensue. Some governments might restrict the export of vaccines or other supplies in order to treat their own population.
    [Show full text]
  • US and International Responses to the Global Spread of Avian
    Order Code RL33219 CRS Report for Congress Received through the CRS Web U.S. and International Responses to the Global Spread of Avian Flu: Issues for Congress Updated January 11, 2006 Tiaji Salaam-Blyther and Emma Chanlett-Avery Coordinators Foreign Affairs, Defense, and Trade Division Congressional Research Service ˜ The Library of Congress U.S. and International Responses to the Global Spread of Avian Flu: Issues for Congress Summary One strain of avian influenza currently identified in Asia and Europe is known as Influenza A/H5N1. Although it is a bird flu, it has infected a relatively small number of people — killing around 50% of those infected. Scientists are concerned that H5N1 may cause the next influenza pandemic. Flu pandemics have occurred cyclically, roughly between every 30 and 50 years. Since 1997, when the first human contracted H5N1 in Hong Kong, the virus has resurfaced and spread to more than a dozen countries in Asia and Europe — infecting more than 140 people and killing approximately half. Britain and Taiwan both reported avian flu cases of H5N1 in 2005. In the latter cases, the infected birds were identified as imports, and died in quarantine. A global influenza pandemic could have a number of consequences. Global competition for existing vaccines and treatments could ensue. Some governments might restrict the export of vaccines or other supplies in order to treat their own population. Some countries might face a shortage of vaccines, antiviral medication, or other medical equipment, because of limited global supply. Hospitality and airline industries, and international trade could be negatively impacted. If global travel and trade were to suddenly drop, there could be productivity losses and service disruptions.
    [Show full text]
  • The Highly Pathogenic Avian Influenza A(H5N1) Virus: a Twenty-Year Journey of Narratives and (In)Secure Landscapes
    The Highly Pathogenic Avian Influenza A(H5N1) Virus: a twenty-year journey of narratives and (in)secure landscapes Philip Rolly Egert Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Science, Technology, and Society Barbara L. Allen (Chair) Daniel Breslau Bernice L. Hausman David C. Tomblin March 18, 2016 Falls Church, Virginia Keywords: H5N1, HPAI, highly pathogenic avian influenza virus, pandemic, social justice, bioterrorism, bioethics, biopower, tacit knowledge, dual-use dilemma, dual-use research of concern, emerging infectious disease Copyright Philip R. Egert The Highly Pathogenic Avian Influenza A(H5N1) Virus: a twenty-year journey of narratives and (in)secure landscapes Philip Rolly Egert ABSTRACT This dissertation is comprised of two manuscripts that explore various contestations and representations of knowledge about the highly pathogenic avian influenza H5N1virus. In the first manuscript, I explore three narratives that have been produced to describe the 20-year journey of the virus. The journey begins in 1996 when the virus was a singular localized animal virus but then over the next 20 years multiplied its ontological status through a (de)stabilized global network of science and politics that promoted both fears of contagion and politics of otherness. Written by and for powerful actors and institutions in the global North, the narratives focused on technical solutions and outbreak fears. In doing so, the narratives produced policies and practices of biopower that obscured alternative considerations for equity, social justice, and wellbeing for the marginalized groups most directly affected by the H5N1 virus.
    [Show full text]
  • Modeling and Analysis of Global Epidemiology of Avian Influenza
    Environmental Modelling & Software 24 (2009) 124–134 Contents lists available at ScienceDirect Environmental Modelling & Software journal homepage: www.elsevier.com/locate/envsoft Modeling and analysis of global epidemiology of avian influenza Dhananjai M. Rao a,*, Alexander Chernyakhovsky b, Victoria Rao c a CSA Department, Miami University, 205 Benton Hall, Oxford, OH 45056, USA b Mason High School, Mason, OH 45040, USA c Cybernetic Evolution Inc., Mason, OH 45040, USA article info abstract Article history: The World Health Organization has activated a global preparedness plan to improve response to avian Received 18 September 2007 influenza outbreaks, control outbreaks, and avoid an H5N1 pandemic. The effectiveness of the plan will Received in revised form 14 June 2008 greatly benefit from identification of epicenters and temporal analysis of outbreaks. Accordingly, we have Accepted 15 June 2008 developed a simulation-based methodology to analyze the spread of H5N1 using stochastic interactions Available online 9 August 2008 between waterfowl, poultry, and humans. We have incorporated our methodology into a user friendly, extensible software environment called SEARUMS. SEARUMS is an acronym for Studying the Epidemi- Keywords: ology of Avian Influenza Rapidly Using Modeling and Simulation. It enables rapid scenario analysis to Influenza identify epicenters and timelines of H5N1 outbreaks using existing statistical data. The case studies H5N1 Spatially explicit model conducted using SEARUMS have yielded results that coincide with several past outbreaks and provide Agent-based model non-intuitive inferences about global spread of H5N1. This article presents the methodology used for Discrete event simulation modeling the global epidemiology of avian influenza and discusses its impacts on human and poultry morbidity and mortality.
    [Show full text]
  • 1 CLIMATE CHANGE INFLUENCES on the RISK of AVIAN INFLUENZA OUTBREAKS and ASSOCIATED ECONOMIC LOSS Jianhong E. Mu Research Assist
    CLIMATE CHANGE INFLUENCES ON THE RISK OF AVIAN INFLUENZA OUTBREAKS AND ASSOCIATED ECONOMIC LOSS Jianhong E. Mu Research Assistant [email protected] Bruce A. McCarl University Distinguished Professor [email protected] Ximing Wu Associate Professor [email protected] Department of Agricultural Economics Texas A&M University College Station, TX, 77843-2124 Li Gan Professor [email protected] Department of Economics Texas A&M University College station, TX, 77843 Selected Paper prepared for presentation at the Agricultural & Applied Economics Association’s 2011 AAEA & NAREA Joint Annual Meeting, Pittsburgh, Pennsylvania, July 24-26, 2011 Copyright 2011 by [Jianhong Mu, Bruce McCarl, Ximing Wu and Li Gan]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. 1 Abstract: This paper examines the effect that climate has on Avian Influenza outbreak probability. The statistical analysis shows across a broad region the probability of an outbreak declines by 0.22% when the temperature rises 1 Celsius degree and increases by 0.34% when precipitation increases by 1millimeter. These results indicate that the realized climate change of the last 20 years not only has been a factor behind recent HPAI outbreaks, but that climate change is likely to play an even greater role in the future. The statistical results indicate that overall, the risk of an AI outbreak has been increased by 51% under past climate change and 3-4% under future climate change. An economic evaluation shows the increased probability of outbreaks has caused damages of about $107 million in China and $29 million in the United States due to past climate change.
    [Show full text]
  • Breeding Influenza: the Political Virology of Offshore Farming
    Breeding Influenza: The Political Virology of Offshore Farming Robert G. Wallace Department of Geography, University of Minnesota, Minneapolis, MN, USA; [email protected] Abstract: The geographic extent, xenospecificity, and clinical course of influenza A (H5N1), the bird flu strain, suggest the virus is an excellent candidate for a pandemic infection. Much attention has been paid to the virus’s virology, pathogenesis and spread. In contrast, little effort has been aimed at identifying influenza’s social origins. In this article, I review H5N1’s phylogeographic properties, including mechanisms for its evolving virulence. The novel contribution here is the attempt to integrate these with the political economies of agribusiness and global finance. Particular effort is made to explain why H5N1 emerged in southern China in 1997. It appears the region’s reservoir of near-human-specific recombinants was subjected to a phase change in opportunity structure brought about by China’s newly liberalized economy. Influenza, 200 nm long, seems able to integrate selection pressures imposed by human production across continental distances, an integration any analysis of the virus should assimilate in turn. Keywords: influenza, phylogeography, virulence, agribusiness, poultry intensification, AgFDI Introduction: Panic in the City Hong Kong, March 1997. An outbreak of deadly bird flu sweeps through poultry on two farms. The outbreak fizzles out, but 2 months later a 3- year-old boy dies of the same strain, identified as a highly pathogenic version of influenza A (H5N1). Officials are shocked. This appears the first time such a strain has jumped the species barrier and killed a human. Shocking too, the outbreak proves persistent.
    [Show full text]
  • Avian Influenza A(H5N6): the Latest Addition to Emerging Zoonotic Avian Influenza Threatsats in East and Southeast Asia
    empres watch VOL 30 — NOVEMBER 2014 [email protected] | WWW.FAO.ORG/AG/EMPRES.HTML Avian influenza A(H5N6): the latest addition to emerging zoonotic avian influenza threatsats in East and Southeast Asia FAO Contributors: Guillaume Belot, Filip Claes, Sophie Von Dobschuetz, Akiko Kamata, Scott Newman, Chintana Chanthavisouk, Phouvong Phommachanh, Kachen Wongsathapornchai, Guo Fusheng, John Edwards, Wantanee Kalpravidh, Subhash Morzaria, Eran Raizman, Juan Lubroth. Hong Kong Special Administrative Region Since early 2013 several new avian Contents (SAR), including six human fatalities [WHO]. influenza virus strains have been reported in A program of massive culling of poultry in the East and Southeast Asia, threatening both Context of new emerging autonomous region was necessary to put an poultry-dependant livelihoods and human subtypes of Avian Influenza end to the epidemic [De Jong et al, 1998]. A health. In March 2013, avian influenza viruses in eastern Asia 1 few years later the H5N1 HPAI re-emerged A(H7N9) emerged in China causing a total in Asia on a much larger scale. Two human of 456 human cases, and claiming 172 lives Emergence of H5N6 1 cases were first reported in Hong Kong SAR as of 05 November 2014. The virus is of low in February 2003 [Peiris et al, 2004], before pathogenicity in poultry (no clinical signs are H5N6 in Humans 2 the Republic of Korea reported several poultry observed in infected birds) but can cause outbreaks in December 2003. Between late lethal pulmonary infection in mammals without Genetic characteristics 2003 and early 2004 H5N1 HPAI expanded prior trans-species adaptation [Can et al, of H5N6 viruses 2 rapidly throughout East and Southeast Asia, 2014].
    [Show full text]
  • 585778V1.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/585778; this version posted March 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title Molecular dissection of the structural and nonstructural proteins of spanish-1918 Influenza, pandemic-2009, and bird flu viruses Authors Gusti Ngurah Mahardika,1* Nyoman Suartha,2 Gusti Ayu Yuniati Kencana,1 Ida Bagus Kade Suardana,1 Nyoman Sri Budayanti3 Author affiliations 1Virology Laboratory, Faculty of Veterinary Medicine Udayana University, Denpasar, Bali, Indonesia 2Animal Hospital, Faculty of Veterinary Medicine Udayana University, Denpasar, Bali, Indonesia 3Microbiology Department, Faculty of Medicine Udayana University, Denpasar, Bali, Indonesia *Corresponding Author Gusti Ngurah Mahardika, Virology Laboratory, Faculty of Veterinary Medicine Udayana University, Jl. PB Sudirman, Denpasar, Bali, Indonesia. Phone/FAX: +62 361223791; Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/585778; this version posted March 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The potential emergence of deadly pandemic influenza viruses is unpredictable and most have emerged with no forewarning. The distinct epidemiological and pathological patterns of the Spanish (H1N1), pandemic-2009 (H1N1), and avian influenza (H5N1), known as bird flu, viruses may allow us to develop a ‘template’ for possible emergence of devastating pandemic strains.
    [Show full text]
  • US and International Responses to the Global Spread of Avian
    Order Code RL33219 CRS Report for Congress Received through the CRS Web U.S. and International Responses to the Global Spread of Avian Flu: Issues for Congress Updated April 4, 2006 Tiaji Salaam-Blyther, Coordinator Analyst in Foreign Affairs Foreign Affairs, Defense, and Trade Division Congressional Research Service ˜ The Library of Congress U.S. and International Responses to the Global Spread of Avian Flu: Issues for Congress Summary Influenza A/H5N1 is the strain of influenza currently spreading throughout the world. Although it is a bird flu, it has infected a relatively small number of people — killing more than half of those infected. Some scientists are concerned that H5N1 may cause the next influenza pandemic. Flu pandemics have occurred cyclically, between every 30 and 50 years. Since 1997, when the first human contracted H5N1 in Hong Kong, the virus has resurfaced and spread to nearly fifty countries in Asia, Europe, the Middle East, and Africa — infecting more than 190 people. In February 2006, the virus spread from Asia and central Europe to western Europe. In March 2006, health experts confirmed new bird flu cases among more than 20 countries across Europe, Asia, and Africa. Most of the countries were experiencing their first H5N1 cases. The first human H5N1 fatalities outside of Asia occurred in 2006 when Turkey and Iraq announced their first human deaths related to H5N1 infection in January 2006 and February 2006, followed by Azerbaijan and Egypt in March 2006. A global influenza pandemic could have a number of consequences. Global competition for existing vaccines and treatments could ensue.
    [Show full text]
  • Influenza (H5N1) Viruses in Poultry, Russian Federation, 2005–2006 Aleksandr S
    Influenza (H5N1) Viruses in Poultry, Russian Federation, 2005–2006 Aleksandr S. Lipatov,*1,2 Vasily A. Evseenko,†1 Hui-Ling Yen,* Anna V. Zaykovskaya,† Alexander G. Durimanov,† Sergey I. Zolotykh,† Sergey V. Netesov,† Ilya G. Drozdov,† Gennadiy G. Onishchenko,‡ Robert G. Webster,* and Alexander M. Shestopalov† We studied 7 influenza (H5N1) viruses isolated from urgency of global pandemic preparedness for influenza poultry in western Siberia and the European part of the (H5N1) (6). Russian Federation during July 2005–February 2006. Full In May 2005, an outbreak of influenza (H5N1) in genome sequences showed high homology to Qinghai-like migratory waterfowl was observed at Qinghai Lake in influenza (H5N1) viruses. Phylogenetic analysis not only western China (7,8). Possible spread to Europe by overlap- showed a close genetic relationship between the H5N1 strains isolated from poultry and wild migratory waterfowls ping flyways was a concern (7). During 2005–2006, but also suggested genetic reassortment among the ana- influenza (H5N1) spread throughout Mongolia, lyzed isolates. Analysis of deduced amino acid sequences Kazakhstan, the Siberian and European part of Russia, of the M2 and neuraminidase proteins showed that all iso- Ukraine, countries of the European Union, Africa, and the lates are potentially sensitive to currently available antiviral Middle East (9). The first human cases of influenza drugs. Pathogenicity testing showed that all studied viruses (H5N1) outside Southeast Asia were reported in 2006 in were highly pathogenic in chickens; for 3 isolates tested in Azerbaijan, Djibouti, Egypt, Iraq, and Turkey (9). mice and 2 tested in ferrets, pathogenicity was heteroge- The first influenza (H5N1) epizootics in the Russian neous.
    [Show full text]
  • Overview of the Emergence and Characteristics of the Avian Influenza A(H7N9) Virus
    Overview of the emergence and characteristics of the avian influenza A(H7N9) virus 31 May 2013 Table of Contents Table of Contents ........................................................................................................................ 1 Summary .................................................................................................................................... 1 1. The outbreak ........................................................................................................................... 2 2. Clinical findings ...................................................................................................................... 2 3. Laboratory diagnosis ............................................................................................................... 3 4. Laboratory biosafety................................................................................................................ 4 5. Characterization of the A(H7N9) viruses ................................................................................. 4 6. Infection in animals ................................................................................................................. 6 7. Antiviral therapy ..................................................................................................................... 7 8. Vaccines ................................................................................................................................. 7 9. Risk factor assessment ............................................................................................................
    [Show full text]
  • Predicting the Global Spread of H5N1 Avian Influenza
    Predicting the global spread of H5N1 avian influenza A. Marm Kilpatrick, Aleksei A. Chmura, David W. Gibbons, Robert C. Fleischer, Peter P. Marra, and Peter Daszak PNAS published online Dec 7, 2006; doi: 10.1073/pnas.0609227103 This information is current as of December 2006. Supplementary Material Supplementary material can be found at: www.pnas.org/cgi/content/full/0609227103/DCl This article has been cited by other articles: www.pnas. org#otherarticles E-mail Alerts Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here. Rights & Permissions To reproduce this article in part (figures, tables) or in entirety, see: www.pnas.org/misc/rightperm.shtml Reprints To order reprints, see: www.pnas.org/misc/reprints.shtml Notes: Predicting the global spread of H5N1 avian influenza A. Marm Kilpatrick*^ Aleksei A. Chmura*, David W. Gibbons*, Robert C. Fleischer^, Peter P. Marra^, and Peter Daszal<* *Consortium for Conservation Medicine, New Yorl<, NY 10001; *Royal Society for the Protection of Birds, Sandy, Bedfordshire SG19 2DL, United Kingdom; and ^National IVluseum of Natural History, and 'Smithsonian IVligratory Bird Center, National Zoological Park, Smithsonian Institution, Washington, DC 20008 aß Communicated by Hans R. Herren, Millennium Institute, Arlington, VA, October 19, 2006 (received for review April 26, 2006) The spread of highly pathogenic H5N1 avian influenza into Asia, commercial trade in wild birds (4), making this another potentially Europe, and Africa has resulted in enormous impacts on the poultry important pathway unless all imported birds are quarantined, tested industry and presents an important threat to human health.
    [Show full text]