The Highly Pathogenic Avian Influenza A(H5N1) Virus: a Twenty-Year Journey of Narratives and (In)Secure Landscapes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
US and International Responses to the Global Spread of Avian
Order Code RL33219 CRS Report for Congress Received through the CRS Web U.S. and International Responses to the Global Spread of Avian Flu: Issues for Congress Updated February 23, 2006 Tiaji Salaam-Blyther and Emma Chanlett-Avery Coordinators Foreign Affairs, Defense, and Trade Division Congressional Research Service ˜ The Library of Congress U.S. and International Responses to the Global Spread of Avian Flu: Issues for Congress Summary One strain of avian influenza currently identified in Asia, Europe, the Middle East, and Africa is known as Influenza A/H5N1. Although it is a bird flu, it has infected a relatively small number of people — killing around 50% of those infected. Some scientists are concerned that H5N1 may cause the next influenza pandemic. Flu pandemics have occurred cyclically, between every 30 and 50 years. Since 1997, when the first human contracted H5N1 in Hong Kong, the virus has resurfaced and spread to more than a dozen countries in Asia and eastern Europe — infecting more than 170 people and killing more than 90. In February 2006, the virus spread further to countries in western Europe. That month, officials confirmed that birds in Austria, Germany, Greece, and Italy were infected with the virus. Health experts are investigating suspected bird cases in France. The first human H5N1 fatalities outside of Asia occurred in 2006 when Turkey and Iraq announced their first human deaths related to H5N1 infection in January 2006 and February 2006, respectively. A global influenza pandemic could have a number of consequences. Global competition for existing vaccines and treatments could ensue. Some governments might restrict the export of vaccines or other supplies in order to treat their own population. -
June 11, 2021 the Honorable Xavier Becerra Secretary Department of Health and Human Services 200 Independence Ave S.W. Washingto
June 11, 2021 The Honorable Xavier Becerra Secretary Department of Health and Human Services 200 Independence Ave S.W. Washington, D.C. 20201 The Honorable Francis Collins, M.D., Ph.D. Director National Institutes of Health 9000 Rockville Pike Rockville, MD 20892 Dear Secretary Becerra and Director Collins, Pursuant to 5 U.S.C. § 2954 we, as members of the United States Senate Committee on Homeland Security and Governmental Affairs, write to request documents regarding the National Institutes of Health’s (NIH) handling of the COVID-19 pandemic. The recent release of approximately 4,000 pages of NIH email communications and other documents from early 2020 has raised serious questions about NIH’s handling of COVID-19. Between June 1and June 4, 2021, the news media and public interest groups released approximately 4,000 pages of NIH emails and other documents these organizations received pursuant to Freedom of Information Act requests.1 These documents, though heavily redacted, have shed new light on NIH’s awareness of the virus’ origins in the early stages of the COVID- 19 pandemic. In a January 9, 2020 email, Dr. David Morens, Senior Scientific Advisor to Dr. Fauci, emailed Dr. Peter Daszak, President of EcoHealth Alliance, asking for “any inside info on this new coronavirus that isn’t yet in the public domain[.]”2 In a January 27, 2020 reply, Dr. Daszak emailed Dr. Morens, with the subject line: “Wuhan novel coronavirus – NIAID’s role in bat-origin Covs” and stated: 1 See Damian Paletta and Yasmeen Abutaleb, Anthony Fauci’s pandemic emails: -
Worksafe Bulletin Avian Influenza
Work Sa fe Bu l l e t in Avian influenza — Protect against infection and prevent the virus from spreading According to the BC Centre for Disease Control, avian influenza (flu) has been transmitted in rare cases from birds to humans and from humans to humans. Because of this possible health risk, it is important to protect humans against exposure to avian flu. What is avian influenza? An outbreak will also require the use of safe work procedures and personal protective equipment Avian flu is a viral disease that affects poultry (PPE), including respiratory protection for workers. and, in some cases, humans. There are several strains of avian flu, which are closely related to It is very important that no birds or materials human influenza. be taken from suspected infection areas. All materials, equipment, and people coming out of such areas must be decontaminated. Do not enter What if an outbreak occurs contaminated areas, if possible. If you must enter, on my farm? follow the direction of CFIA. If you suspect a bird in your flock is infected with avian flu, you must take immediate action. How can I protect myself and others Every farm in British Columbia is required to follow during an outbreak? the BC Poultry Biosecurity Reference Guide. Implement your SOP for self-quarantine, use This document describes mandatory biosecurity enhanced PPE, and follow instructions from CFIA protocols, including how to develop a standard and the Fraser Health Authority. Review these operating procedure (SOP) for self-quarantine. items with your workers and make sure they have Make sure everyone follows your enhanced any necessary training. -
US and International Responses to the Global Spread of Avian
Order Code RL33219 CRS Report for Congress Received through the CRS Web U.S. and International Responses to the Global Spread of Avian Flu: Issues for Congress Updated January 11, 2006 Tiaji Salaam-Blyther and Emma Chanlett-Avery Coordinators Foreign Affairs, Defense, and Trade Division Congressional Research Service ˜ The Library of Congress U.S. and International Responses to the Global Spread of Avian Flu: Issues for Congress Summary One strain of avian influenza currently identified in Asia and Europe is known as Influenza A/H5N1. Although it is a bird flu, it has infected a relatively small number of people — killing around 50% of those infected. Scientists are concerned that H5N1 may cause the next influenza pandemic. Flu pandemics have occurred cyclically, roughly between every 30 and 50 years. Since 1997, when the first human contracted H5N1 in Hong Kong, the virus has resurfaced and spread to more than a dozen countries in Asia and Europe — infecting more than 140 people and killing approximately half. Britain and Taiwan both reported avian flu cases of H5N1 in 2005. In the latter cases, the infected birds were identified as imports, and died in quarantine. A global influenza pandemic could have a number of consequences. Global competition for existing vaccines and treatments could ensue. Some governments might restrict the export of vaccines or other supplies in order to treat their own population. Some countries might face a shortage of vaccines, antiviral medication, or other medical equipment, because of limited global supply. Hospitality and airline industries, and international trade could be negatively impacted. If global travel and trade were to suddenly drop, there could be productivity losses and service disruptions. -
Melissaossmanpro.Pdf
August 19, 2021 Chairman Lipps, Vice Chair Holmes, Ranking Member Russo, and Members of the House Health Committee, thank you for the opportunity to provide proponent testimony on House Bill 248. My family and I are asking that Ohio HB248 be passed in order to protect the individual freedoms we currently have as American citizens. I work in a corporate setting and my husband owns a small business. We have two young daughters who are relying on us to provide for them and protect their rights. I support this bill in hopes that they can grow up with the same liberties we have had. Segregation and discrimination over individual health choices should be taken seriously and passing this bill is key to avoiding those types of issues in the future. I am not a scientist, but I am a mom, a wife, and a daughter who takes the health of my family very seriously. I have done extensive amounts of research on the SARS-COV2 virus and subsequent vaccines. There are also many health experts that provide me with helpful information. I am sure you are receiving many testimonies about the large numbers of vaccine injuries and even deaths that have occurred during this vaccine campaign. Personally, I know two women who have had severe menstrual issues (requiring surgery) that they can connect back to occurring right after the vaccine. My friends’ cousin passed away at only 23 years old from an enlarged heart after receiving the vaccine. The stories go on and on. The point is that no legislation should force my family and I to inject ourselves with substances that have side effects such as this. -
Medical JOUR
RHODE ISLAND M EDiCAL J ournal ZOOM – It’s a Match! Virtual National Match Day is largest on record See page 75 R SPECIAL SECTION, PART II BIOMEDICAL/TRANSLATIONAL RESEARCH in RI GUEST EDITORS: JAMES PADBURY, MD; BONGSUP CHO, PhD ApRiL 2021 VOLUME 104 • NUMBER 3 iSSN 2327-2228 REINVENTING WHAT YOU EXPECT FROM A MEDICAL PROFESSIONAL LIABILITY PROVIDER. With Coverys, you can reduce the distractions that come between diagnosis and outcomes. By leveraging claims data and analytics plus innovative educational resources, we’re helping doctors and administrators reduce distractions and focus on improving clinical, operational, and financial outcomes.Visit coverys.com Insurance products issued by ProSelect® Insurance Company (NE, NAIC 10638) and Preferred Professional Insurance Company® (NE, NAIC 36234). RHODE ISLAND M EDICAL J OURNAL 15 Translational Research: The Time is Now JAMES F. PADBURY, MD BONGSUP P. CHO, PhD GUEST EDITORS James F. Padbury, MD Bongsup Cho, PhD 17 The Time is NOW: Filling the Gaps in Treatment of Opioid-Exposed Infants: A Prospective, Pragmatic, Randomized Control Drug Trial ADAM J. CZYNSKI, DO; ABBOT R. LAPTOOK, MD 22 COBRE on Opioid and Overdose: A Collaborative Research-Based Center Addressing the Crises in Rhode Island and Beyond TRACI C. GREEN, PhD, MSc; ELIANA KAPLOWITZ, BA; KIRSTEN LANGDON, PhD; JACLYN M.W. HUGHTO, PhD, MPH; WILLIAM C. GOEDEL, PhD; ADAM J. CZYNSKI, DO; GAYLE FRASER, BS; JOSIAH RICH, MD, MPH 27 Brown University COBRE Center for Addiction and Disease Risk Exacerbation PETER M. MONTI, PhD; JENNIFER W. TIDEY, PhD; JASJIT S. AHLUWALIA, MD 32 The Center of Biomedical Research Excellence (COBRE) for Perinatal Biology – Accomplishments, Impact, and Long-term Results SUNIL K. -
Excerpted from the Hot Zone by Richard Preston
The Hot Zone, by Richard Preston - Excerpt The Hot Zone captures the terrifying true story of an Ebola outbreak that made its way from the jungles of Africa to a research lab just outside of Washington, D.C. In the excerpt below, author Richard Preston describes the symptoms of this deadly virus as they appeared in one of its first known human victims. The headache begins, typically, on the seventh day after exposure to the agent. On the seventh day after his New Year’s visit to Kitum cave-January 8, 1980-Monet felt a throbbing pain behind his eyeballs. He decided to stay home from work and went to bed in his bungalow. The headache grew worse. His eyeballs ached, and then his temples began to ache, the pain seeming to circle around inside his head. It would not go away with aspirin, and then he got a severe backache. His housekeeper, Johnnie, was still on her Christmas vacation, and he had recently hired a temporary housekeeper. She tried to take care of him, but she really didn’t know what to do. Then, on the third day after his headache started, he became nauseated, spiked a fever, and began to vomit. His vomiting grew intense and turned into dry heaves. At the same time, he became strangely passive. His face lost all appearance of life and set itself into an expressionless mask, with the eyeballs fixed, paralytic, and staring. The eyelids were slightly droopy, which gave him a peculiar appearance, as if his eyes were popping out of his head and half closed at the same time. -
Peter Daszak IPBES Scoping for the Nexus Assessment: Health
IPBES Scoping for the Nexus Assessment: Health & Linkages Peter Daszak [email protected] The focus for this session Three thematic areas: 1. Biodiversity & health 2. Global environmental change & health 3. Food, water & health Your suggestions on: • Scope of the assessment • Questions to address Post-2020 Biodiversity Framework and Global Goals . Aichi Biodiversity Targets, particularly: • Target 14. Biodiversity and Ecosystem Services . Sustainable Development Goals, e.g.: • 3. Health; • 6. Clean Water and Sanitation; • 13. Climate Action; • 14. Aquatic Ecosystems; • 15. Terrestrial Ecosystems; • 17. Partnerships . Global Health Security Agenda (Prevent, Detect, Respond) . Sendai Framework for Disaster Risk Reduction 2015-2030 • Bangkok Principles for implementation of health aspects One Health approach • Health of people, wildlife, livestock, environment • Impact of human-mediated global environmental change on health across all sectors Biodiversity’s Health Services Pharmaceuticals • Penicillin (fungus); Digitalis (foxglove plant); Quinine and quinidine (Peruvian Cinchona tree); Morphine and codeine (poppies); Taxol (Pacific Yew tree) Welfare • Link between good mental health and open spaces, biodiversity, forests/parks • Outdoor activity linked to overall fitness and lack of disease • Dietary diversity and nutritional health Protection against disease • Lower risk emerging diseases from undisturbed intact forest Honey Bee Declines in U.S.A. Biodiversity loss & health Intact Forest Residential Urban Culex mosquitoes prefer -
Hot Zone Excerpt.Pdf
This book describes events between 1967 and The second angel poured his bowl 1993. The incubation period of the viruses in this into the sea, and it became tike the blood book is less than twenty-four days. No one who of a deai-mon. suffered from any of the viruseJ or who was in contact with anyone suffering from them can catch -APOCALYPSE or spread the viruses outside of the incubation period. None of the living people referred to in this book suffer from a contagious disease. The viruses cannot surive independently for more than ten days unless the viruses ur" pr-es"*"d and frozen with special procedur"s arrd laboratory equipment. Thus none of the locations in Reston or the Washington, D.C., area described in this book is infective or dangerous. TO THE READEII This book is nonfiction. The story is true, and the people are real. I have occasionally changed the ,,Charles names of characters, including Monet,, and "Peter Cardinal." When I have changed a name, I state so in the text. The dialogue comes from the recollections of the participants, and has been extensively cross- checked. At certain moments in the story, I describe the stream of a person,s thoughts. In such instances, I am basing my narrative on interviews with the subjects in which they have recalled their thoughts often repeatedly, followed by fact- checking sessions in which the subjects confirmed their recollections. If you ask a person, ,,What were you thinking?" you may get an answer that is richer and more revealing of the human condition than any stream of thoughts a novelist could invent. -
Modeling and Analysis of Global Epidemiology of Avian Influenza
Environmental Modelling & Software 24 (2009) 124–134 Contents lists available at ScienceDirect Environmental Modelling & Software journal homepage: www.elsevier.com/locate/envsoft Modeling and analysis of global epidemiology of avian influenza Dhananjai M. Rao a,*, Alexander Chernyakhovsky b, Victoria Rao c a CSA Department, Miami University, 205 Benton Hall, Oxford, OH 45056, USA b Mason High School, Mason, OH 45040, USA c Cybernetic Evolution Inc., Mason, OH 45040, USA article info abstract Article history: The World Health Organization has activated a global preparedness plan to improve response to avian Received 18 September 2007 influenza outbreaks, control outbreaks, and avoid an H5N1 pandemic. The effectiveness of the plan will Received in revised form 14 June 2008 greatly benefit from identification of epicenters and temporal analysis of outbreaks. Accordingly, we have Accepted 15 June 2008 developed a simulation-based methodology to analyze the spread of H5N1 using stochastic interactions Available online 9 August 2008 between waterfowl, poultry, and humans. We have incorporated our methodology into a user friendly, extensible software environment called SEARUMS. SEARUMS is an acronym for Studying the Epidemi- Keywords: ology of Avian Influenza Rapidly Using Modeling and Simulation. It enables rapid scenario analysis to Influenza identify epicenters and timelines of H5N1 outbreaks using existing statistical data. The case studies H5N1 Spatially explicit model conducted using SEARUMS have yielded results that coincide with several past outbreaks and provide Agent-based model non-intuitive inferences about global spread of H5N1. This article presents the methodology used for Discrete event simulation modeling the global epidemiology of avian influenza and discusses its impacts on human and poultry morbidity and mortality. -
1 CLIMATE CHANGE INFLUENCES on the RISK of AVIAN INFLUENZA OUTBREAKS and ASSOCIATED ECONOMIC LOSS Jianhong E. Mu Research Assist
CLIMATE CHANGE INFLUENCES ON THE RISK OF AVIAN INFLUENZA OUTBREAKS AND ASSOCIATED ECONOMIC LOSS Jianhong E. Mu Research Assistant [email protected] Bruce A. McCarl University Distinguished Professor [email protected] Ximing Wu Associate Professor [email protected] Department of Agricultural Economics Texas A&M University College Station, TX, 77843-2124 Li Gan Professor [email protected] Department of Economics Texas A&M University College station, TX, 77843 Selected Paper prepared for presentation at the Agricultural & Applied Economics Association’s 2011 AAEA & NAREA Joint Annual Meeting, Pittsburgh, Pennsylvania, July 24-26, 2011 Copyright 2011 by [Jianhong Mu, Bruce McCarl, Ximing Wu and Li Gan]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. 1 Abstract: This paper examines the effect that climate has on Avian Influenza outbreak probability. The statistical analysis shows across a broad region the probability of an outbreak declines by 0.22% when the temperature rises 1 Celsius degree and increases by 0.34% when precipitation increases by 1millimeter. These results indicate that the realized climate change of the last 20 years not only has been a factor behind recent HPAI outbreaks, but that climate change is likely to play an even greater role in the future. The statistical results indicate that overall, the risk of an AI outbreak has been increased by 51% under past climate change and 3-4% under future climate change. An economic evaluation shows the increased probability of outbreaks has caused damages of about $107 million in China and $29 million in the United States due to past climate change. -
Viral Outbreak: the Science of Emerging Disease Lecture 4 – Solving SARS and Other Viral Mysteries Joe Derisi, Ph.D
Viral Outbreak: The Science of Emerging Disease Lecture 4 – Solving SARS and other Viral Mysteries Joe Derisi, Ph.D. 1. Begin of Lecture 4 (0:16) [ANNOUNCER:] From the Howard Hughes Medical Institute. The 2010 Holiday Lectures on Science. This year's lectures, "Viral Outbreak: The Science of Emerging Disease", will be given by Dr. Joseph DeRisi, Howard Hughes Medical Institute investigator at the University of California, San Francisco, and by Dr. Eva Harris, Professor of Infectious Diseases at the University of California, Berkeley. The fourth lecture is titled Solving SARS and Other Viral Mysteries. And now to introduce our program, the President of the Howard Hughes Medical Institute, Dr. Robert Tjian 2. Welcome by HHMI President Dr. Robert Tjian (01:07) [DR. TJIAN:] Welcome back to this final presentation of this year's Holiday Lectures on Science. It's a great pleasure once again to introduce Joe DeRisi to give our fourth and last lecture in the series. Previously, Joe told us about how using bioengineering, computers, and molecular biology, he has been able to combine these tools for a potent approach to hunt for new viruses. In this lecture, Joe is going to show you how he can use his Virochip in real-time and in real life situations to discover and quickly diagnosis new viral outbreaks. Joe will also, I think, give us a glimpse of what the future in biotechnology holds towards the end of his talk. And now a brief video about Joe. 3. Profile of Dr. Joseph DeRisi (02:07) [DR. DERISI:] Science as we know it now is a highly interdisciplinary endeavor.