Cancer and the Eye: What You Need to Know

Total Page:16

File Type:pdf, Size:1020Kb

Cancer and the Eye: What You Need to Know 7/5/2016 Systemic vs ocular cancers Cancer and the Eye: • Ocular cancers What you need to know • 2580 new cases each year (primarily melanomas) • 270 deaths Tammy P. Than OD, MS, FAAO • Systemic cancers University of Alabama Birmingham School of Optometry • 1.65 million new cases each year • 589,000 deaths http://www.cancer.org/cancer/eyecancer/deta iledguide/eye-cancer-key-statistics What we are going to talk about Definitions • Cancer basics •Cancer: • How can systemic cancer affect the eyes? • A collection of diseases in which some • What should I be thinking if I see a patient of the body’s cells begin to divide with cancer? without stopping, grow out of control, • What treatments are available for cancer and can become invasive and how can they affect the eyes? • Malignant •Surgery • Can spread into, or invade, nearby •Radiation tissues •Chemotherapy • Differentiated vs undifferentiated 3 4 “Pre-cancerous” changes Categories of cancer • Carcinoma – • Lymphoma – begins most common; in lymphocytes (B- or T- formed by cell) epithelioid cells • Multiple Myeloma – • Sarcoma – form malignant plasma cells in bone and soft • Melanoma tissue • Neuroendocrine - • Leukemia – begin forms from cells that release in bone marrow; hormones in response to a abnormal WBCs signal from the nervous system 5 6 http://www.cancer.gov/about-cancer/what-is- http://www.cancer.gov/about-cancer/what-is-cancer cancer#differences-cancer-cells-normal-cells 1 7/5/2016 Most common cancers Metastasis • Process by which • Increased risk if cancer spreads from tumor cells have the organ of origin aggressive traits on (primary site) to histopathology distant tissues • Poorly differentiated • Disorganized and • Invade beyond normal tissue boundaries invasive-appearing • Spread to regional tumors lymph nodes is one • Cells generally look of the early signs of the same as cells of met potential and/or the original cancer distant spread 8 http://seer.cancer.gov/statfacts/html/all.html Ocular metastases Choroidal metastases • Rare site due to the absence of a lymphatic • Creamy yellow system within the eye subretinal mass, • Spread is via blood, therefore parts of eye often with with greatest vascular supply most likely to be subretinal fluid affected (73%) • Uvea: choroid, esp perimacular choroid • Plateau or dome configuration • But still may be the most common intraocular malignant neoplasm • Unusually large amount of • Based on autopsy data; often not seen subretinal fluid • Optic nerve, retina, vitreous, conjunctiva, orbit for their size can also be affected, but these are rare 9 10 Choroidal metastases Iris • Solitary (72%) • Solid, usually • Avg was 1.6; range white/yellow 1-13 • 74% solitary • Posterior to the •42% inferior equator (92%) •Can shed tumor • Tends to grow rapidly cells that form a • May double in size pseudohyopyon or in a few weeks clog TM and cause glaucoma 11 12 2 7/5/2016 Ciliary body Management • Yellow dome- “Treatment may help prolong the lives of shaped; usually some people with metastatic cancer. In difficult to general, though, the primary goal of visualize clinically treatments for metastatic cancer is to • Inferior location control the growth of the cancer or to 48% of the time relieve symptoms caused by it. Metastatic tumors can cause severe damage to how • May be associated the body functions, and most people who with extensive RD die of cancer die of metastatic disease” and severe ocular pain 13 14 http://www.cancer.gov/about-cancer/what-is- cancer#related-diseases Treatment/management Radiation •External beam •Plaque “The aim of treatment is to restore radiation radiotherapy visual acuity and therefore improve • Lung and breast are • Can be completed most common in a few days the patients’ quality of life for their primary sites, and remaining life span” are radiosensitive • Specialty centers • Readily available • Must be able to • Time consuming: undergo surgery • 5 days/week Cohen VML (2013) • 30 min • For 2-10 weeks 15 16 Other treatments Cancer of Unknown Primary • Systemic chemotherapy • Clinical syndrome • Primary site becomes • May respond, especially to treatments • No primary site is identified obvious in only 5-10% of for breast cancer after standard clinical and patients during their pathological evaluation lifetime. • PDT (Photodynamic therapy) • Exact incidence is • At autopsy, primary site unknown, as many of the identified in ~ 75% of • Best for solitary metastases patient are “assigned” patients. other diagnoses • Primary sites in the • Intravitreal anti-VEGF • May account for 5% of all pancreas, lung, • Best for small, well-circumbscribed mets invasive cancers colorectum and liver without exudative RDs • Usually present with account for 60% of advanced cancer. cases. Breast, ovary, or • Especially good for colon cancer prostate are rare. 17 18 Greco FA, Hainsworth JD, 2011 3 7/5/2016 Paraneoplastic syndromes Paraneoplastic syndromes • Group of rare disorders • Symptoms may be • Nervous and visual system • Can cause a host of (~10%) that are triggered endocrine, are rare, affecting as few neurologic symptoms: as 0.01% of patients by an abnormal immune neuromuscular, • Difficulty walking, system response to a musculoskeletal, • Occurs when an immune swallowing, or talking cancerous tumor cardiovascular, response is mounted to • Loss of muscle tone or fine cutaneous, hematologic, motor ability • Disorders arise from tumor cancer antigens; these gastrointestinal, or renal cancer-fighting antibodies • Memory loss, dementia, secretion of hormones, seizures • May in part explain & T-cells mistakenly attack peptides, or cytokines OR • In the eye, they disrupt immune cross-reactivity some of the most normal cells in the nervous common symptoms of system - including brain, normal cellular function, between tumor and normal and ultimately cause host tissues cancer, such as fatigue, spinal cord, peripheral anorexia, and weight nerves or muscle – or the visual dysfunction. • Most common in individuals loss. eye with lung, ovarian, lymphatic, or breast cancer 19 20 Rahimey E, Sarraf D (2013) Rahimey E, Sarraf D (2013) Cancer-associated retinopathy Cancer-associated retinopathy • Likely most common of the intraocular PNS • Precedes diagnosis of underlying cancer in • Painless visual loss, developing over weeks to about 50% of patients months • Diagnosis made by labs (anti-retinal antibody • Symptoms: photosensitivity, photopsia, glare, testing) and ERG (severely reduced to poor central and color vision (cones) OR extinguished) nyctalopia, impaired dark adaptation, ring • No effective treatment - long-term scotoma, or other peripheral field loss (rods) immunosuppresion is the main therapy – but • Fundus findings normal, or optic nerve pallor, visual prognosis is poor; vision loss is often attenuated retinal arterioles, and RPE thinning rapid and relentless. and mottling • Treatment of underlying malignancy does not appear to be effective 21 22 Rahimey E, Sarraf D (2013) Rahimey E, Sarraf D (2013) Take home points Basic Principles of Therapy • Systemic cancer is prevalent in the population, and will continue to be increasingly prevalent •Staging guides therapy • Metastases to the eye are most common in the choroid, but can occur anywhere in the eye •TNM • 75% of the time the primary site will be the lung or breast •Multimodality treatment • Patients with cancer and new complaints of blurred vision or eye pain should be evaluated •Cure versus Comfort • Although rare, be aware of the clinical entities of paraneoplastic syndrome and CAR •Risk versus Benefit 23 4 7/5/2016 Surgery Radiation Therapy: The Basics • Localized malignancy • Administration • Surgery alone for • Teletherapy ~25% of patients • Brachytherapy • May be palliative • I-125, Sr-90, Ru-106 • Ocular complications • Targets DNA - impairs division can occur • Dependent upon tissue • free radicals generated excised • Intensity Modulated Radiation Therapy • Spectacle considerations (IMRT) Radiation Therapy: Radiation Therapy: The Basics Treatment Considerations • Rad = unit of absorbed energy in •Fraction Size tissue • < 225 cGy / day • Gray (Gy) = 100 Rad • Fractionation Schedule • the “latest” unit • 5 days / week for 2-7 weeks • beam is on for 1-2 minutes • 1 Gy = 100 cGy • Hyperfractionation • Chest X-Ray is < 1 cGy • Cancer treatment may be 6000 cGy • Fraction size is key! Radiation Therapy: Radiation Therapy: Tumors to Treat Treatment Considerations Tissue Dose, cGy •High radiosensitivity Brain 6000 • High mitotic activity Spinal Cord 4500 • Highly vascularized Heart 4500 Intestine 4500 Liver 3000 Lung 2000 Kidney 2000 Bone Marrow 250 5 7/5/2016 Radiation Therapy: Radiation Therapy: Acute Radiation Sickness Long Term Complications •GI upset • Tend to be progressive •N/v • Diarrhea • Can occur years after •Anemia treatment • Depends on area radiated • Incidence increases with: •Skin rashes • More fractions • Alopecia - localized • Larger fractions •Fatigue • Higher total dose Radiation Complications: Radiation Complications: Anterior Segment Diagnosis and Management • Focal radiation • Eyelids • Head/neck delivery • Conjunctiva • Total body irradiation •Lacrimal • Prior to bone marrow transplantation • 13% (N=397) had posterior segment system complications •Cornea • Hemibody irradiation • Decreases diffuse bone pain •Iris • Treats multiple disease sites •Sclera • May require treatment of other half •Lens Radiation Complications: Eyelid Epiphora • Telangiectasia • Causes secondary to radiation: • Madarosis •KCS • Transient • Permanent (>50 gy) • Pseudo-epiphora
Recommended publications
  • RETINAL DISORDERS Eye63 (1)
    RETINAL DISORDERS Eye63 (1) Retinal Disorders Last updated: May 9, 2019 CENTRAL RETINAL ARTERY OCCLUSION (CRAO) ............................................................................... 1 Pathophysiology & Ophthalmoscopy ............................................................................................... 1 Etiology ............................................................................................................................................ 2 Clinical Features ............................................................................................................................... 2 Diagnosis .......................................................................................................................................... 2 Treatment ......................................................................................................................................... 2 BRANCH RETINAL ARTERY OCCLUSION ................................................................................................ 3 CENTRAL RETINAL VEIN OCCLUSION (CRVO) ..................................................................................... 3 Pathophysiology & Etiology ............................................................................................................ 3 Clinical Features ............................................................................................................................... 3 Diagnosis .........................................................................................................................................
    [Show full text]
  • Outer Retina Changes on Optical Coherence Tomography in Vitamin a Defciency Meghan K
    Berkenstock et al. Int J Retin Vitr (2020) 6:23 https://doi.org/10.1186/s40942-020-00224-1 International Journal of Retina and Vitreous CASE REPORT Open Access Outer retina changes on optical coherence tomography in vitamin A defciency Meghan K. Berkenstock, Charles J. Castoro and Andrew R. Carey* Abstract Background: Vitamin A defciency is rare in the United States and can be missed in patients with malabsorption syn- dromes without a high dose of suspicion. Ocular complications of hypovitaminosis A include xerosis and nyctalopia, and to a lesser extent reduction in visual acuity and color vision. Outer retinal changes, as seen on spectral domain optic coherence tomography (SD-OCT), in patients with vitamin A defciency have previously not been documented. Case presentation: We present two cases with symptoms of severe nyctalopia who were subsequently diagnosed with severe Vitamin A defciency and their unique fndings on SD-OCT of outer nuclear layer difuse thinning with irregular appearance of the interdigitating zone and the ellipsoid zone as well as normalization after vitamin A supplementation. Conclusions: Outer nuclear layer thinning and disruption of the outer retinal bands on SD-OCT are reversible with correction of vitamin A defciency. Improvement in visual acuity, color vision, and nyctalopia are possible with early diagnosis and appropriate treatment. Keywords: Vitamin A defciency, Optical coherence tomography, Nyctalopia Background reverse ocular complications prior to permanent vision Most commonly seen in regions with food insecurity, loss [16, 24, 25]. Only a few reports have described the nutritional defciencies, or restricted diets, vitamin A photoreceptor changes on spectral domain optical coher- defciency is rare in developed countries [1–9].
    [Show full text]
  • Retinitis Pigmentosa and Allied Disorders Yog Raj Sharma, P
    JK SCIENCE REVIEW ARTICLE Retinitis Pigmentosa and Allied Disorders Yog Raj Sharma, P. Raja Rami Reddy, Deependra V. Singh Retinitis pigmentosa (RP) is a generic term for a group Visual field loss is insidious, progressive, peripheral of disorders characterized by hereditary diffuse usually and symmetric between two eyes (except x-linked RP bilaterally symmetrical progressive dysfunction, cell loss which can have bizarre and asymmetric patterns). In the and eventual atrophy of retina. Initially photoreceptors majority of patients the earliest defects are relative are involved and subsequently inner retina is damaged. scotomas in the periphery between 30 and 50 degrees Although both rods and cones are involved, damage to from fixation, which enlarge, deepen and coalesce to the rods is predominant. RP may be seen in isolation form a ring of visual field loss. As ring scotomas enlarge (Typical RP) or in association with systemic diseases. toward the far periphery, islands of relatively normal The reported prevalence of typical RP is approximately vision remain usually temporal but occasionally 1: 50000 worldwide. Most commonly 46% of the cases inferiorly. In typical RP the progression of visual loss is are sporadic with only one affected member in a given slow and relentless. Berson et al found that overall about family. X- linked recessive inheritance is least common, 4.6% of remaining visual field was lost per year (3). amounting to 8%. Autosomal dominant inheritance is Central visual loss found in 19% and recessive in 19%. The age of onset This can occur early in typical RP while significant and the natural history of the disease depend on the peripheral field remains cystoid macular edema, macular inheritance.
    [Show full text]
  • Eye Disease 1 Eye Disease
    Eye disease 1 Eye disease Eye disease Classification and external resources [1] MeSH D005128 This is a partial list of human eye diseases and disorders. The World Health Organisation publishes a classification of known diseases and injuries called the International Statistical Classification of Diseases and Related Health Problems or ICD-10. This list uses that classification. H00-H59 Diseases of the eye and adnexa H00-H06 Disorders of eyelid, lacrimal system and orbit • (H00.0) Hordeolum ("stye" or "sty") — a bacterial infection of sebaceous glands of eyelashes • (H00.1) Chalazion — a cyst in the eyelid (usually upper eyelid) • (H01.0) Blepharitis — inflammation of eyelids and eyelashes; characterized by white flaky skin near the eyelashes • (H02.0) Entropion and trichiasis • (H02.1) Ectropion • (H02.2) Lagophthalmos • (H02.3) Blepharochalasis • (H02.4) Ptosis • (H02.6) Xanthelasma of eyelid • (H03.0*) Parasitic infestation of eyelid in diseases classified elsewhere • Dermatitis of eyelid due to Demodex species ( B88.0+ ) • Parasitic infestation of eyelid in: • leishmaniasis ( B55.-+ ) • loiasis ( B74.3+ ) • onchocerciasis ( B73+ ) • phthiriasis ( B85.3+ ) • (H03.1*) Involvement of eyelid in other infectious diseases classified elsewhere • Involvement of eyelid in: • herpesviral (herpes simplex) infection ( B00.5+ ) • leprosy ( A30.-+ ) • molluscum contagiosum ( B08.1+ ) • tuberculosis ( A18.4+ ) • yaws ( A66.-+ ) • zoster ( B02.3+ ) • (H03.8*) Involvement of eyelid in other diseases classified elsewhere • Involvement of eyelid in impetigo
    [Show full text]
  • A Rare Cause of Bilateral Corneal Ulcers: Vitamin a Deficiency in the Setting of Chronic Alcoholism
    Open Access Case Report DOI: 10.7759/cureus.7991 A Rare Cause of Bilateral Corneal Ulcers: Vitamin A Deficiency in the Setting of Chronic Alcoholism Raman J. Sohal 1 , Thu Thu Aung 1 , Sandeep Sohal 2 , Abha Harish 1 1. Internal Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, USA 2. Internal Medicine, The Brooklyn Hospital Center, Brooklyn, USA Corresponding author: Raman J. Sohal, [email protected] Abstract Vitamin A deficiency is rarely encountered in the western world. When encountered, vitamin A deficiency is seen as a component of the malabsorption spectrum of disease. Given the infrequency of nutritional deficits in the developed world, vitamin A-associated ophthalmologic disease is rarely encountered. We report a case of a 56-year-old male with severe vitamin A deficiency in the setting of alcoholic liver cirrhosis. This case emphasizes two important points. First, it considers vitamin A deficiency as a cause of corneal ulceration in patients with chronic alcoholism. Second, it raises awareness of hepatotoxicity that can result after the supplementation of vitamin A in patients with chronic alcoholism. Although an uncommon diagnosis, it should be considered when other causes, such as infectious and autoimmune conditions, are ruled out. Categories: Internal Medicine, Ophthalmology Keywords: bilateral corneal ulcers, vitamin a deficiency, alcoholism, liver cirrhosis, nutritional deficiency Introduction Vitamin deficiency is not a commonly encountered cause of non-healing corneal ulcers. However, in cirrhotic patients when other differentials, such as infectious and autoimmune etiologies, have been excluded, vitamin A deficiency should be considered. In patients with liver cirrhosis, the deficiency stems from both decreased gastrointestinal absorption as well as decreased oral intake.
    [Show full text]
  • The Role of Nutrition and Nutritional Supplements in Ocular Surface Diseases
    nutrients Review The Role of Nutrition and Nutritional Supplements in Ocular Surface Diseases Marco Pellegrini 1,* , Carlotta Senni 1, Federico Bernabei 1, Arrigo F. G. Cicero 2 , Aldo Vagge 3 , Antonio Maestri 4, Vincenzo Scorcia 5 and Giuseppe Giannaccare 5 1 Ophthalmology Unit, S.Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; [email protected] (C.S.); [email protected] (F.B.) 2 Medical and Surgical Sciences Department, University of Bologna, 40138 Bologna, Italy; [email protected] 3 Eye Clinic of Genoa, Policlinico San Martino, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; [email protected] 4 Medical Oncology Department, Santa Maria della Scaletta Hospital, 40026 Imola, Italy; [email protected] 5 Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; [email protected] (V.S.); [email protected] (G.G.) * Correspondence: [email protected]; Tel.: +39-3343-308141 Received: 11 March 2020; Accepted: 27 March 2020; Published: 30 March 2020 Abstract: Dry eye disease (DED) is a multifactorial disease of the ocular surface system whose chore mechanisms are tear film instability, inflammation, tear hyperosmolarity and epithelial damage. In recent years, novel therapies specifically targeting inflammation and oxidative stress are being investigated and used in this field. Therefore, an increasing body of evidence supporting the possible role of different micronutrients and nutraceutical products for the treatment of ocular surface diseases is now available. In the present review, we analyzed in detail the effects on ocular surface of omega-3 fatty acids, vitamins A, B12, C, D, selenium, curcumin and flavonoids.
    [Show full text]
  • The Connection Between Anxiety and Dry Eyes Disease,Meibomian Gland Probing in the UK,Effects of Roaccutane on Eyes,Eye Drops Fo
    The Connection Between Anxiety and Dry Eyes Disease Dry eye disease is a common disease that can impair the quality of one’s life significantly. Its prevalence multiplies with advancing age, stress, anxiety. The economic burden of the disease on both a patient and society can increase. The diagnosis and treatment of dry eye disease are often difficult due to the discordance between symptoms and signs of the disease. In this article, we will look at the connection between a mental state of anxiety and dry eye disease. Anxiety and Dry Eyes Connection Between Anxiety and Dry Eyes Disease Dry eye disease is seen as one of the most common ophthalmologic disorders. It is connected or associated with symptoms like ocular discomfort, pain, dryness and foreign body sensation, which can impair the quality of life for millions of people globally. In terms of economic burden, dry eye disease has become a significant public health problem. Below are some of the findings that exist between anxiety and dry eyes disease Researchers have revealed that there is a connection between anxiety and dry eye disease in patients with normal or mildly reduced tear production. It also revealed that subjects with dry eyes disease showed an increased risk of experiencing severe psychological anxiety. The scores of the psychological questionnaires, which include Shortened Health Anxiety Inventory, Shortened Beck Depression Inventory, and Beck Anxiety Inventory, had a significant correlation with the ocular surface disease index score, whereas there is no significant relationship between dry eye signs and symptoms. The anxiety usually affects the development of dry eye symptoms and is one of the causes of the inconsistency between symptoms and signs of dry eyes disease.
    [Show full text]
  • Genotype-Phenotype Correlation for Leber Congenital Amaurosis in Northern Pakistan
    OPHTHALMIC MOLECULAR GENETICS Genotype-Phenotype Correlation for Leber Congenital Amaurosis in Northern Pakistan Martin McKibbin, FRCOphth; Manir Ali, PhD; Moin D. Mohamed, FRCS; Adam P. Booth, FRCOphth; Fiona Bishop, FRCOphth; Bishwanath Pal, FRCOphth; Kelly Springell, BSc; Yasmin Raashid, FRCOG; Hussain Jafri, MBA; Chris F. Inglehearn, PhD Objectives: To report the genetic basis of Leber con- in predicting the genotype. Many of the phenotypic vari- genital amaurosis (LCA) in northern Pakistan and to de- ables became more prevalent with increasing age. scribe the phenotype. Conclusions: Leber congenital amaurosis in northern Methods: DNA from 14 families was analyzed using single- Pakistan is genetically heterogeneous. Mutations in RP- nucleotide polymorphism and microsatellite genotyping GRIP1, AIPL1, and LCA5 accounted for disease in 10 of and direct sequencing to determine the genes and muta- the 14 families. This study illustrates the differences in tions involved. The history and examination findings from phenotype, for both the anterior and posterior seg- 64 affected individuals were analyzed to show genotype- ments, seen between patients with identical or different phenotype correlation and phenotypic progression. mutations in the LCA genes and also suggests that at least some of the phenotypic variation is age dependent. Results: Homozygous mutations were found in RPGRIP1 (4 families), AIPL1 and LCA5 (3 families each), and RPE65, Clinical Relevance: The LCA phenotype, especially one CRB1, and TULP1 (1 family each). Six of the mutations including different generations in the same family, may are novel. An additional family demonstrated linkage to be used to refine a molecular diagnostic strategy. the LCA9 locus. Visual acuity, severe keratoconus, cata- ract, and macular atrophy were the most helpful features Arch Ophthalmol.
    [Show full text]
  • Ophthalmic Manifestations of Endocrine Disorders—Endocrinology and the Eye
    299 Review Article Ophthalmic manifestations of endocrine disorders—endocrinology and the eye Alisha Kamboj1, Michael Lause1, Priyanka Kumar2 1The Ohio State University College of Medicine, Columbus, OH, USA; 2Department of Ophthalmology, the Children’s Hospital of Philadelphia, Philadelphia, PA, USA Contributions: (I) Conception and design: All authors; (II) Administrative support: P Kumar; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Priyanka Kumar, MD. Department of Ophthalmology, the Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA. Email: [email protected]. Abstract: Disorders of the endocrine system usually manifest in a multi-organ fashion. More specifically, many endocrinopathies become apparent in the eye first through a variety of distinct pathophysiologic disturbances. The eye provides physicians with valuable clues for the recognition and management of numerous systemic diseases, including many disorders of the endocrine pathway. Recognizing ophthalmic manifestations of endocrine disorders is critical not only for rapid diagnosis and treatment, but also to prevent significant morbidity and mortality. In this review, we discuss relevant ophthalmic findings associated with key disorders of the pancreas, thyroid gland, and hypothalamic-pituitary axis, as well as with multiple hereditary endocrine syndromes. We have chosen to focus on diabetes mellitus (DM), Graves’ ophthalmopathy, pituitary tumors, and some less common disorders that underscore the unique relationship between the eye and the endocrine system. Keywords: Endocrine disease; eye disease; window; diabetes mellitus (DM); Graves’ ophthalmopathy; hypothalamic-pituitary axis; review Submitted Sep 13, 2017.
    [Show full text]
  • Unilateral Retinal Degeneration in a Young Hispanic Patient
    Unilateral Retinal Degeneration in a Young Hispanic Patient Sandip K. Randhawa, OD; Sherry J. Bass, OD; Jerome Sherman, OD We discuss the clinical presentation, appropriate testing, differential diagnoses and management of a young Hispanic male with unilateral retinal pigment degeneration. I. Case History A Fourteen-year-old Hispanic male presented with reduced vision OS ongoing for 2-3 years. The patient reported a history of bumping into objects, typically on his left side. The patient reported no diplopia, headaches, eye injury/trauma, flashes of light or floaters. Medical history was unremarkable. Family history was positive for keratoconus (sister) and nyctalopia (maternal uncle) of unknown etiology. The patient was born in a small town in Mexico, and migrated to the United States as an infant. Since then, the patient has resided in New York City. II. Pertinent Findings Entering acuities without correction were 20/20 OD and 20/400 OS. Near acuities without correction were 20/20 OD and 20/100 OS. Pupils demonstrated a left grade II afferent pupillary defect. Confrontational field were full to finger counting OD and constricted in all quadrants OS. Ishihara color vision plates were reduced in both eyes; 10/14 OD and 1/14 (test plate only) OS. Brightness comparison was reduced OS by 70%. The patient had no stereopsis. Refraction revealed emmetropia OD and compound myopic astigmatism OS (-3.75-1.00x150), yielding best-corrected acuities of 20/20 OD, 20/40 OS. Dilated fundus examination revealed a pink and distinct optic nerve with mid-peripheral pigmentary changes superior-temporally in the right eye.
    [Show full text]
  • Therapy-Resistant Dry Itchy Eyes Rima Wardeh* , Volker Besgen and Walter Sekundo
    Wardeh et al. Journal of Ophthalmic Inflammation and Infection (2019) 9:13 Journal of Ophthalmic https://doi.org/10.1186/s12348-019-0178-7 Inflammation and Infection BRIEFREPORT Open Access Therapy-resistant dry itchy eyes Rima Wardeh* , Volker Besgen and Walter Sekundo Abstract An 8 years old male presented to our clinic with dry eye symptomes. Different therapiy attemps were made in the last few months and did not lead to any improvement. Examining this patient revealed multiple signs of vitamin A deficiency, which could confirmed by laboratory examination. The initial substitution of vitamin A led to a fast rehabilitation and a following nutrition consulting kept the patient symptom-free over 6 month follow up. Vitamin A deficiency -although rare in the developed countries- is an importent differential diagnosis of the dry eye especially in children. Vitamin A deficiency not only causes ocular manifistaion, but also general symptoms. Dietary change and initial subtitution is the key element for a fast and sustaining improvement. Medical history follow-up examination showed no improvement in the An 8-year-old male child was referred to our pediatric visual acuity nor in the corneal surface. In addition, the ophthalmology department because of burning sensation conjunctiva had developed triangular-shaped superficial and itching in both eyes during the last 4 months. His spots with keratinization in the bulbar conjunctiva nas- mother reported that the child was always pinching his ally, inferiorly, and temporally near the limbus of both eyes while reading or focusing. Topical therapy with eyes. With these findings, the diagnosis of conjunctival dexamethasone eye drops, antihistamine eye drops and corneal xerosis due to vitamin A deficiency was sus- (ketotifen), antibiotic eye drops (ofloxacine) and im- pected.
    [Show full text]
  • Biallelic CDK9 Variants As a Cause of a New Multiple-Malformation Syndrome with Retinal Dystrophy Mimicking the CHARGE Syndrome
    Journal of Human Genetics (2021) 66:1021–1027 https://doi.org/10.1038/s10038-021-00909-x BRIEF COMMUNICATION Biallelic CDK9 variants as a cause of a new multiple-malformation syndrome with retinal dystrophy mimicking the CHARGE syndrome 1 2 3 4 1 1 Sachiko Nishina ● Katsuhiro Hosono ● Shizuka Ishitani ● Kenjiro Kosaki ● Tadashi Yokoi ● Tomoyo Yoshida ● 5 6 7 8 3 2 Kaoru Tomita ● Maki Fukami ● Hirotomo Saitsu ● Tsutomu Ogata ● Tohru Ishitani ● Yoshihiro Hotta ● Noriyuki Azuma1 Received: 8 November 2020 / Revised: 27 January 2021 / Accepted: 30 January 2021 / Published online: 27 February 2021 © The Author(s) 2021. This article is published with open access Abstract CDK9 has been considered a candidate gene involved in the CHARGE-like syndrome in a pair of cousins. We report an 8- year-old boy with a strikingly similar phenotype including facial asymmetry, microtia with preauricular tags and bilateral hearing loss, cleft lip and palate, cardiac dysrhythmia, and undescended testes. Joint contracture, no finger flexion creases, and large halluces were the same as those of a previously reported patient with homozygous CDK9 variants. The ocular phenotype included blepharophimosis, lacrimal duct obstruction, eyelid dermoids, Duane syndrome-like abduction deficit, 1234567890();,: 1234567890();,: and congenital cataracts. Optical coherence tomography and electroretinography evaluations revealed severe retinal dystrophy had developed at an early age. Trio-based whole-exome sequencing identified compound heterozygous variants in CDK9 [p.(A288T) of maternal origin and p.(R303C) of paternal origin] in the patient. Variants’ kinase activities were reduced compared with wild type. We concluded that CDK9 biallelic variants cause a CHARGE-like malformation syndrome with retinal dystrophy as a distinguishing feature.
    [Show full text]