February 2018 July 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Latrobe River Basin January 2014
Latrobe River Basin January 2014 Introduction Southern Rural Water is the water corporation responsible for administering and enforcing the Latrobe River Basin Local Management Plan. The purpose of the Latrobe River Basin Local Management Plan is to: • document the management objectives for the system • explain to licence holders (and the broader community) the specific management objectives and arrangements for their water resource and the rules that apply to them as users of that resource • clarify water sharing arrangements for all users and the environment, including environmental flow requirements • document any limits, including water use caps, permissible consumptive volumes or extraction limits that apply to the system. Management objectives The objective of the Local Management Plan is to ensure the equitable sharing of water between users and the environment and the long-term sustainability of the resource. Water system covered The Local Management Plan covers all the rivers and creeks located within the Latrobe River Basin, which includes: Upper Latrobe Catchment Narracan Creek Catchment Moe River Catchment Frenchmans Creek Narracan Creek Bear Creek Harolds Creek Little Narracan Creek Bull Swamp Creek Hemp Hills Creek Trimms Creek Crossover Creek Loch River Dead Horse Creek McKerlies Creek Morwell River Catchment Hazel Creek Sandy Creek Billy’s Creek Loch Creek Stony Creek Eel Hole Creek Moe Main Drain Torongo River Little Morwell River Moe River Upper Latrobe River Morwell River Mosquito Creek Latrobe River Catchment O’Grady Creek Red Hill Creek Tanjil River Sassafras Creek Sassafras Creek Latrobe River Silver Creek Settlers Creek Tyers River Ten Mile Creek Seymour Creek Jacobs Creek Walkley’s Creek Shady Creek Traralgon Creek Wilderness Creek Sunny Creek The Latrobe River Basin is shown in the map below. -
EPBC Act Referral
Submission #2198 - Fingerboards Mineral Sands Project Title of Proposal - Fingerboards Mineral Sands Project Section 1 - Summary of your proposed action Provide a summary of your proposed action, including any consultations undertaken. 1.1 Project Industry Type Mining 1.2 Provide a detailed description of the proposed action, including all proposed activities. The Fingerboards Mineral Sands Project is a proposal to develop the Glenaladale mineral sands deposit (Glenaladale deposit) in East Gippsland. The Glenaladale deposit straddles East Gippsland Shire and Wellington Shire, however the project area is located entirely in East Gippsland Shire. The Glenaladale deposit contains an estimated 2.7 billion tonnes of mineralised sand and 53 million tonnes (Mt) of heavy minerals including around 12 Mt of zircon. The Fingerboards Mineral Sands Project will mine approximately 10% of the Glenaladale deposit over 20 years. Kalbar Resources will use open cut mining methods to extract 200 Mt of ore from the eastern part of the Glenaladale deposit to produce 6 Mt of heavy mineral concentrate (HMC). It is envisaged that, due to the size of the deposit, mining will continue in other areas of the deposit following the closure of the Fingerboards Mine. The ore will be fed to a mining unit plant (MUP) for slurrying and pumping to the wet concentrator plant (WCP). There the slurried ore will undergo initial onsite processing to produce HMC. The HMC will be exported for further processing into commercial products such as zircon and rutile. All overburden will be returned to the mined-out void, with the majority directly returned as mining progresses. -
Environmental Condition of Rivers and Streams in the Latrobe, Thomson and Avon Catchments
ENVIRONMENTAL CONDITION OF RIVERS AND STREAMS IN THE LATROBE, THOMSON AND AVON CATCHMENTS Publication 832 March 2002 1 INTRODUCTION activities have contributed to a significant change in the quantity and quality of water delivered to Lake This publication provides an overview of the Wellington and there is a significant amount of environmental condition of the rivers and streams in public concern regarding impacts on the health of the Latrobe, Thomson and Avon catchments1 (Figure the Gippsland Lakes. 1). The Latrobe and Thomson river systems, for The Latrobe, Thomson and Avon catchments contain example, contribute approximately twice the some of Victoria’s most significant river systems. nutrient inputs to the Gippsland Lakes than all other Located in the Gippsland region of Victoria, these riverine inputs. The most significant nutrient loading three river systems form the total catchment of Lake is associated with high flow events and reflects the Wellington, the western-most of the Gippsland increased surface runoff and erosion caused Lakes. The demands on these freshwater resources through land clearance and urbanisation. are considerable. Australia’s largest pulp and paper It is commonly agreed that the only long-term mill, most of the State’s power industry, much of solution for improving the condition of Lake Melbourne’s water supply and the State’s second Wellington is to significantly reduce the nutrient largest irrigation district fall within their catchment loads from the Latrobe and Thomson river systems. boundaries. Restoration of the catchments to a more sustainable Much change has occurred in these catchments land use, revegetating riparian zones and reducing since early settlement. -
Victorian Recreational Fishing Guide 2021
FREE TARGET ONE MILLION ONE MILLION VICTORIANS FISHING #target1million VICTORIAN RECREATIONAL FISHING A GUIDE TO FISHING RULES AND PRACTICES 2021 GUIDE 2 Introduction 55 Waters with varying bag and size limits 2 (trout and salmon) 4 Message from the Minister 56 Trout and salmon regulations 5 About this guide 60 Year-round trout and salmon fisheries 6 Target One Million 61 Trout and salmon family fishing lakes 9 Marine and estuarine fishing 63 Spiny crays 10 Marine and estuarine scale fish 66 Yabbies 20 Sharks, skates and rays 68 Freshwater shrimp and mussels 23 Crabs INTRODUCTION 69 Freshwater fishing restrictions 24 Shrimps and prawns 70 Freshwater fishing equipment 26 Rock lobster 70 Using equipment in inland waters 30 Shellfish 74 Illegal fishing equipment 33 Squid, octopus and cuttlefish 74 Bait and berley 34 Molluscs 76 Recreational fishing licence 34 Other invertebrates 76 Licence information 35 Marine fishing equipment 78 Your fishing licence fees at work 36 Using equipment in marine waters 82 Recreational harvest food safety 40 Illegal fishing equipment 82 Food safety 40 Bait and berley 84 Responsible fishing behaviours 41 Waters closed to recreational fishing 85 Fishing definitions 41 Marine waters closed to recreational fishing 86 Recreational fishing water definitions 41 Aquaculture fisheries reserves 86 Water definitions 42 Victoria’s marine national parks 88 Regulation enforcement and sanctuaries 88 Fisheries officers 42 Boundary markers 89 Reporting illegal fishing 43 Restricted areas 89 Rule reminders 44 Intertidal zone -
2012 Gippsland Flood Event - Review of Flood Warnings and Information Systems
2012 Gippsland Flood Event - Review of Flood Warnings and Information Systems TRIM ID: CD/12/522803 Date: 21 November 2012 Version: Final OFFICE of the EMERGENCY SERVICES COMMISSIONER Page i MINISTERIAL FOREWORD In early June this year, heavy rain and widespread flooding affected tens of thousands of Victorians across the central and eastern Gippsland region. The damage to towns and communities was widespread – particularly in the Latrobe City, Wellington and East Gippsland municipalities. Homes, properties and businesses were damaged, roads and bridges were closed, and more than 1500 farmers were impacted by the rains. A number of people were rescued after being trapped or stranded by the rising waters. Following the floods, some communities had a perception that telephone-based community warnings and information had failed them. As the Minister for Police and Emergency Services, I requested Victoria’s Emergency Services Commissioner to review the effectiveness, timeliness and relevance of the community information and warnings. This report has met my expectations and has identified the consequences and causes for the public’s perception. I welcome the review’s findings. I am confident these will, in time, lead to better and more effective arrangements for community information and warnings and contribute to a safer and more resilient Victoria. PETER RYAN Minister for Police and Emergency Services Page ii Contents Glossary ......................................................................................................................... v Executive Summary....................................................................................................... 1 1. June 2012 Gippsland flood.................................................................................3 1.1 Key physical aspects of the 2012 Gippsland flood event 3 1.2 Key aspects of information and warnings in the incident response 6 1.2.1 Key information and warnings from Bureau of Meteorology 6 1.2.2 Key information and warnings through incident management 7 2. -
A Rehabilitation Manual for Australian Streams
A Rehabilitation Manual for Australian Streams VOLUME 1 Ian D. Rutherfurd, Kathryn Jerie and Nicholas Marsh Cooperative Research Centre for Catchment Hydrology Land and Water Resources Research and Development Corporation 2000 Published by: Land and Water Resources Research and Cooperative Research Centre Development Corporation for Catchment Hydrology GPO Box 2182 Department of Civil Engineering Canberra ACT 2601 Monash University Telephone: (02) 6257 3379 Clayton VIC 3168 Facsimile: (02) 6257 3420 Telephone: (03) 9905 2704 Email: <[email protected]> Facsimile: (03) 9905 5033 WebSite: <www.lwrrdc.gov.au> © LWRRDC and CRCCH Disclaimer: This manual has been prepared from existing technical material, from research and development studies and from specialist input by researchers,practitioners and stream managers.The material presented cannot fully represent conditions that may be encountered for any particular project.LWRRDC and CRCCH have endeavoured to verify that the methods and recommendations contained are appropriate.No warranty or guarantee,express or implied,except to the extent required by statute,is made as to the accuracy,reliability or suitability of the methods or recommendations,including any financial and legal information. The information, including guidelines and recommendations,contained in this Manual is made available by the authors to assist public knowledge and discussion and to help rehabilitate Australian streams.The Manual is not intended to be a code or industry standard.Whilst it is provided in good faith,LWRRDC -
And Hinterland LANDSCAPE PRIORITY AREA
GIPPSLAND LAKES and Hinterland LANDSCAPE PRIORITY AREA Photo: The Perry River 31 GIPPSLAND LAKES AND HINTERLAND Gippsland Lakes and Hinterland AQUIFER ASSET VALUES, CONDITION AND KEY THREATS Figure 25: Gippsland Lakes and Hinterland Landscape Priority Area Aquifer Asset Shallow Aquifer The Shallow Alluvial aquifer includes the Denison and Wa De Lock Groundwater Management Areas. It has high Figure 24: Gippsland Lakes and Hinterland Landscape connectivity to surface water systems including the provision Priority Area location of base flow to rivers, such as the Avon, Thomson and Macalister. The aquifer contributes to the condition of other Groundwater Dependent Ecosystems including wetlands, The Gippsland Lakes and Hinterland landscape priority area estuarine environments and terrestrial flora. The aquifer is characterised by the iconic Gippsland Lakes and wetlands is also a very important resource for domestic, livestock, Ramsar site. The Gippsland Lakes is of high social, economic, irrigation and urban (Briagolong) water supply. The shallow environmental and cultural value and is a major drawcard aquifer of the Avon, Thomson, Macalister and lower Latrobe for tourists. A number of major Gippsland rivers (Latrobe, catchments is naturally variable in quality and yield. In many Thomson, Macalister, Avon and Perry) all drain through areas the aquifer contains large volumes of high quality floodplains to Lake Wellington and ultimately the Southern (fresh) groundwater, whereas elsewhere the aquifer can be Ocean, with the Perry River being one of the few waterways naturally high in salinity levels. Watertable levels in some in Victoria to have an intact chain of ponds geomorphology. areas have been elevated due to land clearing and irrigation The EPBC Act listed Gippsland Red Gum Grassy Woodland recharge. -
West Gippsland Region
Powlett River. Courtesy WGCMA The West Gippsland region is diverse and characterised by areas of natural forest, West areas of high conservation value, fertile floodplains for agriculture, as well as having Gippsland major coal deposits and the Loy Yang, Hazelwood and Yallourn power stations. Region Three river basins form the region – Thomson (basin 25), Latrobe (basin 26) and South Gippsland (basin 27). West Gippsland Region In the north of the region is the Thomson basin, Hydrology characterised by the naturally forested Eastern Highlands. At the foot of the highlands are two major dams - Lake The hydrological condition of streams across the West Glenmaggie and the Thomson dam. Over half (55%) of Gippsland region reflects the varied land use - from natural the stream length in the Thomson basin was found to be and near natural flow regimes in headwater streams in in good or excellent condition. Of the remainder, 41% of forested areas of the region to flow regimes under immense stream length was in moderate condition and just 3% stress in areas dependent on water supply for domestic and 1% in poor and very poor condition respectively. and agricultural use. In the centre of the region is the Latrobe basin. The basin Thomson Dam provided 12,046 ML of environmental water features vast tracts of forest through the Strezlecki Ranges in 2011-12 for six reaches on the Thomson River (reaches and the Great Dividing Range, where streams rise and flow 1-5) and Rainbow Creek (reach 17) and Lake Glenmaggie to Lake Wellington in the east. Although much of the land provided 14,018 ML of environmental water to two reaches has been cleared for agriculture, the dominant land use is on the Macalister River (reaches 7 and 8). -
2.3 Conceptual Modelling for the Gippsland Basin Bioregion This Product Summarises Key System Components, Processes and Interactions in This Bioregion
Conceptual modelling for the Gippsland Basin bioregion Product 2.3 from the Gippsland Basin Bioregional Assessment 2018 The Bioregional Assessment Programme The Bioregional Assessment Programme is a transparent and accessible programme of baseline assessments that increase the available science for decision making associated with coal seam gas and large coal mines. A bioregional assessment is a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. This Programme draws on the best available scientific information and knowledge from many sources, including government, industry and regional communities, to produce bioregional assessments that are independent, scientifically robust, and relevant and meaningful at a regional scale. The Programme is funded by the Australian Government Department of the Environment. For more information, visit http://www.bioregionalassessments.gov.au. Department of the Environment The Office of Water Science, within the Australian Government Department of the Environment, is strengthening the regulation of coal seam gas and large coal mining development by ensuring that future decisions are informed by substantially improved science and independent expert advice about the potential water related impacts of those developments. For more information, visit http://www.environment.gov.au/coal-seam-gas-mining/. Bureau of Meteorology The Bureau of Meteorology is Australia’s national weather, climate and water agency. Under the Water Act 2007, the Bureau is responsible for compiling and disseminating Australia's water information. The Bureau is committed to increasing access to water information to support informed decision making about the management of water resources. -
Fire Operations Plan
! ! ! 12/13 12/13 12/13 12/13 12T/13 12/13 12/13 12/13 B 14/15 14/15 14/15 ô 14/15 14/15 14/15 14/15 14/15 U Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y (((((( ((((((( ((((( K C 13/14 13/14 13/14 13/14 E K ^ ^ ^ ^ ^ ^ ^ ^ ^ E M L S Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y R P A ((((N (( ((((((( ((((((( ((((( I C I L N N O C L T H D ^ ^ ^ ^ ^ ^ ^ ^ ^ W E Y Y Y Y LAKY E GUY Y Y Y Y Y Y Y Y Y Y Y Y Y Bogong O R (((((( (! (((((( S ((((( R Y R 12/13 12/13 12/13 12/13 12/13 12/13 12/13 12/13 12/13 12/13 12/13 12/13 T L I I V O I C N C P E V ^ ^ ^ ^ ^ ^ ^ ^ ^ 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 R Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y R R E ((((((( C ((((( E R 13/14 13/1R 4 13/14 13/14 E E E E E K ^ ^ ^ ^ ^ ^ ^ ^ ^ K Y Y Y Y Y (Y (Y ((((( Y Y Y Y Y Y Y Y Y Y Y K Y Y Y Y ((((( M ^ ^ ^ ^ ^ ^ ^ ^ ^ Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y O ((((((((( ((((( 12/13 12/13 12/13 12/13 12/13 12/13 12/13 12/13 12/13 S R N S ^ ^ ^ ^ ^ ^ ^ ^ ^ 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 O Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y E ((((((((( (((((((((( ((((( W S 13/14 13/14 13/14 13/14 Y R C ^ ^ ^ ^ ^ ^ ^ ^ ^ I OME Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y V R ((((((((( (((((((((( O HIGHW ((((( E AY R E E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y K K ((((((((( (((((((((( (((((((((( 12/13 12/13 12/13 12/1(3 (12(/1(3 (12(/1(3 ( ((((( FO EE NT CR 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 14/15 CR E B N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y S U ((((((((( (((((((((( ELSE CRE (((((((((( -
Wellington Shire Heritage Study: Stage 1
Wellington Shire Heritage Study: Stage 1 Volume 1: Study methods and results May, 2005 Prepared for Wellington Shire Context Pty Ltd, Centre for Gippsland Studies, Wellington Shire Context Pty Ltd in collaboration with the Centre for Gippsland Studies Project Team: Chris Johnston; Kirsty Lewis; David Helms; Katrina Dernelly; Libby Riches: Context Dr Meredith Fletcher, Centre for Gippsland Studies Graeme Butler: Graeme Butler & Associates – review of Port Albert Conservation Study. Context Pty Ltd 22 Merri Street, Brunswick 3056 Phone 03 9380 6933 Fascimile 03 9380 4066 Email [email protected] II CONTENTS EXECUTIVE SUMMARY V Introduction v Study outcomes v Study reports vii Where to from here? vii 1 INTRODUCTION 1 1.1 Background 1 1.2 Initiating this study 1 1.3 Two stage study 2 1.4 Purpose of the study 2 1.5 Scope 3 1.6 Steering Committee 3 1.7 Acknowledgments 4 1.8 Consultant team 4 2 STUDY METHODS 5 2.1 Overview 5 2.2 Community participation program 5 2.3 Environmental history 7 2.4 Wellington Heritage Places Database 8 2.5 Field survey 9 2.6 Analysis and priority setting 9 3.7 Reporting on Stage 1 13 3 STAGE 1 EXTENSION 15 3.1 Introduction 15 3.2 Reviewing Port Albert Conservation Study (1982) 15 3.3 Reviewing the Sale Heritage Study (1994) 17 3.4 Adding Shire Monuments, Trees and Bridges databases 18 4 RECOMMENDATIONS 19 4.1 Introduction 19 4.2 Recommended program 20 4.3 Planning Scheme protection for heritage places 21 4.4 Program of Stage 2 locality heritage studies 22 4.5 Engaging the community 24 4.6 Heritage Plan 24 4.7 Review of Environmental History 24 4.8 In the interim 25 4. -
River Channel Relocation: Problems and Prospects
water Review River Channel Relocation: Problems and Prospects Alissa Flatley 1,* , Ian D Rutherfurd 1 and Ross Hardie 2 1 School of Geography, University of Melbourne, 221 Bouverie Street, Carlton, VIC 3053, Australia; [email protected] 2 Alluvium Consulting, Level 1, 105–115 Dover Street, Cremorne, VIC 3013, Australia; [email protected] * Correspondence: alissa.fl[email protected]; Tel.: +61-408-708-940 Received: 28 August 2018; Accepted: 26 September 2018; Published: 29 September 2018 Abstract: River relocation is the diversion of a river into an entirely new channel for part of their length (often called river diversions). Relocations have been common through history and have been carried out for a wide range of purposes, but most commonly to construct infrastructure and for mining. However, they have not been considered as a specific category of anthropogenic channel change. Relocated channels present a consistent set of physical and ecological challenges, often related to accelerated erosion and deposition. We present a new classification of river relocation, and present a series of case studies that highlight some of the key issues with river relocation construction and performance. Primary changes to the channel dimensions and materials, alongside changes to flow velocity or channel capacity, can lead to a consistent set of problems, and lead to further secondary and tertiary issues, such as heightened erosion or deposition, hanging tributaries, vegetation loss, water quality issues, and associated ecological impacts. Occasionally, relocated channels can suffer engineering failure, such as overtopping or complete channel collapse during floods. Older river relocation channels were constructed to minimise cost and carry large floods, and were straight and trapezoidal.