EFFECTS of HEATING RATE and PRIOR MICROSTRUCTURE on SAE 1541 FORGING STEEL: by Adam Shutts

Total Page:16

File Type:pdf, Size:1020Kb

EFFECTS of HEATING RATE and PRIOR MICROSTRUCTURE on SAE 1541 FORGING STEEL: by Adam Shutts MT-SRC-004-012 EFFECTS OF HEATING RATE AND PRIOR MICROSTRUCTURE ON SAE 1541 FORGING STEEL Submitted to: Forging Industry Eductional and Research Foundation 25 W. Prospect Avenue, Suite 300 Cleveland, OH 44115-1000 Submitted by: A.Shutts Advanced Steel Processing and Products Research Center Colorado School of Mines Golden, Colorado 80401 April 2004 TABLE OF CONTENTS Page INTRODUCTION 3 INDUSTRIAL RELEVANCE 3 PREVIOUS RESEARCH 3 MATERIAL 4 EXPERIMENTAL DESIGN 4 RESULTS 8 DISCUSSION 15 POSSIBLE FUTURE WORK 15 CONCLUSIONS 15 ACKNOWLEDGEMENTS 16 REFERENCES 16 2 EFFECTS OF HEATING RATE AND PRIOR MICROSTRUCTURE ON SAE 1541 FORGING STEEL: by Adam Shutts Introduction This project was initiated in May 2003 as summer research for Adam Shutts, an undergraduate student in Metallurgical and Materials Engineering. The purpose of this project was to investigate the effects of heating rate on 1541 steel as pertinent to forging related processes. Heating rates, varying over several orders of magnitude, were applied to two vastly different prior microstructures: as quenched martensite and coarse pearlite. These heating rates were applied and measured using a Gleeble 1500 thermo-mechanical testing machine. Each specimen provides data consisting of prior austenite grain size, presence of undissolved carbides and retained ferrite, and hardness. This project is linked to Jason Coryell’s project on induction heating which makes use of the same material in applications of induction heating. Industrial Relevance This project was identified in response to research objectives set forth by the FIA Technical Committee in the October 30, 2001 document entitled “Forging Industry Educational and Research Foundation Magnet School Student Project Ideas.” The two titles selected were “Develop a matrix of where phase change occurs at different heating rates for a given alloy” and “Quick normalizing techniques.” These projects both involve issues related to microstructural evolution during heating. Industrial use of rapid austenitization processes is becoming more prevalent due to economic benefits versus conventional furnaces. Quantitative knowledge is needed to refine the processes. For some induction heated forgings, practices should avoid undissolved carbides and soft microstructures in the final product. The austenite grain size is also of importance to the final structure/properties of the forging (4). The two prior microstructures selected, coarse pearlite and as quenched martensite, were chosen to represent two extremes in the microstructural spectrum, particularly related to expected carbide dissolution and austenite grain growth kinetics. Comparison of these two microstructures should demonstrate the range of effects of prior microstructure in rapid heating. Previous Research K.C. Smith has used similar laboratory practices at CSM in past programs. Smith examined the heating response of a 1070 steel using similar procedures as planned for the present research. Dilatometry provided a temperature associated with the phase changes. An inverse relationship between heating rate and prior austenite grain size was reported. Limits on heating rate were defined for lamellar cementite dissolution in both microstructures used by Smith (2). Other pertinent work has also been done at CSM. T.J. Favenyesi performed induction case hardening of 1541 steel as applied to fatigue response. The heating rate used by Favenyesi corresponds with the higher heating rates being planned for this project (3). 3 Similar studies were reported by Feuerstein and Smith in 1953. Heating rate, prior microstructure, and alloy were examined. Feuerstein and Smith used different degrees of tempering on their quenched steels and measured the increase of the Ac1 and Ac3. The data show that the critical temperatures increase with heating rate, in some cases as much at 120° C. Coarser microstructures exacerbate this effect. Annealed 4130 showed an increase of 120° C while 4130 tempered at 400° F showed an increase of only 65°C (5). Another researcher, Chen, studied the effect of heating rate on the Ac1 as applied to laser surface hardening. With heating rates approaching 1000°/sec Chen reported an increase of 47°C (6). Extensive work has also been done at the Heinz-Joachim Spies Freiberg University of Mining and Technology in the Institute of Materials Engineering at Freiberg, Germany by Johannes Rodel. This work focused on austenite formation in spherodized microstructures, which were surface hardened through the use of laser or electron beams. Extensive mathematical modeling was used to predict the austenite formation kinetics. Rodel indicates that rapid heating raises the austenite finish temperature. He also makes the assertion that diffusion controls the rate at which the austenite may form. Alloy elements, mainly carbon, must be given adequate time to diffuse into the austenite in order for it to form completely. Rodel’s heating rate of 1000 K/s matches the highest heating rate applied in the present study. One difference between Rodel’s work and the work done here at CSM is the material evaluated. Rodel’s work and much of the other work found on laser hardening was performed on a variety of steels from plain carbon to high alloy compositions with chromium and molybdenum (7). Material The steel being used is SAE 1541 and was received from North Star Steel in 1.259-inch diameter 4-foot long bars. The steel was hot rolled, consisting roughly of a 10% ferrite- 90% pearlite microstructure. The composition of the as-received steel is listed in Table 1 (4). TABLE 1 – Chemical Composition Of Selected Steel (4) Steel C Mn P S Si Cu Ni Cr Mo V Al Ti Nb 1541 0.39 1.444 0.01 0.024 0.27 0.119 0.05 0.09 0.01 0.005 0.024 0.003 0.001 Experimental Procedure Bandsaw Services reduced the 1.259-inch diameter bars into .25-inch square rods 12 inches in length as is illustrated in Figure 1a. The steel was then heat treated in the CSM physical metallurgy lab to attain quenched martensite and coarse pearlite microstructures. The pearlite samples were held at 900°C for 35 minutes and then were allowed to furnace cool to room temperature in approximately 12 hours (Fig. 2a). The martensite samples were held at 900°C for 35 minutes and then quenched in oil (Fig. 2b). The samples were ground to 3mm diameter cylinders and cut into 70mm lengths as is illustrated in Figure 1b. 4 A) B) Figure 1 Schematic cross-section of machining operations; (A) Bandsaw reduction of 1.259 in. samples to .25 in. square rods. (B) Final form for Gleeble test, after grinding; 3mmx70mm. 5 A) 10 µm B) 20 µm Figure 2 Light optical micrographs of 1541 steel with 2% nital etch, (A) Pearlitic microstructure taken at 1000x (B) Martensitic microstructure taken at 500x. 6 The samples were then heat treated in the Gleeble tester to simulate heating as applied in forging or final heat treatment. Copper jaws of the prescribed size were already available to hold and cool the ends of the sample from Smith’s previous work. Temperature monitoring and current delivery were executed with a type-K thermocouple welded to the center of the sample. An attempt was made to use dilatometry to measure expansion and contraction during heating in order to deduce the transformation temperature. This attempt was not successful due to small cross- sections and a dilatometer malfunction, which was discovered much later. Heating rates tested ranged from 1.0°C/second to 1000°C/second, incremented by orders of magnitude. Each of these five rates was carried out to 4 different maximum temperatures ranging between 900°C-1200°C. After heating, the samples were quenched by a direct spray of argon gas to the center of the sample. Cooling rates of approximately 200°C/sec were attained by this method and martensite was formed throughout the cross section, where austenitized. Sample Gleeble data can be seen in Figure 3. 1200 Target temperature profile Actual temperature profile ) 800 C e ( ur at er p m e 400 T 0 0 40 80 120 Time (sec) Figure 3 Sample heating and cooling curve for Gleeble sample heated at 10 C/s to 1000 C and argon gas quenched. After the samples were resistance heated and quenched, metallography was performed. The samples were cross-sectioned and mounted in Bakelite, ground with SiC paper to 600 grit, and polished with six and one micron diamond solution. The prior austenite grain size was evaluated using an etchant composed of 100ml picric acid, 2ml Teepol, and two drops of hydrochloric acid. This mixture was gently boiled using a hot plate and samples were 7 immersed for 35 seconds and then back polished with a cotton ball. These two steps were repeated until the austenite grain boundaries were easily visible. Statistical grain counting methods were then employed by placing circles of known circumference over a micrograph at 100 and 200x. Intersections with grain boundaries were counted for three cross-sections and the magnification was incorporated in the calculation of the average austenite grain size (4). Hardness profiles were taken from the center of the samples out to the edge with a Vickers Microhardness tester. Conversion to Rockwell C was presented in another display on the tester. The presence of undissolved carbides and retained ferrite was assessed by light microscopy after a 2% nital etch for 35 seconds. Results The results of this experiment are summarized in Tables 2 and 3 and Figures 5 through 11. The data show the presence of “retained ferrite” and undissolved lamellar carbides (i.e. “ghost pearlite”) at heating rates between 100°/s and 1000°/s for maximum temperatures under 1100°C with a coarse pearlite starting microstructure. These phenomena provide clear evidence of incomplete austenitization under these conditions. Examples of “retained ferrite” are shown in Figure 7. Hardness tests on these areas as well as “ghost pearlite” regions show a marked decrease in hardness as presented in Table 2, with values around 50 HRC compared to about 58 HRC in the fully austenitized regions.
Recommended publications
  • High-Carbon Steels: Fully Pearlitic Microstructures and Applications
    © 2005 ASM International. All Rights Reserved. www.asminternational.org Steels: Processing, Structure, and Performance (#05140G) CHAPTER 15 High-Carbon Steels: Fully Pearlitic Microstructures and Applications Introduction THE TRANSFORMATION OF AUSTENITE to pearlite has been de- scribed in Chapter 4, “Pearlite, Ferrite, and Cementite,” and Chapter 13, “Normalizing, Annealing, and Spheroidizing Treatments; Ferrite/Pearlite Microstructures in Medium-Carbon Steels,” which have shown that as microstructure becomes fully pearlitic as steel carbon content approaches the eutectiod composition, around 0.80% carbon, strength increases, but resistance to cleavage fracture decreases. This chapter describes the me- chanical properties and demanding applications for which steels with fully pearlitic microstructures are well suited. With increasing cooling rates in the pearlite continuous cooling trans- formation range, or with isothermal transformation temperatures ap- proaching the pearlite nose of isothermal transformation diagrams, Fig. 4.3 in Chapter 4, the interlamellar spacing of pearlitic ferrite and cementite becomes very fine. As a result, for most ferrite/pearlite microstructures, the interlamellar spacing is too fine to be resolved in the light microscope, and the pearlite appears uniformly dark. Therefore, to resolve the inter- lamellar spacing of pearlite, scanning electron microscopy, and for the finest spacings, transmission electron microscopy (TEM), are necessary to resolve the two-phase structure of pearlite. Figure 15.1 is a TEM mi- crograph showing very fine interlamellar structure in a colony of pearlite from a high-carbon steel rail. This remarkable composite structure of duc- © 2005 ASM International. All Rights Reserved. www.asminternational.org Steels: Processing, Structure, and Performance (#05140G) 282 / Steels: Processing, Structure, and Performance tile ferrite and high-strength cementite is the base microstructure for rail and the starting microstructure for high-strength wire applications.
    [Show full text]
  • Carbon Steel
    EN380 12-wk Exam Solution Fall 2019 Carbon Steel. 1. [19 pts] Three compositions of plain carbon steel are cooled very slowly in a turned-off furnace from ≈ 830◦C (see phase diagram below). For each composition, the FCC grains of γ−austenite (prior to transformation) are shown in an optical micrograph of the material surface. Sketch and label the phases making up the microstructures present in the right hand micrograph just after the austenite has completed transformation (note: the gray outlines of the prior γ grains may prove helpful). (a) [4 pts] C0 = 0:42% C (by wt). 830◦C 726◦C EN380 12-wk Exam Solution Page 1 Fall 2019 EN380 12-wk Exam Solution Fall 2019 (b) [4 pts] C0 = 0:80% C (by wt). 830◦C 726◦C (c) [4 pts] C0 = 1:05% C (by wt). 830◦C 726◦C (d) [7 pts] For the composition of part (c), C0 = 1:05% C (by wt), calculate the fraction of the solid that is pearlite at 726◦C. CF e3C − C0 6:67% − 1:05% Wpearlite = Wγ at 728◦C = = = 95:74% Pearlite CF e3C − Cγ 6:67% − 0:8% EN380 12-wk Exam Solution Page 2 Fall 2019 EN380 12-wk Exam Solution Fall 2019 2. [11 pts] Write in the correct term for each of the following related to carbon steels[1 pt each] (terms will be used exactly once): This material features carbon content in excess of Cast Iron 2:0% and is known for its excellent hardness, wear resistance, machinability and castability.
    [Show full text]
  • Structure/Property Relationships in Irons and Steels Bruce L
    Copyright © 1998 ASM International® Metals Handbook Desk Edition, Second Edition All rights reserved. J.R. Davis, Editor, p 153-173 www.asminternational.org Structure/Property Relationships in Irons and Steels Bruce L. Bramfitt, Homer Research Laboratories, Bethlehem Steel Corporation Basis of Material Selection ............................................... 153 Role of Microstructure .................................................. 155 Ferrite ............................................................. 156 Pearlite ............................................................ 158 Ferrite-Pearl ite ....................................................... 160 Bainite ............................................................ 162 Martensite .................................... ...................... 164 Austenite ........................................................... 169 Ferrite-Cementite ..................................................... 170 Ferrite-Martensite .................................................... 171 Ferrite-Austenite ..................................................... 171 Graphite ........................................................... 172 Cementite .......................................................... 172 This Section was adapted from Materials 5election and Design, Volume 20, ASM Handbook, 1997, pages 357-382. Additional information can also be found in the Sections on cast irons and steels which immediately follow in this Handbook and by consulting the index. THE PROPERTIES of irons and steels
    [Show full text]
  • Chapter 12: Phase Transformations
    Chapter 12: Phase Transformations ISSUES TO ADDRESS... • Transforming one phase into another takes time. Fe Fe C Eutectoid 3 γ transformation (cementite) (Austenite) + α C FCC (ferrite) (BCC) • How does the rate of transformation depend on time and temperature ? • Is it possible to slow down transformations so that non-equilibrium structures are formed? • Are the mechanical properties of non-equilibrium structures more desirable than equilibrium ones? AMSE 205 Spring ‘2016 Chapter 12 - 1 Phase Transformations Nucleation – nuclei (seeds) act as templates on which crystals grow – for nucleus to form rate of addition of atoms to nucleus must be faster than rate of loss – once nucleated, growth proceeds until equilibrium is attained Driving force to nucleate increases as we increase ΔT – supercooling (eutectic, eutectoid) – superheating (peritectic) Small supercooling slow nucleation rate - few nuclei - large crystals Large supercooling rapid nucleation rate - many nuclei - small crystals AMSE 205 Spring ‘2016 Chapter 12 - 2 Solidification: Nucleation Types • Homogeneous nucleation – nuclei form in the bulk of liquid metal – requires considerable supercooling (typically 80-300 °C) • Heterogeneous nucleation – much easier since stable “nucleating surface” is already present — e.g., mold wall, impurities in liquid phase – only very slight supercooling (0.1-10 °C) AMSE 205 Spring ‘2016 Chapter 12 - 3 Homogeneous Nucleation & Energy Effects Surface Free Energy- destabilizes the nuclei (it takes energy to make an interface) γ = surface tension ΔGT = Total Free Energy = ΔGS + ΔGV Volume (Bulk) Free Energy – stabilizes the nuclei (releases energy) r* = critical nucleus: for r < r* nuclei shrink; for r > r* nuclei grow (to reduce energy) Adapted from Fig.12.2(b), Callister & Rethwisch 9e.
    [Show full text]
  • New Extremely Low Carbon Bainitic High-Strength Steel Bar Having Excellent Machinability and Toughness Produced by TPCP Technology*
    KAWASAKI STEEL TECHNICAL REPORT No. 47 December 2002 New Extremely Low Carbon Bainitic High-Strength Steel Bar Having Excellent Machinability and Toughness Produced by TPCP Technology* Synopsis: A non heat-treated high strength steel bar for machine structural use through a thermo-mechanical precipita- tion control process (hereafter, referred to as TPCP) has been developed. The newly developed TPCP is a tech- nique for controlling the strength of the steel by precipi- tation hardening effected with the benefit of an extremely low carbon bainitic microstructure. The carbon content Kazukuni Hase Toshiyuki Hoshino Keniti Amano of the steel is decreased to below 0.02 mass% for realiz- Senior Researcher, Dr. Eng., Senior Dr. Eng., General Plate, Shape & Joining Researcher, Plate, Manager, Plate, Shape ing the proper microstructure, which improves both the Lab., Shape & Joining Lab., & Joining Lab., notch toughness and machinability. In order to make the Technical Res. Labs. Technical Res. Labs. Technical Res. Labs. microstructure bainitic and to obtain effective precipita- tion hardening, some micro-alloying elements are added. The developed steel manufactured with these advanced techniques showed a higher impact value, higher yield strength and better machinability than those 1 Introdution of the quenched and tempered AISI 4137 steel. The impact value of the steel is 250 J/cm2 or more at room In the fields of automobiles and industrial machines temperature. The problem of the reduction in yield ratio, where carbon steels and low alloy steels
    [Show full text]
  • Materials Technology – Placement
    MATERIAL TECHNOLOGY 01. An eutectoid steel consists of A. Wholly pearlite B. Pearlite and ferrite C. Wholly austenite D. Pearlite and cementite ANSWER: A 02. Iron-carbon alloys containing 1.7 to 4.3% carbon are known as A. Eutectic cast irons B. Hypo-eutectic cast irons C. Hyper-eutectic cast irons D. Eutectoid cast irons ANSWER: B 03. The hardness of steel increases if it contains A. Pearlite B. Ferrite C. Cementite D. Martensite ANSWER: C 04. Pearlite is a combination of A. Ferrite and cementite B. Ferrite and austenite C. Ferrite and iron graphite D. Pearlite and ferrite ANSWER: A 05. Austenite is a combination of A. Ferrite and cementite B. Cementite and gamma iron C. Ferrite and austenite D. Pearlite and ferrite ANSWER: B 06. Maximum percentage of carbon in ferrite is A. 0.025% B. 0.06% C. 0.1% D. 0.25% ANSWER: A 07. Maximum percentage of carbon in austenite is A. 0.025% B. 0.8% 1 C. 1.25% D. 1.7% ANSWER: D 08. Pure iron is the structure of A. Ferrite B. Pearlite C. Austenite D. Ferrite and pearlite ANSWER: A 09. Austenite phase in Iron-Carbon equilibrium diagram _______ A. Is face centered cubic structure B. Has magnetic phase C. Exists below 727o C D. Has body centered cubic structure ANSWER: A 10. What is the crystal structure of Alpha-ferrite? A. Body centered cubic structure B. Face centered cubic structure C. Orthorhombic crystal structure D. Tetragonal crystal structure ANSWER: A 11. In Iron-Carbon equilibrium diagram, at which temperature cementite changes fromferromagnetic to paramagnetic character? A.
    [Show full text]
  • Cast Irons$ KB Rundman, Michigan Technological University, Houghton, MI, USA F Iacoviello, Università Di Cassino E Del Lazio Meridionale, DICEM, Cassino (FR), Italy
    Cast Irons$ KB Rundman, Michigan Technological University, Houghton, MI, USA F Iacoviello, Università di Cassino e del Lazio Meridionale, DICEM, Cassino (FR), Italy r 2016 Elsevier Inc. All rights reserved. 1 Metallurgy of Cast Iron 1 2 Solidification of a Hypoeutectic Gray Iron Alloy With CE¼4.0 3 3 Matrix Microstructures in Graphitic Cast Irons – Cooling Below the Eutectic 3 4 Microstructure and Mechanical Properties of Gray Cast Iron 4 5 Effect of Carbon Equivalent 5 6 Effect of Matrix Microstructure 5 7 Effect of Alloying Elements 5 8 Classes of Gray Cast Irons and Brinell Hardness 5 9 Ductile Cast Iron 5 10 Production of Ductile Iron 6 11 Solidification and Microstructures of Hypereutectic Ductile Cast Irons 6 12 Mechanical Properties of Ductile Cast Iron 7 13 As-cast and Quenched and Tempered Grades of Ductile Iron 8 14 Malleable Cast Iron, Processing, Microstructure, and Mechanical Properties 8 15 Compacted Graphite Iron 9 16 Austempered Ductile Cast Iron 9 17 The Metastable Phase Diagram and Stabilized Austenite 9 18 Control of Mechanical Properties of ADI 10 19 Conclusion 10 References 11 Further Reading 11 Cast irons have played an important role in the development of the human species. They have been produced in various compositions for thousands of years. Most often they have been used in the as-cast form to satisfy structural and shape requirements. The mechanical and physical properties of cast irons have been enhanced through understanding of the funda- mental relationships between microstructure (phases, microconstituents, and the distribution of those constituents) and the process variables of iron composition, heat treatment, and the introduction of significant additives in molten metal processing.
    [Show full text]
  • Quantification of the Microstructures of Hypoeutectic White Cast Iron Using
    Quantification of the Microstructures of Hypoeutectic White Cast Iron using Mathematical Morphology and an Artificial Neuronal Network Victor Albuquerque, João Manuel R. S. Tavares, Paulo Cortez Abstract This paper describes an automatic system for segmentation and quantification of the microstructures of white cast iron. Mathematical morphology algorithms are used to segment the microstructures in the input images, which are later identified and quantified by an artificial neuronal network. A new computational system was developed because ordinary software could not segment the microstructures of this cast iron correctly, which is composed of cementite, pearlite and ledeburite. For validation purpose, 30 samples were analyzed. The microstructures of the material in analysis were adequately segmented and quantified, which did not happen when we used ordinary commercial software. Therefore, the proposed system offers researchers, engineers, specialists and others, a valuable and competent tool for automatic and efficient microstructural analysis from images. Keywords: hypoeutectic white cast iron, image processing and analysis, mathematical morphology, artificial neuronal network, image quantification. 1 1. Introduction Cast iron is an iron-carbon-silicon alloy used in numerous industrial applications, such as the base structures of manufacturing machines, rollers, valves, pump bodies and mechanical gears, among others. The main families of cast irons are: nodular cast iron, malleable cast iron, grey cast iron and white cast iron (Callister, 2006). Their properties, as of all materials, are influenced by their microstructures and therefore, the correct characterization of their microstructures is highly important. Thus, quantitative metallography is commonly used to determine the quantity, appearance, size and distribution of the phases and constituents of the white cast iron microstructures.
    [Show full text]
  • Enghandbook.Pdf
    785.392.3017 FAX 785.392.2845 Box 232, Exit 49 G.L. Huyett Expy Minneapolis, KS 67467 ENGINEERING HANDBOOK TECHNICAL INFORMATION STEELMAKING Basic descriptions of making carbon, alloy, stainless, and tool steel p. 4. METALS & ALLOYS Carbon grades, types, and numbering systems; glossary p. 13. Identification factors and composition standards p. 27. CHEMICAL CONTENT This document and the information contained herein is not Quenching, hardening, and other thermal modifications p. 30. HEAT TREATMENT a design standard, design guide or otherwise, but is here TESTING THE HARDNESS OF METALS Types and comparisons; glossary p. 34. solely for the convenience of our customers. For more Comparisons of ductility, stresses; glossary p.41. design assistance MECHANICAL PROPERTIES OF METAL contact our plant or consult the Machinery G.L. Huyett’s distinct capabilities; glossary p. 53. Handbook, published MANUFACTURING PROCESSES by Industrial Press Inc., New York. COATING, PLATING & THE COLORING OF METALS Finishes p. 81. CONVERSION CHARTS Imperial and metric p. 84. 1 TABLE OF CONTENTS Introduction 3 Steelmaking 4 Metals and Alloys 13 Designations for Chemical Content 27 Designations for Heat Treatment 30 Testing the Hardness of Metals 34 Mechanical Properties of Metal 41 Manufacturing Processes 53 Manufacturing Glossary 57 Conversion Coating, Plating, and the Coloring of Metals 81 Conversion Charts 84 Links and Related Sites 89 Index 90 Box 232 • Exit 49 G.L. Huyett Expressway • Minneapolis, Kansas 67467 785-392-3017 • Fax 785-392-2845 • [email protected] • www.huyett.com INTRODUCTION & ACKNOWLEDGMENTS This document was created based on research and experience of Huyett staff. Invaluable technical information, including statistical data contained in the tables, is from the 26th Edition Machinery Handbook, copyrighted and published in 2000 by Industrial Press, Inc.
    [Show full text]
  • EN380 Homework #7 Solution
    EN380 Homework #7 Solution 1. What are the criteria for two metals to form a perfect substitutional alloy (that is, these two will form the same crystal phase at all potential concentrations of each species)? • Atomic radii must not differ by more than 15%. • Crystalline Structure must be the same (BCC and BCC, FCC and FCC, etc.). • No appreciable difference in electronegativity. • Elements should have the same valence state. 2. Sketch a qualitative plot of σY vs % elongation for the following steel microstructures: (a) Ferrite (α) (b) Bainite (c) Martinsite (d) Coarse Pearlite (e) Fine Pearlite 1 3. The phase diagram for iron-iron carbide (F e - F e3C) is shown below. For a 0:95% C steel (i.e. 1095 series) at a temperature just below the eutectoid temperature (727◦C) determine: (a)% C present in the ferrite (α).0 :02% (b)% C present in the cementite (F e3C).6 :67% orange CF e3C −C0 6:67%−0:95% (c) total % of the steel that is ferrite (α). Wα = = = = 86:02% purple+orange CF e3C −Cα 6:67%−0:02% (d) total % of the steel that is cementite (F e3C). purple C0−Cα 0:95%−0:02% WF e3C = = = 13:98% purple+orange CF e3C −Cα 6:67%−0:02% 2 (e) % of steel that is pearlite. This is the same as finding how much austenite, γ, was present just above the eutectoid temper- ature. Draw the tie line just above 727◦C. Cα = 0:02% Cγ = 0:8% green CF e3C − C0 6:67% − 0:95% Wγ = = = = 97:44% red + green CF e3C − Cγ 6:67% − 0:8% (f) % of steel that is proeutectoid ferrite.
    [Show full text]
  • Control Process on the Properties of High-Strength Low Alloy Steel*
    Effect of the ThermoMechanica1-Control Process on the Properties of High-strength Low Alloy Steel* By Hirosh i TAMEHIRO,** Naoomi YAMADA** and Hiroo MATSUDA*** Synopsis tory rolling tests to examine the effect of the process The effect of the Thermo-Mechanical Control Process (TMCP) on conditions. The slabs were cut to 210 mm thick, the properties of high-strength low alloy steel has been examined and the 300 mm wide and 400 mm long and were rolled into following results have been obtained. 25 mm thick plates under various process conditions. The addition of niobium or titanium, especially the combination of The CR conditions adopted for the laboratory tests niobium and boron is effectivefor TMCP. Low-temperature toughness were : heating temperature, 1 150 to 1 200 °C; total of TMCP plate is not significantly influenced by the cooling conditions, but is mainly determined by the controlled-rolling (CR) conditions. rolling reduction below 900 °C, 70 to 75 %; finish TMCP alters the microstructure from ferrite pearlite to fine-grained rolling temperature, in the vicinity of the Ar3 tempera- ferrite-bainite and consequentlyincreases the strength without a loss in ture; cooling rate, 18 to 28 °C/s; finish water-cooling low-temperaturetoughness, compared with CR process. temperature, 410 to 470 °C and plate thickness, 16 The advantagesof TMCP plate are a decreasein the carbon equivalent, to 25 mm. improvementof HIC resistance and an increase in the impact energy. The mechanical properties in the transverse direc- tion were tested on full-thickness tensile and full-size I. Introduction Charpy V-notch impact test specimens taken from With increasingly strict quality requirements for the mid-thickness of the plate and on a Battelle Drop steels used in welded structures, various steel plate Weight Tear Test (BDWTT) specimen.
    [Show full text]
  • Prediction of Microstructure Constituents' Hardness After The
    metals Article Prediction of Microstructure Constituents’ Hardness after the Isothermal Decomposition of Austenite SunˇcanaSmokvina Hanza 1,* , Božo Smoljan 2, Lovro Štic 1 and Krunoslav Hajdek 2 1 Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia; [email protected] 2 University Center Koprivnica, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia; [email protected] (B.S.); [email protected] (K.H.) * Correspondence: [email protected]; Tel.: +385-51-651-475 Abstract: An increase in technical requirements related to the prediction of mechanical properties of steel engineering components requires a deep understanding of relations which exist between microstructure, chemical composition and mechanical properties. This paper is dedicated to the research of the relation between steel hardness with the microstructure, chemical composition and temperature of isothermal decomposition of austenite. When setting the equations for predicting the hardness of microstructure constituents, it was assumed that: (1) The pearlite hardness depends on the carbon content in a steel and on the undercooling below the critical temperature, (2) the martensite hardness depends primarily on its carbon content, (3) the hardness of bainite can be between that of untempered martensite and pearlite in the same steel. The equations for estimation of microstructure constituents’ hardness after the isothermal decomposition of austenite have been proposed. By the comparison of predicted hardness using a mathematical model with experimental results, it can be concluded that hardness of considered low-alloy steels could be successfully predicted by the proposed model. Citation: Smokvina Hanza, S.; Keywords: low-alloy steel; quenching; austenite decomposition; mechanical properties; hardness Smoljan, B.; Štic, L.; Hajdek, K.
    [Show full text]