"Enhancing Fairness and Privacy in Search Systems"

Total Page:16

File Type:pdf, Size:1020Kb

Enhancing Privacy and Fairness in Search Systems A dissertation submitted towards the degree Doctor of Engineering (Dr.-Ing.) of the Faculty of Mathematics and Computer Science of Saarland University by JOANNA BIEGA Saarbrücken December 2018 ii Defense Colloquium Date: 1 April 2019 Dean of the Faculty: Prof. Dr. Sebastian Hack Examination Committee Chair: Prof. Dr. Bernt Schiele Reviewer, Advisor: Prof. Dr. Gerhard Weikum Reviewer, Co-Advisor: Prof. Dr. Krishna P. Gummadi Reviewer: Prof. Dr. Carlos Castillo Reviewer: Prof. Dr. Wolfgang Nejdl Academic Assistant: Dr. Erisa Terolli iii Acknowledgments I am greatly indebted to my PhD advisors, Gerhard Weikum and Krishna Gummadi, for their mentorship. Thank you Gerhard for your excellent technical guidance, for pushing me to work to the best of my ability, and for allowing me so much freedom to pursue my research interests. Thank you Krishna for teaching me to think deeply about the problems I work on, for showing how to be playful in coming up with new ideas, and for the many hours of non-technical discussions that helped me to grow as a researcher. Tremendous thanks to Prof. Carlos Castillo and Prof. Wolfgang Nejdl for reviewing this thesis and for all the helpful feedback. Thanks also to Prof. Bernt Schiele and Dr. Erisa Terolli for agreeing to devote their time to serve on my examination committee. Special thanks to Fabian Suchanek for being a fantastic mentor, for introducing me to the research world and later convincing me to do a PhD, and for being an inspiring example of how to reconcile professional excellence with various hobbies. Thanks to the Privacy Infrastructure Team at Google Zurich for hosting me during my internship and teaching me so many valuable lessons about engineering excellence. I want to thank all the friends and colleagues from D5@MPI-INF, SocSys@MPI-SWS, and the institute administration, for creating such an amazing working environment. Thanks to my old friends from the ’Sanok’ group for being a constant in my life despite the fact that we are so geographically distributed now, and for reminding me that I am not my work. Thanks to Dominika as well as all the friends from our Polish geek group in Sb for all the good times and great discussions. Thanks to all the ’Balnica’ friends for all the artistically creative times that powered me through the work times. Heartfelt thanks to the family Roth for making Germany and Switzerland feel a bit more like home. Thanks to my sister Ela for all the emotional support - during the good times and the bad times. I want to thank my parents, Lilianna and Marek, for making our education a priority. Particular thanks go to my mom who, in a small Polish town in the 80s and 90s, had a visionary dream that her daughters become engineers and grow up to be independent women. It is only years later that I realize how privileged I was to have been raised this way as a girl. Last but not least, thank you Ben for having supported me in countless ways through all these years, for all the amazing experiences we’ve had together, and for all the value you bring to my life. Asia v Abstract ollowing a period of expedited progress in the capabilities of digital systems, the society begins to realize that systems designed to assist people in various tasks can F also harm individuals and society. Mediating access to information and explicitly or implicitly ranking people in increasingly many applications, search systems have a substantial potential to contribute to such unwanted outcomes. Since they collect vast amounts of data about both searchers and search subjects, they have the potential to violate the privacy of both of these groups of users. Moreover, in applications where rankings influence people’s economic livelihood outside of the platform, such as sharing economy or hiring support websites, search engines have an immense economic power over their users in that they control user exposure in ranked results. This thesis develops new models and methods broadly covering different aspects of privacy and fairness in search systems for both searchers and search subjects. Specifically, it makes the following contributions: • We propose a model for computing individually fair rankings where search subjects get exposure proportional to their relevance. The exposure is amortized over time using constrained optimization to overcome searcher attention biases while preserving ranking utility. • We propose a model for computing sensitive search exposure where each subject gets to know the sensitive queries that lead to her profile in the top-k search results. The problem of finding exposing queries is technically modeled as reverse nearest neighbor search, followed by a weekly-supervised learning to rank model ordering the queries by privacy-sensitivity. • We propose a model for quantifying privacy risks from textual data in online com- munities. The method builds on a topic model where each topic is annotated by a crowdsourced sensitivity score, and privacy risks are associated with a user’s relevance to sensitive topics. We propose relevance measures capturing different dimensions of user interest in a topic and show how they correlate with human risk perceptions. • We propose a model for privacy-preserving personalized search where search queries of different users are split and merged into synthetic profiles. The model mediates the privacy-utility trade-off by keeping semantically coherent fragments of search histories within individual profiles, while trying to minimize the similarity of any of the synthetic profiles to the original user profiles. The models are evaluated using information retrieval techniques and user studies over a variety of datasets, ranging from query logs, through social media and community question answering postings, to item listings from sharing economy platforms. vii Kurzfassung ach einer Zeit schneller Fortschritte in den Fähigkeiten digitaler Systeme beginnt die Gesellschaft zu erkennen, dass Systeme, die Menschen bei verschiedenen Aufgaben N unterstützen sollen, den Einzelnen und die Gesellschaft auch schädigen können. Suchsysteme haben ein erhebliches Potenzial, um zu solchen unerwünschten Ergebnissen beizutragen, weil sie den Zugang zu Informationen vermitteln und explizit oder implizit Menschen in immer mehr Anwendungen in Ranglisten anordnen. Da sie riesige Datenmen- gen sowohl über Suchende als auch über Gesuchte sammeln, können sie die Privatsphäre dieser beiden Benutzergruppen verletzen. In Anwendungen, in denen Ranglisten einen Ein- fluss auf den finanziellen Lebensunterhalt der Menschen außerhalb der Plattform haben, z. B. auf Sharing-Economy-Plattformen oder Jobbörsen, haben Suchmaschinen eine im- mense wirtschaftliche Macht über ihre Nutzer, indem sie die Sichtbarkeit von Personen in Suchergebnissen kontrollieren. In dieser Dissertation werden neue Modelle und Methoden entwickelt, die verschiedene Aspekte der Privatsphäre und der Fairness in Suchsystemen, sowohl für Suchende als auch für Gesuchte, abdecken. Insbesondere leistet die Arbeit folgende Beiträge: • Wir schlagen ein Modell für die Berechnung von fairen Rankings vor, bei denen Suchsubjekte entsprechend ihrer Relevanz angezeigt werden. Die Sichtbarkeit wird im Laufe der Zeit durch ein Optimierungsmodell adjustiert, um die Verzerrungen der Sichtbarkeit für Sucher zu kompensieren, während die Nützlichkeit des Rankings beibehalten bleibt. • Wir schlagen ein Modell für die Bestimmung kritischer Suchanfragen vor, in dem für jeden Nutzer Aanfragen, die zu seinem Nutzerprofil in den Top-k-Suchergebnissen führen, herausgefunden werden. Das Problem der Berechnung von exponierenden Suchanfragen wird als Reverse-Nearest-Neighbor-Suche modelliert. Solche kritischen Suchanfragen werden dann von einem Learning-to-Rank-Modell geordnet, um die sensitiven Suchanfragen herauszufinden. • Wir schlagen ein Modell zur Quantifizierung von Risiken für die Privatsphäre aus Textdaten in Online-Communities vor. Die Methode baut auf einem Themenmodell auf, bei dem jedes Thema durch einen Crowdsourcing-Sensitivitätswert annotiert wird. Die Risiko-Scores sind mit der Relevanz eines Benutzers mit kritischen Themen verbunden. Wir schlagen Relevanzmaße vor, die unterschiedliche Dimensionen des Benutzerinteresses an einem Thema erfassen, und wir zeigen, wie diese Maße mit der Risikowahrnehmung von Menschen korrelieren. • Wir schlagen ein Modell für personalisierte Suche vor, in dem die Privatsphäre geschützt wird. In dem Modell werden Suchanfragen von Nutzer partitioniert und in synthetische Profile eingefügt. Das Modell erreicht einen guten Kompromiss zwischen der Such- systemnützlichkeit und der Privatsphäre, indem semantisch kohärente Fragmente der Suchhistorie innerhalb einzelner Profile beibehalten werden, wobei gleichzeitig angestrebt wird, die Ähnlichkeit der synthetischen Profile mit den ursprünglichen Nutzerprofilen zu minimieren. viii Die Modelle werden mithilfe von Informationssuchtechniken und Nutzerstudien ausgewertet. Wir benutzen eine Vielzahl von Datensätzen, die von Abfrageprotokollen über soziale Medien Postings und die Fragen vom Q&A Forums bis hin zu Artikellistungen von Sharing-Economy- Plattformen reichen. Contents 1 Introduction1 1.1 Motivation....................................1 1.1.1 Search systems..............................1 1.1.2 Privacy in search.............................2 1.1.3 Fairness in search.............................4 1.2 Challenges.....................................5 1.3 Thesis contributions...............................6 1.4 Other contributions
Recommended publications
  • CHAPTER 6: Diversity in AI
    Artificial Intelligence Index Report 2021 CHAPTER 6: Diversity in AI Artificial Intelligence Index Report 2021 CHAPTER 6 PREVIEW 1 Artificial Intelligence CHAPTER 6: Index Report 2021 DIVERSITY IN AI CHAPTER 6: Chapter Preview Overview 3 New Computing PhDs in the Chapter Highlights 4 United States by Race/Ethnicity 11 CS Tenure-Track Faculty by Race/Ethnicity 12 6.1 GENDER DIVERSITY IN AI 5 Black in AI 12 Women in Academic AI Settings 5 Women in the AI Workforce 6 6.3 GENDER IDENTITY AND Women in Machine Learning Workshops 7 SEXUAL ORIENTATION IN AI 13 Workshop Participants 7 Queer in AI 13 Demographics Breakdown 8 Demographics Breakdown 13 Experience as Queer Practitioners 15 6.2 RACIAL AND ETHNIC DIVERSITY IN AI 10 APPENDIX 17 New AI PhDs in the United States by Race/Ethnicity 10 ACCESS THE PUBLIC DATA CHAPTER 6 PREVIEW 2 Artificial Intelligence CHAPTER 6: OVERVIEW Index Report 2021 DIVERSITY IN AI Overview While artificial intelligence (AI) systems have the potential to dramatically affect society, the people building AI systems are not representative of the people those systems are meant to serve. The AI workforce remains predominantly male and lacking in diversity in both academia and the industry, despite many years highlighting the disadvantages and risks this engenders. The lack of diversity in race and ethnicity, gender identity, and sexual orientation not only risks creating an uneven distribution of power in the workforce, but also, equally important, reinforces existing inequalities generated by AI systems, reduces the scope of individuals and organizations for whom these systems work, and contributes to unjust outcomes.
    [Show full text]
  • Speaker Suan Gregurick
    NIH’s Strategic Vision for Data Science: Enabling a FAIR-Data Ecosystem Susan Gregurick, Ph.D. Associate Director for Data Science Office of Data Science Strategy February 10, 2020 Chronic Obstructive Pulmonary Disease is a significant cause of death in the US, genetic and Genetic & dietary data are available that could be used to dietary effects in further understand their effects on the disease Separate studies have been Challenges COPD done to collect genomic and dietary data for subjects with Obtaining access to all the COPD. relevant datasets so they can be analyzed Researchers know that many of the same subjects participated Understanding consent for in the two studies. each study to ensure that data usage limitations are respected Linking these datasets together would allow them to examine Connecting data from the the combined effects of same subject across genetics and diet using the different datasets so that the subjects present in both studies. genetic and dietary data from However, different identifiers the same subjects can be were used to identify the linked and studied subjects in the different studies. Icon made by Roundicons from www.flaticon.com DOC research requires datasets from a wide variety Dental, Oral and of sources, combining dental record systems with clinical and research datasets, with unique Craniofacial challenges of facial data (DOC) Research Advances in facial imaging Challenges have lead to rich sources of imaging and Joining dental and quantitative data for the clinical health records in craniofacial region. In order to integrate datasets addition, research in from these two parts of the model organisms can health system support DOC research in humans.
    [Show full text]
  • A Participatory Approach Towards AI for Social Good Elizabeth Bondi,∗1 Lily Xu,∗1 Diana Acosta-Navas,2 Jackson A
    Envisioning Communities: A Participatory Approach Towards AI for Social Good Elizabeth Bondi,∗1 Lily Xu,∗1 Diana Acosta-Navas,2 Jackson A. Killian1 {ebondi,lily_xu,jkillian}@g.harvard.edu,[email protected] 1John A. Paulson School of Engineering and Applied Sciences, Harvard University 2Department of Philosophy, Harvard University ABSTRACT Research in artificial intelligence (AI) for social good presupposes some definition of social good, but potential definitions have been PACT seldom suggested and never agreed upon. The normative ques- tion of what AI for social good research should be “for” is not concept thoughtfully elaborated, or is frequently addressed with a utilitar- capabilities approach ian outlook that prioritizes the needs of the majority over those who have been historically marginalized, brushing aside realities of injustice and inequity. We argue that AI for social good ought to be realization assessed by the communities that the AI system will impact, using participatory approach as a guide the capabilities approach, a framework to measure the ability of different policies to improve human welfare equity. Fur- thermore, we lay out how AI research has the potential to catalyze social progress by expanding and equalizing capabilities. We show Figure 1: The framework we propose, Participatory Ap- how the capabilities approach aligns with a participatory approach proach to enable Capabilities in communiTies (PACT), for the design and implementation of AI for social good research melds the capabilities approach (see Figure 3) with a partici- in a framework we introduce called PACT, in which community patory approach (see Figures 4 and 5) to center the needs of members affected should be brought in as partners and their input communities in AI research projects.
    [Show full text]
  • David C. Parkes John A
    David C. Parkes John A. Paulson School of Engineering and Applied Sciences, Harvard University, 33 Oxford Street, Cambridge, MA 02138, USA www.eecs.harvard.edu/~parkes December 2020 Citizenship: USA and UK Date of Birth: July 20, 1973 Education University of Oxford Oxford, U.K. Engineering and Computing Science, M.Eng (first class), 1995 University of Pennsylvania Philadelphia, PA Computer and Information Science, Ph.D., 2001 Advisor: Professor Lyle H. Ungar. Thesis: Iterative Combinatorial Auctions: Achieving Economic and Computational Efficiency Appointments George F. Colony Professor of Computer Science, 7/12-present Cambridge, MA Harvard University Co-Director, Data Science Initiative, 3/17-present Cambridge, MA Harvard University Area Dean for Computer Science, 7/13-6/17 Cambridge, MA Harvard University Harvard College Professor, 7/12-6/17 Cambridge, MA Harvard University Gordon McKay Professor of Computer Science, 7/08-6/12 Cambridge, MA Harvard University John L. Loeb Associate Professor of the Natural Sciences, 7/05-6/08 Cambridge, MA and Associate Professor of Computer Science Harvard University Assistant Professor of Computer Science, 7/01-6/05 Cambridge, MA Harvard University Lecturer of Operations and Information Management, Spring 2001 Philadelphia, PA The Wharton School, University of Pennsylvania Research Intern, Summer 2000 Hawthorne, NY IBM T.J.Watson Research Center Research Intern, Summer 1997 Palo Alto, CA Xerox Palo Alto Research Center 1 Other Appointments Member, 2019- Amsterdam, Netherlands Scientific Advisory Committee, CWI Member, 2019- Cambridge, MA Senior Common Room (SCR) of Lowell House Member, 2019- Berlin, Germany Scientific Advisory Board, Max Planck Inst. Human Dev. Co-chair, 9/17- Cambridge, MA FAS Data Science Masters Co-chair, 9/17- Cambridge, MA Harvard Business Analytics Certificate Program Co-director, 9/17- Cambridge, MA Laboratory for Innovation Science, Harvard University Affiliated Faculty, 4/14- Cambridge, MA Institute for Quantitative Social Science International Fellow, 4/14-12/18 Zurich, Switzerland Center Eng.
    [Show full text]
  • Director's Update
    Director’s Update Francis S. Collins, M.D., Ph.D. Director, National Institutes of Health Council of Councils Meeting September 6, 2019 Changes in Leadership . Retirements – Paul A. Sieving, M.D., Ph.D., Director of the National Eye Institute Paul Sieving (7/29/19) Linda Birnbaum – Linda S. Birnbaum, Ph.D., D.A.B.T., A.T.S., Director of the National Institute of Environmental Health Sciences (10/3/19) . New Hires – Noni Byrnes, Ph.D., Director, Center for Scientific Review (2/27/19) Noni Byrnes – Debara L. Tucci, M.D., M.S., M.B.A., Director, National Institute on Deafness and Other Communication Disorders (9/3/19) Debara Tucci . New Positions – Tara A. Schwetz, Ph.D., Associate Deputy Director, NIH (1/7/19) Tara Schwetz 2019 Inaugural Inductees Topics for Today . NIH HEAL (Helping to End Addiction Long-termSM) Initiative – HEALing Communities Study . Artificial Intelligence: ACD WG Update . Human Genome Editing – Exciting Promise for Cures, Need for Moratorium on Germline . Addressing Foreign Influence on Research … and Harassment in the Research Workplace NIH HEAL InitiativeSM . Trans-NIH research initiative to: – Improve prevention and treatment strategies for opioid misuse and addiction – Enhance pain management . Goals are scientific solutions to the opioid crisis . Coordinating with the HHS Secretary, Surgeon General, federal partners, local government officials and communities www.nih.gov/heal-initiative NIH HEAL Initiative: At a Glance . $500M/year – Will spend $930M in FY2019 . 12 NIH Institute and Centers leading 26 HEAL research projects – Over 20 collaborating Institutes, Centers, and Offices – From prevention research, basic and translational research, clinical trials, to implementation science – Multiple projects integrating research into new settings .
    [Show full text]
  • Graduate Student Highlights
    Graduate Student Highlights October 2019 – December 2019 Graduate School News Reception Celebrates 200+ NSF GRFP Recipients New and current awardees of the NSF GRFP gathered for a reception on Oct. 17. This year’s group of new recipients consists of 51 students, adding to the more than 200 NSF GRFP recipients already on campus. To help students prepare applications, the Graduate School hosts a variety of programming to support successful application writing. Read the full story Becoming Better Mentors Through Workshop Series In preparation for faculty careers, many graduate students and postdoctoral scholars seek out opportunities to develop their teaching, mentoring, and communication skills. The Building Mentoring Skills for an Academic Career workshop series prepares participants for not only their future endeavors, but assists them in being effective mentors in their current roles as well. Read the full story Students Present Research Around the World As part of a suite of structures to support graduate students, Conference Travel Grants offer financial assistance to help students present their research around the world. Four students reflect on their experiences presenting and networking at conferences both at home and abroad. Read the full story New Group Supports First-Generation and Low-Income Students Coming to Cornell as first-generation graduates, three doctoral students founded the First Generation and Low Income Graduate Student Association (FiGLI), realizing there was a need to be met. Taylor Brown, Rachel King, and Felicia New are working with new FiGLI members to plan events, workshops, speakers, and outreach to support members and students belonging to these communities. Read the full story Carriage House to Student Center: The Big Red Barn Over the Years Before becoming the Graduate and Professional Student Center, the Big Red Barn was a carriage house and stable, a shelter for large animals, a cafeteria, an alumni center, and a storage facility.
    [Show full text]
  • Report of the ACD Working Group Ad Hoc Virtual Meeting on AI/ML
    Report of the ACD Working Group Ad Hoc Virtual Meeting on AI/ML Electronic Medical Records for Research Purposes Special Meeting of the Advisory Committee to the Director (ACD) May 6, 2021 Lawrence A. Tabak, DDS, PhD Principal Deputy Director, NIH Department of Health and Human Services 1 DecemBer 2019 – ACD Artificial Intelligence WG 2 DecemBer 2019 – ACD Artificial Intelligence Report The opportunity is huge • including to drive discontinuous change We need new data generation projects • NOT Business-as-usual The single Best way to attract the right people is with the right data • “Show me the data” The time to invest in ethics is now • Before we dig a deeper hole 3 ACD AI/ML Electronic Medical Records for Research Purposes EXTERNAL MEMBERS Rediet Abebe, Ph.D. Barbara Engelhardt, Ph.D. Ryan Luginbuhl, M.D. Assistant Professor of Computer Science Associate Professor, Department of Principal, Life Sciences Division University of California, Berkeley Computer Science MITRE Corporation Princeton University Atul Butte, M.D., Ph.D. Brad Malin, Ph.D. Professor, Pediatrics David Glazer Accenture Professor Biomedical Informatics, Priscilla Chan and Mark ZuckerBerg Distinguished Engineering Verily Biostatistics, and Computer Science Professor VanderBilt University University of California, San Francisco Jianying Hu, Ph.D. IBM Fellow; GloBal Science Leader Jimeng Sun, M.Phil., Ph.D. Kate Crawford, Ph.D. AI for Healthcare Health Innovation Professor Senior Principal Researcher at Microsoft Research Director, Center for Computational Health Computer Science Department and Carle's Illinois Labs – New York City College of Medicine Visiting Chair of AI and Justice at the École Dina Katabi, Ph.D.
    [Show full text]
  • Bridging Machine Learning and Mechanism Design Towards Algorithmic Fairness
    Bridging Machine Learning and Mechanism Design towards Algorithmic Fairness Jessie Finocchiaro Roland Maio Faidra Monachou Gourab K Patro CU Boulder Columbia University Stanford University IIT Kharagpur Manish Raghavan Ana-Andreea Stoica Cornell University Columbia University Stratis Tsirtsis Max Planck Institute for Software Systems March 4, 2021 Abstract Decision-making systems increasingly orchestrate our world: how to intervene on the al- gorithmic components to build fair and equitable systems is therefore a question of utmost importance; one that is substantially complicated by the context-dependent nature of fairness and discrimination. Modern decision-making systems that involve allocating resources or in- formation to people (e.g., school choice, advertising) incorporate machine-learned predictions in their pipelines, raising concerns about potential strategic behavior or constrained allocation, concerns usually tackled in the context of mechanism design. Although both machine learning and mechanism design have developed frameworks for addressing issues of fairness and equity, in some complex decision-making systems, neither framework is individually sufficient. In this paper, we develop the position that building fair decision-making systems requires overcoming these limitations which, we argue, are inherent to each field. Our ultimate objective is to build an encompassing framework that cohesively bridges the individual frameworks of mechanism design and machine learning. We begin to lay the ground work towards this goal by comparing
    [Show full text]
  • Jurors Bio Version 1
    UNUSUAL SOLUTIONS COMPETITION JURY PANEL Senior Juror across all three Drone data & AI tools challenges Rediet Abebe Rediet Abebe is a Junior Fellow at the Harvard Society of Fellows. Her research is in the fields of algorithms and AI equity, ethics, and social good. Prof. Giuseppe Loianno Prof. Giuseppe Loianno is an assistant professor at the Dr. Fairoza Amira Binti New York University and director of the Agile Robotics Hamzah and Perception Lab (https://wp.nyu.edu/arpl/) working Dr. Fairoza Amira Binti Hamzah is on autonomous Micro Aerial Vehicles. Prior to NYU he currently working as Assistant was a lecturer, research scientist, and team leader at Professor in the Kyoto College of the General Robotics, Automation, Sensing and Graduate Studies for Informatics, Perception (GRASP) Laboratory at the University of Kyoto, Japan. Pennsylvania. Last data mile Drone & data ethics Emily Jacobi Sanjana Hattotuwa Emily Jacobi is the Founder and An Ashoka, Rotary World Peace and Executive Director of Digital TED Fellow, Sanjana has since 2002 Democracy, whose mission is to explored and advocated the use of support marginalized communities Information and Communications using technology to defend their Technologies (ICTs) to strengthen rights. peace, reconciliation, human rights & democratic governance. Linda Kamau Vidushi Marda Linda Kamau is the Managing Vidushi Marda is a lawyer working at Director and Co-Founder of the intersection of emerging AkiraChix. AkiraChix mission is to technologies, policy and society. She provide hands-on technical training currently leads Article 19’s global and mentorship to young women, research and engagement on girls and children. artificial intelligence (AI) and human rights.
    [Show full text]
  • Generative Modeling for Graphs
    LEARNING TO REPRESENT AND REASON UNDER LIMITED SUPERVISION A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Aditya Grover August 2020 © 2020 by Aditya Grover. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/jv138zg1058 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Stefano Ermon, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Moses Charikar I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Jure Leskovec I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Eric Horvitz Approved for the Stanford University Committee on Graduate Studies. Stacey F. Bent, Vice Provost for Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format.
    [Show full text]
  • Fairly Private Through Group Tagging and Relation Impact
    Fairly Private Through Group Tagging and Relation Impact Poushali Sengupta Subhankar Mishra Department of Statistics School of Computer Sciences University of Kalyani National Institute of Science, Educa- tion and Research Kalyani, West Bengal Bhubaneswar, India -752050 India - 741235 Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, In- dia [email protected] [email protected] ORCID: 0000-0002-6974-5794 ORCID: 0000-0002-9910-7291 Abstract Privacy and Fairness both are very important nowadays. For most of the cases in the online service providing system, users have to share their personal information with the organizations. In return, the clients not only demand a high privacy guarantee to their sensitive data but also expected to be treated fairly irrespective of their age, gender, religion, race, skin color, or other sensitive protected attributes. Our work introduces a novel architecture that is balanced among the privacy-utility-fairness trade-off. The proposed mechanism applies Group Tagging Method and Fairly Iterative Shuffling (FIS) that amplifies the privacy through random shuffling and prevents linkage attack. The algorithm introduces a fair classification problem by Relation Impact based on Equalized Minimal FPR-FNR among the protected tagged group. For the count report generation, the aggregator uses TF-IDF to add noise for providing longitudinal Differential Privacy guarantee. Lastly, the mechanism boosts the utility through risk minimization function and obtain the optimal privacy-utility budget of the system. In our work, we have done a case study on gender equality in the admission system and helps to obtain a satisfying result which implies that the proposed architecture achieves the group fairness and optimal privacy-utility trade-off for both the numerical and decision making Queries.
    [Show full text]
  • June 28, 2019 at Phoenix, Arizona
    June 28, 2019 at Phoenix, Arizona 1 2 Sponsors e ird Workshop on Mechanism Design for Social Good is generously sup- ported by Schmidt Futures, the MacArthur Foundation, the ACM Conference on Eco- nomics and Computation, and the Institute for New Economic inking – Young Scholars Initiative. 3 Organizing Commiee Workshop Chairs • Rediet Abebe, Cornell University • Irene Lo, Stanford University Area Chairs eory: • Hamsa Bastani, University of Pennsylvania • Kira Goldner, University of Washington Empirical Studies: • Daniel Waldinger, New York University Articial Intelligence and Machine Learning: • Sanmay Das, Washington University in St. Louis • George Musumba, Dedan Kimathi University of Technology Problem Pitches and Product Demonstrations: • Sera Linardi, University of Pisburgh • Aditya Vashistha, University of Washington Program Commiee • Nick Arnosti, Columbia University • Robert Manduca, Harvard University • Itai Ashlagi, Stanford University • Francisco Marmolejo, University of Oxford • Solon Barocas, Cornell University • Nicholas Maei, IBM TJ Watson • Michael Best, Georgia Institute of Technology • Nyalleng Moorosi, Google AI South Africa • Mark Braverman, Princeton University • Suresh Naidu, Columbia University • Augustin Chaintreau, Columbia University • Moses Namara, Clemson University • Lenore Cowen, Tus University • Benjamin Otieno, Kibabii University • Rachel Cummings, Georgia Institute of Tech- • Manish Raghavan, Cornell University nology • Sekou Remy, IBM Research Africa • Nikhil Devanur, Microso Research Red- • David Robinson,
    [Show full text]